Auto-park24.ru

Журнал "Автопарк"
4 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Впускной и выпускной клапан двигателя принцип работы

Впускной и выпускной клапан двигателя принцип работы

  • О ДВС
  • История ДВС
  • Техническая информация
  • Двигатель года
  • Надежность
  • Долговечность
  • Сгорание
  • Контакты
  • Экономичность
  • Холодный пуск
  • Двигатели с турбонаддувом
  • Регулируемые системы газораспределения
  • Токсичность двигателей внутреннего сгорания
  • Динамика и конструирование
Детали клапанных механизмов газораспределения: клапаны

Массовое наполнение цилиндров топливовоздушной смесью напрямую зависит от величин проходного сечения открываемого клапаном и продолжительности его открытия, а также аэродинамического сопротивления открываемой щщели образуемой между клапаном и седлом. Площадь впускного отверстия равна площади конической поверхности расположенной между тарелкой клапана и его седлом. Эта площадь пропорциональна диаметру опорной поверхности клапана, высоте подъема клапана и зависит от угла подъема клапана. Большинство клапанов выполняется с углом фаски в 45 градусов. Для форсированных двигателей угол фаски может быть безопасно уменьшен до 30 градусов. При меньшем угле площадь проходного отверстия еще больше увеличивается, но жесткость клапана значительно снизится, что приведет к вредным колебаниям клапанов в процессе работы двигателя и нарушению процесса впуска.

Увеличение диаметра тарелки клапана — Эта операция требует высококвалифицированного подхода хотя роль ее в прибавке мощности велика, но сильно преувеличена. Максимальное увеличение диаметра тарелки клапана ограничивается расположением его в камере сгорания. Увеличивать клапана до предела не имеет смысла, так как при сильном увеличении открытый клапан с одной стороны находиться очень близка к стенке цилиндра, что приводит к замедлению входящего топливовоздушного потока. Максимальные диаметры тарелок клапанов имеют двигатели с полусферическими камерами сгорания, ввиду расположения клапанов в разных плоскостях под немалым углом. В связи с тем, что клапаны располагаются под углом к стенкам цилиндра возможно максимально увеличение тарелок клапанов лишь бы поместились в камере сгорания. Механическая обработка впускных клапанов. Общие рекомендации.

Обработка внутренней части тарелки. Съем металла с внутренней части тарелки (часть находящаяся внутри головки блока) позволяет увеличить проходное сечение при открытии клапана, увеличив тем самым наполнение двигателя топливовоздушной смесью. При этом вес клапана уменьшается, что полезно если вы увеличиваете рабочие обороты двигателя. Не увлекайтесь съемом металла в части находящейся около ножки клапана, это позволит значительно снизить вес клапана но также значительно увеличит сопротивление что скажется на наполнении цилиндров.

Уменьшение аэродинамического сопротивления щели клапан-седло. Если помимо одной рабочей фаски клапана в 45 градусов изготовить с двух сторон еще по одной дополнительной фаске в 30 и 60 градусов то клапан приобретет более совершенную форму с точки зрения аэродинамики движения газов и наполнение цилиндров улучшиться что непременно приведет к увеличению мощности двигателя. Рабочая фаска создает уплотнение и частично отводит тепло в момент прижатия к седлу. Достаточная ширина для впускных клапанов, чтоб справляться с этими функциями находится в пределах 0.7 — 1.1 мм больше безопаснее.

Уменьшение диаметра ножки клапана. Ножка клапана находится в центре движения потока топливовоздушной смеси и оказывает на это движение значительное сопротивление. При уменьшении диаметра ножки даже на небольшую величину может оказать благоприятное воздействие на наполнение цилиндров. для клапанов с диаметром ножки 8 мм и более вполне возможно уменьшить толщину ножки на 1 мм без потери надежности и стабильности работы клапана. Нельзя снимать металл в месте движения клапана по направляющей втулке.

Уменьшение веса впускного клапана. Дополнительно к вышеописанным процедурам понизить вес впускного клапана поможет съем метала с центра тарелки со стороны камеры сгорания. Полировка. Полировка не отнимет много времени но добавит ряд полезных свойств вашим клапанам. Во первых на полированной поверхности меньше образуется нагар. Во вторых полированная поверхность имеет меньшую площадь поверхности (с точки зрения физики а не геометрии) и в связи с этим меньше нагревается клапан. Ну и в третьих полированная поверхность имеет меньшее аэродинамическое сопротивление, что положительно сказывается на наполнении цилиндров. Все эти плюсы мало выражены но они есть.

на главную 0-100 км/ч 0-100

Читать другие тюнинг статьи

Тюнинг подкапотного пространства

Впускные и выпускные клапаны

Впуск происходит под действием разрежения в цилиндре, а начало выпуска под действием значительно большего давления в цилиндре, поэтому выпускные клапаны выполняются всегда меньшего диаметра, чем впускные. Температура клапана при оптимальных углах опережения зажигания и составах смеси доходит до 950 градусов С. При снижении углов опережения зажигания, применении топлива с меньшей скоростью сгорания. Нарушении герметичности клапана и ряде других факторов перегрев клапана прогрессирует, что может вызывать его прогар. Слишком раннее открытие выпускного клапана (до 70 градусов до НМТ) при низкой частоте вращения коленчатого вала приводит к потере площади индикаторной диаграммы в конце рабочего хода, снижению крутящего момента, перегреву выпускных клапанов и повышению требований к октановому числу топлива.

