Возможные неисправности асинхронного двигателя с фазным ротором - Журнал "Автопарк"
Auto-park24.ru

Журнал "Автопарк"
8 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Возможные неисправности асинхронного двигателя с фазным ротором

Поиск неисправностей асинхронного двигателя

Краткие теоретические сведения.

Из причин механического характера, вызывающих нарушение нормальной работы электродвигателей, чаще всего наблюдаются неисправности в работе подшипников. Проявляется это в перегреве подшипников, вытекании из них масла, а также в появлении ненормального шума в работающем электродвигателе.

Неисправности электрической части двигателя, как правило, обусловлены нарушением нормальной работы его обмоток. Обмотки являются важной частью двигателя, их неисправность может быть вызвана старением изоляции двигателя, агрессивной окружающей средой, механическими и электромагнитными силами. Кроме того, ненормальная работа двигателя, например, длительная перегрузка, низкое напряжение питания или нарушение фаз также может привести к неисправностям обмоток.

Наиболее распространенными неисправностями электрический части двигателя являются:

короткие замыкания внутри обмоток электродвигателя (витковое замыкание);

короткие замыкания между обмотками электродвигателя; замыкания обмоток на корпус;

обрывы в обмотках.

НеисправностьПричина неисправности
Асинхронные двигатели с короткозамкнутым ротором
Двигатель не разворачивается.Отсутствует ток в статоре из-за перегорания предохранителя или выключения неисправного автоматического выключателя.
Двигатель не разворачивается сам, но при разворачивании от руки работает толчками и сильно гудит.Обрыв в одной фазе сети или внутренний обрыв в обмотке статора при соединении фаз «звездой».
Двигатель вращается вхолостую, но под нагрузкой останавливается.Пониженное напряжение в сети, неправильное соединение фаз обмотки статора «звездой». Если обмотка соединена «треугольником», то, вероятно, имеется обрыв в цепи одной из фаз обмотки статора.
Двигатель гудит, ротор вращается медленно, ток во всех трех фазах разный и даже на холостом ходу превышает номинальный.Обрыв одного или нескольких стержней обмотки ротора; неправильное соединение начала и конца обмотки статора (фаза «перевернута»).
Двигатель нагревается при номинальной нагрузке.Межвитковое замыкание в обмотке статора, ухудшение условий вентиляции в результате загрязнения вентиляционных каналов.
Недопустимо низкое сопротивление изоляции обмотки статора.Увлажнение или сильное загрязнение изоляции обмотки статора; старение или повреждение изоляции.
Недопустимо низкое сопротивление изоляции обмотки статора.Нарушение соосности валов, неуравновешенность ротора(дисбаланс).
Двигатель сильно вибрирует при работе. Двигатель сильно гудит, ток в фазах разный, один из участков статора быстро нагревается.Короткое замыкание обмотки статора
Асинхронные двигатели с фазным ротором
Двигатель не развивает номинальной частоты вращения.Нарушение контакта в двух или трех фазах пускового реостата; нарушение электрической цепи между пусковым реостатом и обмоткой ротора.
Двигатель медленно увеличивает скорость, ротор сильно нагревается даже при небольшой нагрузке.Замыкание части обмотки ротора на заземленный корпус двигателя; нарушение изоляции между контактными кольцами и валом ротора.
Двигатель не развивает скорость ротора под нагрузкой, гудит, ток статора пульсирует.Нарушение контакта в месте пайки обмотки ротора, соединениях ее с контактными кольцами или в соединительных проводах.
Повышенное искрение между щетками и контактными кольцами.Плохая притертость или повышенная загрязненность щеток, заедание щеток в обоймах щеткодержателей; недостаточное нажатие щеток на контактные кольца; нарушение контакта в цепи.
Двигатель начинает вращаться при разомкнутой цепи ротора без нагрузки. При пуске под нагрузкой медленно разворачивается и сильно нагревается.Межвитковые замыкания в обмотке ротора; заземление обмотки ротора в двух местах; замыкание между контактными кольцами в результате их загрязнения пылью от щеток.