Для снижения температуры выпускного клапана с целью повышения надежности и уменьшения требований к октановому числу топлива существуют следующие способы. 1. Применение двух клапанов меньшего диаметра вместо одного. 2. Применение натриевого охлаждения путем выполнения клапана с полостью в тарелке и стержне и частичного заполнения ее натрием. При нагреве натрий плавится и, передавая тепло от тарелки в стержень, способствует ее охлаждению. 3. Применение двойного последовательного выпуска отработавших газов (через окна в нижней части цилиндра, а затем через клапан). 4. В двигателях с непосредственным впрыском бензина и наддувом за счет увеличения перекрытия клапанов охлаждение достигается продувкой камеры сгорания. При выборе распределительною вала с учетом устанавливаемых фаз газораспределения следует убедиться, что при увеличенном ходе клапана в зоне ВМТ остается гарантированный зазор между тарелкой клапана и днищем поршня.

Увеличение мощности тюнинг двигателя на главную разгон до 100 0-100 км/ч 0-100

Клапанный механизм двигателя, его устройство и принцип работы

Основные элементы клапанного механизма

Для нормальной работы двигателя требуется как минимум два клапана на цилиндр, впускной и выпускной. Сам клапан состоит из стержня и головки в виде тарелки. Седло — это место контакта головки клапана с головкой блока цилиндров. Впускные клапана имеют больший диаметр головки, чем выпускные. Это обеспечивает лучшее заполнение камеры сгорания топливовоздушной смесью.

Основные элементы механизма:

  • впускные и выпускные клапана — предназначены для ввода топливовоздушной смеси и вывода отработанных газов из камеры сгорания;
  • направляющие втулки — обеспечивают точное направление движения клапанов;
  • пружина — возвращает клапан в исходное положение;
  • седло клапана — место контакта тарелки с ГБЦ;
  • сухари — служат опорой для пружины и закрепляют всю конструкцию);
  • маслосъемные колпачки или маслоотражательные кольца — предотвращает попадание масла в цилиндр;
  • толкатель — передает нажатие от кулачка распределительного вала.

Кулачки на распределительном валу давят на клапаны, возврат которых в исходное положение обеспечивается пружиной. Пружина прикреплена к стержню с помощью сухарей и пружинной тарелки. Для гашения резонансных колебаний на стержне могут устанавливаться не одна, а две пружины с разносторонней навивкой.

Направляющая втулка представляет собой цилиндрическую деталь. Она снижает трение и обеспечивает плавную и правильную работу стержня. В процессе эксплуатации эти детали также подвержены нагрузкам и температуре. Поэтому для их изготовления используются износостойкие и жаропрочные сплавы. Втулки выпускных и впускных клапанов немного отличаются друг от друга из-за разницы в нагрузке.

Соленоидный клапан

Широко применяется на бытовом уровне и в крупных промышленных конструкциях в широком диапазоне рабочих температур. В трубопроводах жилищно-коммунального хозяйства клапан выполняет регулирование среды внутри водопроводной или канализационных систем, центрального отопления. Используется на технологических линиях химических и нефтеперерабатывающих предприятиях, фильтрационных гидропроводах. Применим в сельском хозяйстве: поливочных конструкциях, системах дозирования и смешения.

Принцип работы электромагнитного клапана

Для производства электромагнитных клапанов используются материалы, соответствующие требованиям ГОСТ и международным стандартам. Электромагнитный клапан состоит из нескольких основных элементов:

Корпус. Может изготавливаться из нержавеющей стали, чугуна, коррозионностойкой латуни, химических полимеров.

Индукционная катушка с сердечником (соленоид). Располагается в герметичном корпусе, обмотка выполнена из высокопрочной технической меди.

Как работает клапанный механизм

Клапаны постоянно подвергаются воздействию высоких температур и давлений. Это требует особого внимания к конструкции и материалам этих деталей. Особенно это касается выпускной группы, так как через нее выходят горячие газы. Тарелка выпускного клапана на бензиновых двигателях может нагреваться до 800˚C — 900˚C, а на дизельных 500˚C — 700C. Нагрузка на тарелку впускного клапана в несколько раз меньше, но достигает 300˚С, что тоже немало.

Поэтому при их производстве используются жаропрочные металлические сплавы с легирующими добавками. Кроме того, выпускные клапаны обычно имеют полый стержень с натриевым наполнителем. Это необходимо для лучшей терморегуляции и охлаждения тарелки. Натрий внутри стержня плавится, течет и забирает часть тепла от пластины и передает его стержню. Таким образом можно избежать перегрева детали.

Во время работы на седле может образовываться нагар. Чтобы этого не произошло, используются конструкции для поворота клапана. Седло представляет собой кольцо из высокопрочного стального сплава, которое запрессовывается непосредственно в головку блока цилиндров для более плотного контакта.

Кроме того, для правильной работы механизма необходимо соблюдать регламентированный тепловой зазор. Высокие температуры вызывают расширение деталей, что может привести к неправильной работе клапана. Регулировка зазора между кулачками распредвала и толкателями осуществляется подбором специальных металлических шайб определенной толщины или самих толкателей (стаканов). Если в двигателе используются гидрокомпенсаторы, тогда зазор регулируется автоматически.

Очень большой тепловой зазор препятствует полному открытию клапана, и поэтому цилиндры будут менее эффективно заполняться свежей смесью. Небольшой зазор (или его отсутствие) не позволит клапанам закрыться до конца, что приведет к прогару клапана и снижению компрессии двигателя.

Строение клапанов сердца человека

Все четыре клапана состоят из створок. В митральном клапане таких створок две. Все остальные клапаны имеют по три створки.

К каждой створке клапана прикреплены тоненькие ниточки или хорды. Хорды тянутся от створок клапанов к сосочковым мышцам сердца, расположенным внутри полостей желудочков. Хорды удерживают створки клапанов так, что они не могут “провалиться” в полость предсердий, тогда как в полость желудочков они “проваливаются” свободно под давлением потока крови.

Это обеспечивает движение крови только в одну сторону.

Классификация по количеству клапанов

В классической версии четырехтактного двигателя для работы требуется только два клапана на цилиндр. Но к современным двигателям предъявляются все новые и новые требования с точки зрения мощности, расхода топлива и бережного отношения к окружающей среде, поэтому для них этого уже недостаточно. Поскольку чем больше клапанов, тем эффективнее будет заполнение цилиндра новым зарядом. В разное время на двигателях опробовали следующие схемы:

  • трехклапанные (впускных — 2, выпускной — 1);
  • четырехклапанные (впускных — 2, выпускных — 2);
  • пятиклапанные (впускных — 3, выпускных — 2).

Лучшее наполнение и очистка цилиндров достигается за счет большего количества клапанов на цилиндр. Но это усложняет конструкцию двигателя.

Сегодня наиболее популярны двигатели с 4-мя клапанами на цилиндр. Первый из этих двигателей появился в 1912 году на автомобиле Peugeot Gran Prix. В то время это решение не получило широкого распространения, но с 1970 года стали активно выпускаться серийные автомобили с таким количеством клапанов.

Как называются клапаны сердца

Два клапана, которые находятся между предсердиями и желудочками (справа и слева), называются створчатыми или атриовентрикулярными

Створчатыми их называют, потому что каждый из этих клапанов состоит из створок.

Атриовентрикулярными их назвали, потому что каждый из них находится между предсердием (atrio в переводе с латинского языка означает предсердие) и желудочком (ventriculum в переводе с латинского означает желудочек).

Клапан, который находится между левым предсердием и левым желудочком (мы его обозначили, как первый), называется двустворчатым или митральным

клапаном. Mitralis в переводе с латинского языка означает клапан. Этот клапан состоит из двух створок.

Клапан, который находится между правым предсердием и правым желудочком (мы его обозначили, как второй), называется трехстворчатым или трикуспидальным

. Трикуспидальный в переводе с латинского языка означает не что иное, как трехстворчатый. Этот клапан состоит из трех створок.

Клапаны, которые находятся между желудочками и крупными сосудами (аортой и легочной артерией) называются полулунными

. Их так назвали потому что их створки похожи на половинки луны. Один из полулунных клапанов – это
клапан аорты
, а второй –
клапан легочной артерии
.

Конструкция привода

Распределительный вал и привод ГРМ отвечают за правильную и своевременную работу клапанного механизма. Конструкция и количество распредвалов под каждый тип двигателя подбираются индивидуально. Деталь — это вал, на котором расположены кулачки определенной формы. Когда они проворачиваются, то оказывают давление на толкатели, гидрокомпенсаторы или коромысла и открывают клапаны. Тип схемы зависит от конкретного двигателя.

Распределительный вал расположен непосредственно в головке блока цилиндров. Привод к нему идет от коленчатого вала. Это может быть цепь, ремень или шестеренка. Самый надежный — цепной, но он требует вспомогательных устройств. Например, гаситель колебаний цепи (успокоитель) и натяжитель. Скорость вращения распределительного вала составляет половину скорости вращения коленчатого вала. Таким образом обеспечивается их скоординированная работа.

Количество распредвалов зависит от количества клапанов. Существуют две основные схемы:

  • SOHC — с одним валом;
  • DOHC — два вала.

Для одного распределительного вала достаточно всего двух клапанов. Он вращается и осуществляет поочередное открытие впускных и выпускных клапанов. Самые распространенные четырехклапанные двигатели имеют два распредвала. Один гарантирует работу впускных клапанов, а другой — выпускных клапанов. Двигатели типа V оснащены четырьмя распредвалами. По два с каждой стороны.

Кулачки распредвала не толкают стержень клапана напрямую. Существует несколько видов «посредников»:

  • роликовые рычаги (коромысло);
  • толкатели механические (стаканы);
  • гидравлические толкатели.

Роликовые рычаги имеют более предпочтительное устройство. Так называемые коромысла, качаются на вставных осях и давят на гидротолкатель. Для уменьшения трения на рычаге предусмотрен ролик, который непосредственно контактирует с кулачком.

В другой схеме используются гидравлические толкатели (компенсаторы зазора), которые расположены непосредственно на стержне. Гидрокомпенсаторы автоматически регулируют тепловой зазор и обеспечивают более плавную и тихую работу механизма. Эта небольшая часть состоит из цилиндра с поршнем и пружиной, масляных каналов и обратного клапана. Гидравлический толкатель работает за счет масла, подаваемого из системы смазки двигателя.

Механические толкатели (стаканы) представляют собой закрытые втулки с одной стороны. Они устанавливаются в корпусе головки блока цилиндров и напрямую передают усилие на стержень клапана. Его основные недостатки — необходимость периодически регулировать зазоры и стуки при работе с непрогретым двигателем.

Шум при работе

Основная неисправность клапана — это стук на холодном или горячем двигателе. Стук на холодном двигателе исчезает после повышения температуры. Когда они нагреваются и расширяются, тепловой зазор закрывается. Кроме того, причиной может быть вязкость масла, которое не течет в нужном объеме в гидрокомпенсаторы. Загрязнение масляных каналов компенсатора также может быть причиной характерного постукивания.

Клапаны могут стучать на горячем двигателе из-за низкого давления масла в системе смазки, грязного масляного фильтра или неправильного теплового зазора. Также необходимо учитывать естественный износ деталей. Неисправности могут быть в самом клапанном механизме (износ пружины, направляющей втулки, гидравлических толкателей и т. д.).