Проверку обрыва цепи обмотки проводят посредством омметра, в качестве которого может быть использован мультиметр. Для определения обрыва обмоток трехфазного асинхронного двигателя, включенного звездой, один щуп мультиметра соединяют с нулевой точкой звезды, после чего вторым щупом касаются поочередно других концов обмотки (рис1)

Если нулевая точка звезды недоступна, то двумя щупами мультиметра касаются попарно всех выводов статора

Витковое замыкание обмоток может быть обнаружено путем измерения сопротивлений обмоток электродвигателя. Поврежденная обмотка будет иметь меньшее сопротивление, чем исправные обмотки.

Поврежденную фазу можно также определить методом измерения тока в фазах, если к двигателю подвести пониженное напряжение.

Если фазы статора соединены в звезду, то измеряют величины токов, потребляемых отдельными фазами. Фаза, имеющая короткозамкнутые витки, будет потреблять ток больший, чем неповрежденные фазы.

При соединении отдельных фаз в треугольник токи в двух проводах, подключенных к дефектной фазе, будут иметь большие значения, чем в третьем, который соединяется только с неповрежденными фазами.

Замыкание обмотки на корпус двигателя обнаруживают мегомметром, а место замыкания способом «прожигания» обмотки или методом питания ее постоянным током. Устанавливать место повреждения обмотки целесообразно в электродвигателях мощностью не менее 50 кВт, когда технически возможен, и экономически оправдан ремонт обмотки. В электродвигателе меньшей мощности с проволочной обмоткой статора лобовые части обмотки имеют вид кольцевого жгута, в котором трудно и не всегда возможно обнаружить соединения между катушками. Поврежденная обмотка обычно не подвергается ремонту, а заменяется новой.

Для обнаружения межфазного замыкания обмоток проверяют межфазную изоляцию, посредством омметра или мультиметра. С этой целью измеряют сопротивление между каждыми двумя отдельными фазными обмотками. Если сопротивление изоляции оказывается меньше 0,5 МОм, то это означает наличие короткого замыкания между фазами.

Техническое обслуживание и ремонт асинхронного двигателя с фазным ротором

Асинхронные электрические двигатели двух типов: модели с фазным или с короткозамкнутым ротором. Основные элементы, обеспечивающие работу асинхронного электродвигателя: статор и ротор. Измерение температуры обмотки. Неисправности и способы устранения.

РубрикаПроизводство и технологии
Видконтрольная работа
Языкрусский
Дата добавления27.05.2013
Размер файла436,4 K
  • посмотреть текст работы
  • скачать работу можно здесь
  • полная информация о работе
  • весь список подобных работ

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Техническое обслуживание и ремонт асинхронного двигателя с фазным ротором

асинхронный двигатель ротор неисправность

Асинхронные электрические двигатели бывают двух типов — модели с фазным или с короткозамкнутым ротором.

Основными элементами, обеспечивающими работу асинхронного электродвигателя, являются статор и ротор. Ротором называется подвижный элемент асинхронного двигателя, выполненный в форме цилиндра. Фазный ротор отличает от короткозамкнутого присутствие в его конструкции специальной обмотки с выводом на контактные кольца. Он обладает отличными регулировочными свойствами, а также обеспечивает облегченную и более мощную процедуру пуска. Такой механизм способствует образованию большого начального вращающегося момента. Благодаря этой особенности электродвигатель с фазным ротором является оптимальной машиной энергообеспечения для подъемных устройств — лифтов, кранов, эскалаторов и т.д. Данная разновидность может использоваться в ответственных конструкциях благодаря своей повышенной надежности — она способна переносить кратковременные перегрузки и имеет постоянную скорость при изменениях интенсивности нагрузки. Двигатель с фазным ротором характеризуется меньшим пусковым током и может использоваться с автоматическими системами запуска.