Регулировка зазора

Регулировки производятся только на холодном двигателе. Текущий тепловой зазор определяется специальными плоскими металлическими щупами разной толщины. Для изменения зазора на коромыслах есть специальный регулировочный винт, который проворачивается. В системах с толкателем или регулировочными шайбами регулировка производится путем выбора деталей необходимой толщины.

Рассмотрим пошаговый процесс регулировки клапанов для двигателей с толкателями (стаканами) или шайбами:

  1. Снимите клапанную крышку двигателя.
  2. Проверните коленчатый вал так, чтобы поршень первого цилиндра оказался в верхней мертвой точке. Если по меткам это сделать сложно, можно открутить свечу зажигания и вставить отвертку в колодец. Ее максимальное перемещение вверх будет мертвой точкой.
  3. Используя набор плоских щупов измерьте зазор в приводе клапанов под кулачками, которые не нажимают на толкатели. Щуп должен иметь плотный, но не слишком свободный ход. Запишите номер клапана и значение зазора.
  4. Проверните коленчатый вал на один оборот (360 °), чтобы поршень 4-го цилиндра оказался в ВМТ. Измерьте зазор под остальными клапанами. Запишите данные.
  5. Проверьте, в каких клапанах зазор находится вне допуска. Если такие есть, подберите толкатели нужной толщины, снимите распредвалы и установите новые стаканы. На этом процедура завершена.

Рекомендуется проверять зазоры каждые 50-80 тысяч километров пробега. Значения стандартных зазоров можно найти в руководстве по ремонту автомобиля.

Обратите внимание, что зазоры впускных и выпускных клапанов могут иногда различаться.

Правильно отрегулированный и настроенный газораспределительный механизм обеспечит плавную и равномерную работу двигателя внутреннего сгорания. Это также положительно скажется на ресурсах двигателя и комфорте водителя.

Зачем менять фазы газораспределения

Задача механизма газораспределения — обеспечить наивысшую эффективность наполнения и очистки цилиндра во время работы двигателя. От того, насколько грамотно подобраны фазы газораспределения, зависит экономичность мотора, мощность и развиваемый момент.

Качество работы двигателя — его КПД, мощность, крутящий момент и экономичность зависят от многих факторов, в том числе и от фаз газораспределения, то есть от своевременности открытия и закрытия впускных и выпускных клапанов.

В обычном четырёхтактном двигателе внутреннего сгорания клапаны приводятся в действие кулачками распределительного вала. Профиль этих кулачков определяет момент и продолжительность открытия (то есть ширину фаз), а также величину хода клапанов.

В большинстве современных двигателей фазы меняться не могут. И работа таких двигателей не отличается высокой эффективностью. Дело в том, что характер поведения газов (горючей смеси и выхлопа) в цилиндре, а также во впускном и выпускном трактах меняется в зависимости от режимов работы двигателя. Постоянно изменяется скорость течения, возникают различного рода колебания упругой газовой среды, которые приводят к полезным резонансным или, наоборот, паразитным застойным явлениям. этого скорость и эффективность наполнения цилиндров при различных режимах работы двигателя неодинаковы.

Так, например, для работы на холостом ходу уместны узкие фазы газораспределения с поздним открытием и ранним закрытием клапанов без перекрытия фаз (время, когда впускной и выпускной клапаны открыты одновременно). Почему? Потому что так удаётся исключить заброс выхлопных газов во впускной коллектор и выброс части горючей смеси в выхлопную трубу.

При работе на максимальной мощности ситуация сильно меняется. С повышением оборотов время открытия клапанов закономерно сокращается, но для обеспечения высоких крутящего момента и мощности через цилиндры необходимо прогнать куда больший объём газов, нежели на холостом ходу. Как решить столь непростую задачу? Открывать клапаны чуть раньше и увеличивать продолжительность их открытия, иными словами, сделать фазы максимально широкими. При этом для лучшей продувки цилиндров фазу перекрытия обычно делают тем шире, чем выше обороты.

Так что при разработке и доводке двигателей конструкторам приходится увязывать ряд взаимоисключающих требований и идти на сложные компромиссы. Посудите сами. С одними и теми же фиксированными фазами двигатель должен обладать неплохой тягой на низких и средних оборотах, приемлемой мощностью — на высоких. И плюс ко всему устойчиво работать на холостом ходу, быть максимально экономичным и экологичным. Вот так задачка!

Но конструкторы такие задачи уже давно щёлкают как семечки и способны при помощи сдвига и изменения ширины фаз газораспределения менять характеристики двигателя до неузнаваемости. Поднять момент? Пожалуйста. Повысить мощность? Не вопрос. Снизить расход? Не проблема. Правда, подчас получается так, что при улучшении одних показателей приходится жертвовать другими.

А что если научить газораспределительный механизм подстраиваться под различные режимы работы двигателя? Запросто. Благо способов для этого придумана масса. Один из них — применение фазовращателя — специальной муфты, которая способна под действием управляющей электроники и гидравлики поворачивать распределительный вал на определённый угол относительно его первоначального положения. Наиболее часто такая система устанавливается на впуске. С повышением оборотов муфта проворачивает вал по ходу вращения, что ведёт за собой более раннее открытие впускных клапанов и как следствие — лучшее наполнение цилиндров на высоких оборотах.

Но неуёмные инженеры не остановились на этом и разработали ряд систем, способных не только двигать фазы, но и расширять или сужать их. В зависимости от конструкции это может достигаться несколькими способами. Например, в тойотовской системе после достижении определённых оборотов (6000 об/мин) вместо обычного кулачка в работу начинает вступать дополнительный — с изменённым профилем. Профиль этого кулачка задаёт иной закон движения клапана, более широкие фазы и, кстати, обеспечивает больший ход. При раскрутке коленчатого вала до максимальных оборотов (около 8500 об/мин) на частоте вращения в об/мин у двигателя словно открывается второе дыхание, которое способно придать автомобилю резкий и мощный подхват при ускорении.