При строительстве и оборудовании таких ответственных конструкций, как скважинные насосы в СПб и других городах выбирают эту разновидность асинхронного двигателя, поскольку модель с короткозамкнутым механизмом не справится с возложенными на нее функциями. Специалисты рекомендуют отдавать предпочтение фазным роторам при оборудовании двигателей конвейеров, подъемников, крановых конструкций, различных промышленных мельниц (угольных, цементных и т.д.), вентиляционных систем, а также технических средств, рассчитанным на длительное время непрерывной работы. Если есть необходимость в экономном расходе электроэнергии, лучше отдавать предпочтение моделям асинхронных двигателей с функцией энергосбережения.

Принцип действия асинхронных двигателей основан на двух явлениях: образовании рабочего вращающегося магнитного поля токами в обмотке статора и воздействии этого поля на токи, индуцированные в короткозамкнутых витках ротора.

По принципу возникновения вращающего момента электродвигатели можно разделить на гистерезисные и магнитоэлектрические. У двигателей первой группы вращающий момент создается в следствии гистерезиса при перемагничивании ротора. Данные двигатели не являются традиционными и не широко распространены в промышленности.

Наиболее распространены магнитоэлектрические двигатели, которые по типу потребляемой энергии подразделяется на две группы — на двигатели постоянного тока (коллекторные, безколекторные) и двигатели переменного тока (однофазные, двухфазные, трехфазные, многофазные), так же существуют универсальные двигатели, которые могут питаться обоими видами тока.

Читать еще:  Шкода рапид стучит двигатель при запуске на холодную

Асинхронный двигатель с фазным ротором применяют для привода таких машин и механизмов, которые пускаются в ход под нагрузкой. В подобных приводах двигатель должен развивать при пуске максимальный момент, что достигается с помощью пускового реостата

В двигателе с фазным ротором статор выполнен так же, как и в двигателе с короткозамкнутым ротором. На роторе же расположена трехфазная обмотка, состоящая из трех, шести, девяти и т.д. катушек (в зависимости от числа полюсов машины), сдвинутых одна относительно другой на 120° (в двухполюсной машине), 60° (в четырехполюсной) и т.д. Числа полюсов обмоток статора и ротора берутся одинаковыми.

Электрическая схема асинхронного двигателя с фазным ротором (а) и его условное графическое изображение (б): 1 — статор; 2 — ротор; 3 — контактные кольца со щетками; 4 — пусковой реостат

Основные конструктивные узлы асинхронного двигателя с фазным ротором: 1 — приспособление для подъема щеток; 2, 12 — подшипниковые щиты; 3 — щеткодержатели; 4 — траверса; 5 — обмотка статора; 6 — остов; 7 — сердечник статора; 8 — коробка с выводами; 9 — сердечник ротора; 10 — обмотка ротора; 11 — контактные кольца

Обмотку фазного ротора обычно соединяют «звездой». Концы ее присоединяют к трем контактным кольцам, к которым посредством щеток подключают трехфазный пусковой реостат, т.е. в каждую фазу ротора в момент пуска вводят дополнительное активное сопротивление.

Принцип работы асинхронной машины основан на использовании вращающегося магнитного поля. При подключении к сети трехфазной обмотки статора создается вращающееся магнитное поле, угловая скорость которого определяется частотой сети f и числом пар полюсов обмотки p, т.е.

Пересекая проводники обмотки статора и ротора, это поле индуктирует в обмотках ЭДС (согласно закону электромагнитной индукции). При замкнутой обмотке ротора ее ЭДС наводит в цепи ротора ток. В результате взаимодействия тока с результирующим магнитным полем создается электромагнитный момент. Если этот момент превышает момент сопротивления на валу двигателя, вал начинает вращаться и приводить в движение рабочий механизм. Обычно угловая скорость ротора щ2 не равна угловой скорости магнитного поля щ1, называемой синхронной. Отсюда и название двигателя асинхронный, т.е. несинхронный.