Изменять момент и продолжительность открытия — это замечательно. А что если попробовать изменять высоту подъёма? Ведь такой подход позволяет избавиться от дроссельной заслонки и переложить процесс управления режимами работы двигателем на газораспределительный механизм (ГРМ).

Чем вредна заслонка? Она ухудшает наполнение цилиндров на низких и средних оборотах. Ведь во впускном тракте под прикрытым дросселем при работе двигателя создаётся сильное разрежение. К чему оно приводит? К большой инертности разреженной газовой среды (топливовоздушной смеси), ухудшению качества наполнения цилиндра свежим зарядом, снижению отдачи и уменьшению скорости отклика на нажатие педали газа.

Поэтому идеальным вариантом было бы открывать впускной клапан только на время, необходимое для достижения нужного наполнения цилиндра горючей смесью. Ответ инженеров — механическая система управления подъёмом впускных клапанов. В таких системах высота подъёма и, соответственно, продолжительность фазы впуска изменяются в зависимости от нажатия на педаль газа. По разным данным, экономия от применения системы бездроссельного управления может составлять от 8% до 15%, прирост мощности и момента в пределах %. Но и это не последний рубеж.

Несмотря на то что количество и размеры клапанов приблизились к максимально возможным, эффективность наполнения и очищения цилиндров можно сделать ещё выше. За счёт чего? За счёт скорости открытия клапанов. Правда, механический привод здесь сдаёт позиции электромагнитному.

В чём ещё плюс электромагнитного привода? В том, что закон (ускорение в каждый момент времени) подъёма клапана можно довести до идеала, а продолжительность открытия клапанов позволяется менять в очень широких пределах. Электроника согласно прописанной программе время от времени ненужные клапаны может не открывать, а цилиндры отключать вовсе. Зачем? В целях экономии, например, на холостом ходу, при движении в установившемся режиме или при торможении двигателем. Да что режимы — прямо во время работы электромагнитный ГРМ способен превратить обычный четырёхтактный мотор в шеститактный. Интересно, скоро ли появятся такие системы на конвейере?

Пожалуй, дальнейшее увеличение эффективности работы мотора за счёт ГРМ уже невозможно. Выжать ещё больше мощности и момента с того же объёма при меньшем расходе можно будет только с применением иных средств. Например, комбинированного наддува или конструкций, изменяющих степень сжатия, других видов топлива. Но это — уже совсем другой разговор.

голоса
Рейтинг статьи
Читать еще:  Характеристики двигателей ваз 2106 и ваз 2121
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector
Техническая информация

Клапаны, перекрывающие впускные и выпускные отверстия цилиндров двигателя, имеют ограниченные размеры и работают в тяжелых условиях: большие динамические нагрузки и высокие скорости перемещения в направляющих втулках при ограниченной смазке, сложность теплоотвода и неравномерный нагрев отдельных участков продуктами сгорания, обладающими повышенной коррозийной агрессивностью. Поэтому принятые материалы и конструкцияотдельных элементов клапана должны обеспечивать ему высокую прочность, износостойкость, стойкость против коробления корродирования.

Клапаны поршневых двигателей состоят из головки 2 и стерж­ня 3 (рис. 1). Различают клапаны с плоской 2, выпуклой 7 и тюльпанообразной 8 головками. Головки обычно имеют небольшой (около 2 мм) цилиндрический поясок и уплотнительную фаску» снятую под углом 45 или 30°. Фаска с углом 30° применяется только для впускных клапанов, а угол 45° используется как для впускных, так и выпускных клапанов. Цилиндрический поясок позволяет сохранять основной размер клапана (dk) в случае перешлифовки уплотняющей фаски при ремонтах, увеличивает жесткость его головки и предохраняет ее кромки от разрушения. Клапаны, оставшиеся без цилиндрического пояска, легко обгорают и стано­вятся непригодными для работы.

Рис. 1 — Клапаны, направляющие втулки и седла клапанов

Чтобы улучшить теплоотвод и увеличить жесткость клапана поверхность его головки со стороны стержня выполняют наклонной с углом подъема 10-30° и плавным переходом к стержню (см. рис. 1). Для впускных клапанов угол выбирают около 10-15°, у выпускных он ближе к 20—30°.

Клапаны изготовляют из пруткового материала на горизонтально-ковочных машинах и тщательно обрабатывают. Уплотнительные фаски клапанов шлифуют и притирают к сёдлам, а стержни подвергают термообработке, шлифовке и полировке. В некоторых моделях ГАЗ, ЗИЛ и других двигателей стержни клапанов покры­вают пористым хромом. Торцы стержней, соударяющиеся с коро­мыслами (регулировочными болтами в нижнеклапанных механиз­мах), на длине 3—5 мм закаливают до высокой твердости (двига­тели ГАЗ, ЗИЛ и др.). Иногда их наплавляют твердыми сплавами или снабжают специальными легкосъемными стальными термообработанными наконечниками — колпачками, обладающими высо­кой износостойкостью (двигатель МЗМА-408).

На концах стержней клапанов в зависимости от принятого спо­соба крепления клапанных пружин делают цилиндрические, конус­ные или фасонные проточки (см. рис. 1). Иногда в стержнях делают отверстия под чеку (ЗИЛ-5 и 120), а в дизеле В-2 стержни клапанов имеют осевое сверление с нарезкой и продольные шлицы с наруж­ной стороны.

В автомобильных двигателях распространение получили кла­паны (как впускные, так и выпускные) с плоской головкой и углом фаски 45°, причем с целью улучшения наполнения цилиндров головку впускного клапана делают больше головки выпускного. Отношение их диаметров в существующих конструкциях изменяется в пределах 1,1-1,3.

Для впускных клапанов применяют также тюльпанообразные головки (см. рис. 1, позиция 8). По сравнению с плоскими голов­ками они имеют лучшую обтекаемость со стороны входа потока и несколько улучшают процесс вихреобразования в цилиндре. Объясняется это тем, что за клапаном возникает движение потока воздуха, повторяющее геометрическую форму впадины в его головке.

Головка впускных клапанов во время работы периодически омывается сравнительно холодным потоком, но все-таки нагревается до температуры 300—400°С. Однако для впускных клапанов, изготовляемых обычно из хромистых 40Х, хромоникелевых 40ХН и аналогичных им сталей, это не представляет опасности. Поэтому головки их выполняют иногда с углом фаски 30° (например, в дви­гателях ЗИЛ-130 и др.). Такая фаска хотя и снижает общую жест­кость клапана, но обеспечивает большую величину площади его проходного отверстия при заданной высоте подъема.

Выпускные клапаны работают в условиях более тяжелых, чем впускные, так как периодически омываются горячим потоком отработавших газов, содержащих сернистые и другие агрессивные компоненты. В карбюраторных двигателях они нагреваются до 700÷900°С (до темно-вишневого цвета), а в дизелях имеют обычно несколько меньшую температуру нагрева, но достаточную для того, чтобы заметно снизить прочность материала и вызвать опасность повышенного корродирования, коробления или обгорания кромок головки. Поэтому головку выпускных клапанов изготовляют из кремнехромистых, кремнехромоникелевых и других высоколе­гированных жаростойких и коррозионно-стойких сталей (напри­мер: 4Х9С2, Х12Н7С, 2Х18Н9 и т.д.), а стержни из хромистой или хромоникелевой сталей, обладающих хорошей износостойко­стью. Клапаны, изготовленные из двух таких материалов путем метода стыковой сварки, отличаются высокой жаростойкостью, хорошей износостойкостью и не вызывают излишнего удорожания производства.

Выпускные клапаны часто делают с выпуклой головкой (см. рис. 1, позиция 7), что улучшает их обтекаемость со стороны цилиндра, а также увеличивает общую прочность и жесткость конструкции.

Чтобы уменьшить тепловую напряженность выпускных клапа­нов в ряде двигателей (особенно форсированных), применяют нат­риевое охлаждение. С этой целью клапан делают полым с утолщен­ным стержнем (см. рис. 1, позиция 9) и примерно наполовину полости заполняют металлическим натрием, температура плавле­ния которого составляет около 100° С. В рабочем (горячем) состоя­нии двигателя натрий, будучи в расплавленном виде и переме­щаясь внутри полости при возвратно-поступательном движении клапана, увеличивает интенсивность отвода тепла от горячей головки к более холодному стержню и далее к направляющей втул­ке. Благодаря этому, а также затрате тепла на испарение натрия нагревание головки клапана уменьшается на 100—200°С.

Натриевое охлаждение применяется, в частности, для выпуск­ных клапанов V-образных двигателей ЗМЗ-66 и ЗИЛ-130. Полость в стержне 1 заполнена в них натрием 11 и заделана накладкой 13, как показано на рис. 2, а. На уплотнительные фаски выпускных клапанов этих двигателей наплавляют слой 12 особо твердого, износостойкого и антикоррозионного сплава.

Рис. 2 — Впускной клапан двигателя ЗИЛ-130 с механизмом вращения

Метод наплавки фасок у выпускных клапанов вообще широко применяется в современном автомобильном двигателестроении. Для этих целей используются сплавы типа стеллита с кобальтовой основой и содержанием хрома и вольфрама. Наплавка имеет обычно толщину около 2 мм и позволяет значительно дольше сохранять удовлетворительную герметичность закрытия выпускных отверстий цилиндров.

Для поддержания в рабочем состоянии контактных поверхно­стей уплотнительных фасок выпускных клапанов иногда приме­няют специальные устройства, позволяющие принудительно про­ворачивать клапаны в процессе работы. В качестве примера на рис. 2 показано устройство, применяемое на двигателе ЗИЛ-130.

Источник: Райков И.Я., Рытвинский Г.Н. Двигатели внутреннего сгорания, 1971 г.

Клапаны

Для работы четырехтактного ДВС требуется как минимум по два клапана на цилиндр — впускной и выпускной. В настоящее время применяются клапаны тарельчатого типа со стержнем. Для улучшения наполнения цилиндра горючей смесью диаметр тарелки впускного клапана делается больше, чем у выпускного. Седла клапанов изготовленные из чугуна или стали, запрессовываются в головку блока цилиндров.
При работе двигателя клапаны подвергаются значительным механическим и тепловым нагрузкам, поэтому для их изготовления применяются специальные сплавы. Иногда для улучшения охлаждения клапанов высокофорсированных двигателей применяют клапаны с полым стержнем, который заполняется натрием. Натрий при рабочих температурах плавится и в расплавленном виде перетекает внутри клапана, перенося тепло от более нагретой тарелки клапана к стержню. Для лучшей очистки рабочей фаски от нагара и равномерной теплопередачи иногда применяются различные механизмы для вращения клапана.
ГРМ могут быть нижнеклапанными и верхнеклапанными, но в современных двигателях используются только верхнеклапанные ГРМ, когда клапаны располагаются в головке цилиндров. Клапан удерживается в закрытом состоянии с помощью пружины, а открывается при нажатии на стержень клапана. Клапанные пружины должны иметь определенную жесткость для гарантированного закрытия клапана при работе, но жесткость пружины не должна быть чрезмерной, чтобы не увеличивать ударной нагрузки на седло клапана. Иногда для уменьшения возможности резонансных колебаний используются пружины уменьшенной жесткости, но на один клапан устанавливается по две пружины.