Работа асинхронной машины характеризуется скольжением s, которое представляет собой относительную разность угловых скоростей поля щ1 и ротора щ2: s=(щ1-щ2)/щ1

Значение и знак скольжения, зависящие от угловой скорости ротора относительно магнитного поля, определяют режим работы асинхронной машины. Так, в режиме идеального холостого хода ротор и магнитное поле вращаются с одинаковой частотой в одном направлении, скольжение s=0, ротор неподвижен относительно вращающегося магнитного пол, ЭДС в его обмотке не индуктируется, ток ротора и электромагнитный момент машины равны нулю. При пуске ротор в первый момент времени неподвижен: щ2=0, s=1. В общем случае скольжение в двигательном режиме изменяется от s=1 при пуске до s=0 в режиме идеального холостого хода.

При вращении ротора со скоростью щ2>щ1 в направлении вращения магнитного поля скольжение становится отрицательным. Машина переходит в генераторный режим и развивает тормозной момент. При вращении ротора в направлении, противоположном направлению вращения магнитного поли (s>1), асинхронная машина переходит в режим противовключения и также развивает тормозной момент. Таким образом, в зависимости от скольжения различают двигательный (s=1?0), генераторный (s=0?-?) режимы и режим противовключення (s=1?+?). Режимы генераторный и противовключения используют для торможения асинхронных двигателей.

Перед установкой двигателя на рабочую машину необходимо выполнить следующие подготовительные работы:

Очистить корпус двигателя от пыли. Тряпкой, смоченной в керосине или бензине, снять антикоррозийную смазку со свободного конца вала. Проверить крепёжные детали двигателя. Убедиться в свободном вращение ротора в обе стороны. Проверить наличие смазки в подшипниковых узлах. Измерить сопротивление изоляции между фазами и корпусом мегомметром на напряжение 500В. Если сопротивление изоляции окажется менее 0,5 Мом, обмотку двигателя необходимо подсушить.

Сушить обмотку можно токовым способом (с разборкой двигателя или без неё), в сушильном шкафу или лампами накаливания. Во время сушки температура обмоток не должна превышать 100 градусов по Цельсию. В процессе сушки токовым образом необходимо контролировать температуру обмотки.

Измерить температуру обмотки двигателя в любой части можно термопарой или термометром, шарик которого обёртывают алюминиевой фольгой, а наружную часть покрывают теплоизоляцией (войлоком, ватой и т.д.). Температура в пазовой части обмотки на 10 — 15 градусов выше, чем в лобовой.

Температуру обмоток можно определить и по изменению её сопротивления (в Омах) в период нагрева. Сопротивление обмотки можно измерить вольтметром — амперметром или мостом постоянного тока.

Сушат обмотки до тех пор, пока, сопротивление изоляции не достигнет значения 0,5 Мом. Если сопротивление изоляции не поднимается до указанной величины (обмотка сильно отсырела), сушку продолжают.

Необходимо произвести установку двигателя на рабочую машину в соответствии с правилами монтажа и подключить к питающей сети. Если маркировки выводных концов нет, можно определить начала и концы фаз опытным путём. Для этой цели можно использовать два простых способа.

В первом случае, определив контрольной лампой или мегомметром начала и концы фаз, соединяют между собой два проводника различных фаз. На эти две последовательно соединенные фазы подают переменное напряжение. К третьей фазе подключают вольтметр или контрольную лампу. Если фазы подключены одноимёнными выводами, например «началами» или «концами», напряжение на третьей фазе будет отсутствовать. Подключённую ранее к вольтметру или лампочке фазу меняют местами с одной из двух последовательно соединённых фаз и аналогично маркируют третью фазу.