При использовании двух пружин они должны быть навиты в разные стороны, чтобы не произошло заклинивания клапана в случае поломки одной из пружин и попадания ее витка между витками другой пружины. Для снижения потерь на трение в ГРМ сейчас широко применяются ролики, размещаемые на рычагах и толкателях привода клапанов.

Рис. Замена трения скольжения трением качения путем применения в клапанном механизме роликов дает возможность уменьшить потери на привод клапанов

При открытии (опускании) впускного клапана через кольцевой проход между тарелкой клапана и седлом проходит топливно-воздушная смесь (или воздух) и заполняет цилиндр. Чем больше будет площадь проходного сечения, тем полнее заполнится цилиндр, а следовательно, и выходные показатели этого цилиндра при рабочем ходе будут выше. Для лучшей очистки цилиндров от продуктов сгорания желательно также увеличить диаметр тарелки выпускного клапана. Размеры тарелок клапанов ограничены размером камеры сгорания, выполненной в головке цилиндров. Лучшее наполнение цилиндров и их очистка обеспечиваются при использовании большего, чем два, числа клапанов на один цилиндр. Встречаются трехклапанные (два впускных и один выпуск ной) системы и пятиклапанные (три впускных и два выпускных) системы.

Рис. Четырехклапанная камера сгорания. Применение газораспределительного механизма с четырьмя клапанами на цилиндр в дизельном двигателе

Впервые четыре клапана на цилиндр были использованы еще 1912 г. на двигателе автомобиля Peugeot Gran Prix. Широкое использование такой схемы на серийных легковых автомобилях началось только в 1970-е гг. Сейчас ГРМ с четырьмя клапанами на цилиндр стали практически стандартными для двигателей европейских и японских легковых автомобилей. Некоторые из двигателей Mercedes имеют по три клапана на цилиндр, два впускных и один выпускной, с двумя свечами зажигания (по одной с каждой стороны от выпускного клапана).
Двигатели некоторых автомобилей группы Volksvagen-Audi и ряд японских двигателей используют пять клапанов на цилиндр (три впускных и два выпускных), но при таком числе клапанов значительно усложняется их привод.

Рис. Трехклапанный ГРМ. Компания DaimlerChrysler утверждает, что ГРМ с двумя впускными, одним выпускным и двумя свечами зажигания обеспечивает снижение вредных веществ в отработавших газах

Впускной и выпускной клапан как определить

Какой клапан больше впускной или выпускной ⋆ Прорабофф.рф

Если вы планируете увеличить мощность двигателя за счет замены впускных и выпускных клапанов, то в первую очередь нужно узнать какой из них должен быть больше.

В этой статье мы расскажем, какой клапан больше впускной или выпускной, чтобы вы в дальнейшем могли знать нужные ли детали стоят в двигателе.

Зачем нужны клапаны

Перед тем как узнать рекомендуемое соотношение клапанов мы расскажем, зачем они вообще нужны. Итак, впускной и выпускной клапан играют важную роль в работе системы сгорания. Впускной клапан подает топливо в камеру сгорания, а выпускной позволяет выходить газам, которые образовались после сгорания топлива.

Какой клапан должен быть больше

Каждый из клапанов важен и на первый взгляд различия в размерах совсем не играют роли, но это ошибка, ведь даже от нескольких миллиметров зависит мощность двигателя. По словам профессиональных исследователей, впускной клапан должен быть больше выпускного, и в соотношении составлять 1:0,75. Такое соотношение объясняется тем, что выпускному клапану куда легче выпустить легкие газы, и поэтому и больший размер необязателен. Соотношение 1:0,9 подходит лишь тем автомобилям, которые используют закись азота или турбо надув, а таких, как правило, можно посчитать по пальцам.

Теперь вы знаете, какой клапан больше впускной или выпускной. Также от рекомендуемого соотношения впускного и выпускного клапана зависит экономия топлива. Даже от небольшого увеличения выпускного клапана зависит снижение мощности и увеличения расхода топлива, поэтому отнестись нужно к этому серьезно. Удачи!

Большая Энциклопедия Нефти и Газа

Схемы золотникового газораспределения. [1]

Впускные и выпускные клапаны в двигателях внутреннего сгорания управляемые. [2]

Впускные и выпускные клапаны изготовлены из стали ЭСХ-8 и термически обработаны. [3]

Впускные и выпускные клапаны проверяют на прочность и герметичность давлением, превышающим на 50 % номинальное рабочее в течение 5 мин. Утечки воздуха при этом не допускаются. Собранную пневмосистему испытывают на герметичность и проверяют работоспособность всех входящих в нее сборочных единиц. При испытании пневмо-системы утечки воздуха не допускаются. [4]

Впускные и выпускные клапаны конструктивно мало отличаются. [5]

Клапаны крышки цилиндров дизеля ПД1М. [6]

Впускные и выпускные клапаны открываются в определенный момент в зависимости от положения кривошипа коленчатого вала дизеля. Механизм, открывающий клапаны, состоит из распределительного вала и привода клапанов. [7]

Впускные и выпускные клапаны закрываются и открываются клапанным механизмом, состоящим из толкателей и рычагов. Толкатели получают возвратно-поступательное движение от кулачков распределительного вала. Чугунные направляющие толкателей смонтированы в расточках блока над распределительными валами. В проушинах толкателей на пальцах с бронзовыми плавающими втулками закреплены ролики. Толкатель привода клапанов внутри имеет шаровую поверхность для упора нижней головки штанги. Штанги изготовлены из труб, в них с двух сторон запрессованы головки, шаровые поверхности которых цементированы и закалены. [9]

Диаграмма газораспределения двигателя ЗМЗ-53. [10]

Впускные и выпускные клапаны обычно отличаются размерами головок и изготовляются из различных сталей. [11]

Впускные и выпускные клапаны обычно располагаются в рабочей крышке вертикально. Такое расположение обеспечивает наименьший износ направляющей втулки шпинделя. Клапаны открываются внутрь цилиндра, чем достигается плотное прилегание клапана к седлу при высоких давлениях. При малых давлениях и разрежении в цилиндре прилегание клапапа обеспечивается пружиной. [12]

Впускные и выпускные клапаны дизеля должны открываться и закрываться в строго определенной последовательности и в установленные моменты. Последовательность открытия и закрытия клапанов цилиндров обеспечивается соответствующим расположением кулачков распределительного вала. [13]

Привод впускных и выпускных клапанов большей частью производится эксцентриком; выпуск и здесь производится принудительно. Дабы захватывающая защелка плавно садилась на рычаг клапана, а иногда и для того, чтобы осуществить большие наполнения, — впускные эксцентрики заклиниваются, большей частью с запаздыванием, так, что получается небольшой избыточный подъем; наивысшее положение работающего края защелки превышает рычаг клапана, находящийся в покое и в момент закрытия, лишь настолько, что защелка безусловно западает. Захватывание происходит благодаря собственному весу или давлению пружины. Тогда подъем клапанов при непосредственном эксцентриковом приводе для больших наполнений становится несообразно велик, что побуждает обратиться к применению кулаков. К преимуществам распределений с расцеплением следует отнести быстрое закрытие до самого седла и малую перестановочную силу регулятора. [14]

Головки впускных и выпускных клапанов имеют неодинаковый диаметр. Для лучшего наполнения цилиндров свежей горючей смесью диаметр головки впускного клапана делают большим, чем диаметр выпускного. В связи с тем, что клапаны во время работы двигателя неодинаково нагреваются ( выпускной клапан, омываемый горячими отработавшими газами, нагревается больше), изготавливаются они из разного материала: впускные клапаны — из хромистой, выпускные — из сильхромовой жароупорной стали. [15]

Страницы: 1 2 3 4

Впускные и выпускные клапаны

Тюнинг клапанов Впускные клапана.Система привода клапанов газораспределительного механизма Впускные клапаны. Массовое наполнение двигателя зависит от величин проходного сечения, открываемого клапаном и продолжительности открытия. Площадь впускного отверстия равна площади конической поверхности, расположенной между тарелкой клапана и его седлом. Эта площадь пропорциональна диаметру опорной поверхности клапана, высоте подъема клапана и зависит от угла фаски клапана. Большинство клапанов выполняется с углом фаски 45градусов. Для форсированных двигателей угол фаски иногда выполняется равным 30градусам. При меньшем угле фаски площадь впускного отверстая увеличивается. Однако при этом уменьшается жесткость тарелки, что может привести к колебаниям клапана и нарушению процесса впуска. Для облегчения клапанов их иногда выполняют тюльпанообразной формы. При выборе высоты подъема клапана приходится учитывать ряд факторов. Прежде всего, высота подъема ограничивается ростом инерционных сил, выбором соответствующего усилия клапанных пружин и связанным с этим износом пары клапан-толкатель. По мере увеличения подъема на суммарное сопротивление потоку смеси все большее влияние оказывает отверстие седла клапана. Слишком большой подъем клапана бесполезен, т.к. площадь отверстия седла клапана оказывается меньше проходного сечения конической поверхности клапана и уже она определяет прохождение смеси. Диаметр тарелки клапана ограничивается его расположением в камере сгорания, конструкцией головки цилиндра, диаметром цилиндра. Увеличение числа впускных клапанов позволяет добиться наибольшего эффекта по наполнению. Большинство современных двигателей легковых автомобилей имеют по два впускных клапана, но встречаются двигатели и с тремя впускными клапанами. Это обеспечивает существенное увеличение суммарного проходного сечения. Дополнительно улучшения наполнения удается достигнуть при наклонной установке всех четырех клапанов (два впускных и два выпускных) в полусферической камере сгорания. На процесс впуска существенное влияние оказывают динамические явления во впускных каналах. Наполнение двигателя можно увеличить за счет выбора оптимальной величины запаздывания закрытия впускного после НМТ, находящейся в пределах от 55 до 85 градусов поворота коленчатого вала. Но время впуска поток смеси (или воздуха в двигателях с впрыском топлива) двигается с высокой скоростью (до 50 м/с). Созданная при этом инерция потока смеси обеспечивает поступление смеси и при движении поршня вверх после прохождения НМТ. Это так называемая дозарядка цилиндра, зависящая от длины впускного канала, его сечения, времени-сечения открытия впускного клапана после НМТ. Чем выше частота вращения, тем больше эффективность от дозарядки (инерционного наддува). При этом коэффициент наполнения (отношение фактически поступившего воздуха в цилиндр к теоретически возможному) может быть больше единицы. Но при малой частоте вращения из-за малой скорости смеси происходит обратный выброс смеси из цилиндра во впускной канал. Этот фактор является одной из важных причин снижения наполнения, а следовательно, и крутящего момента при снижении час- тоты вращения. Выпускные клапаны.