Во втором случае найденные концы фаз соединяют по три вместе и к полученным точкам подсоединяют миллиамперметр постоянного тока или прибор Ц-435, используя его как амперметр постоянного тока. Если при вращении ротора двигателя от руки стрелка прибора отклоняется, нужно поменять местами выводы одной из фаз. Если после переключения одной фазы стрелка будет отклоняться, следует восстановить первоначальное положение переключённой фазы и поменять местами выводы другой фазы. В одном из трёх вариантов отклонение стрелки прибора прекратится, этим указывая на то, что все фазы соединены одноимёнными выходами. Вращать ротор при переключении выводов фаз нужно в одну сторону.

В соответствии с Правилами технической эксплуатации в системе планово-предупредительных ремонтов электрооборудования предусмотрено два вида ремонтов: текущий и капитальный.

Текущий ремонт производится с периодичностью, установленной с учетом местных условий, для всех электродвигателей, находящихся в эксплуатации, в том числе в холодном или горячем резерве. В объем работ при текущем ремонте входят работы, приведенные в табл. 42. Текущий ремонт является основным видом профилактического ремонта, поддерживающим на заданном уровне безотказность и долговечность электродвигателей. Этот ремонт производят без демонтажа двигателя и без полной его разборки.

Капитальный ремонт. Периодичность капитальных ремонтов электродвигателей Правилами технической эксплуатации не устанавливается. Она определяется лицом, ответственным за электрохозяйство предприятия на основании оценок общей продолжительности работы электродвигателей и местных условий их эксплуатации.

Неисправности и способы устранения

1. Двигатель не запускается:

1.1 отсутствие напряжения сети

1.2 обрыв подводящих проводов или одной из фаз обмотки статора

1.3 неправильное соединение фаз на клемном щитке

1. проверить напряжение контрольной лампой или индикатором

1.2 проверить мегомметром или контрольной лампой

1.3 проверить, правильна ли маркировка выводных концов и схема их соединения

2. Пониженное напряжение питающей сети

2. проверить вольтметром напряжение сети

3. Перегрузка электродвигателя

3.проверить амперметром или токоизмерительными клещами нагрузку двигателя по току

4. Пониженное напряжение сети

Читать еще:  Волга 31105 двигатель 406 инжектор глохнет на холостых

4. вольтметром проверить напряжение сети

Размещено на Allbest.ru

Подобные документы

Возможные неисправности и способы устранения асинхронного двигателя с короткозамкнутым ротором. Охрана труда и экология конвертерного производства ЕВРАЗ НТМК. Технологическая карта ремонта и обслуживания асинхронного двигателя с короткозамкнутым ротором.

реферат [277,5 K], добавлен 05.02.2014

Выбор, расчёт размеров и параметров асинхронного двигателя с фазным ротором. Главные размеры асинхронной машины и их соотношения. Обмотка, паза и ярма статора. Параметры двигателя. Проверочный расчет магнитной цепи. Схема развёртки обмотки статора.

курсовая работа [361,2 K], добавлен 20.11.2013

Принцип работы схемы управления асинхронным двигателем с короткозамкнутым ротором с одного места включения. Реверсивное управление асинхронным двигателем с короткозамкнутым ротором с выдержкой времени. Включение асинхронного двигателя с фазным ротором.

контрольная работа [351,0 K], добавлен 17.11.2016

Проектирование трехфазного асинхронного электродвигателя с короткозамкнутым ротором. Выбор аналога двигателя, размеров, конфигурации, материала магнитной цепи. Определение коэффициента обмотки статора, механический расчет вала и подшипников качения.

курсовая работа [3,0 M], добавлен 29.06.2010

Конструктивная разработка и расчет трехфазного асинхронного двигателя с фазным ротором. Расчет статора, его обмотки и зубцовой зоны. Обмотка и зубцовая зона фазного ротора. Расчет магнитной цепи. Магнитное напряжение зазора. Намагничивающий ток двигателя.

курсовая работа [1,6 M], добавлен 14.06.2013

Особенности разработки асинхронного электродвигателя с короткозамкнутым ротором типа 4А160S4У3 на основе обобщённой машины. Расчет математической модели асинхронного двигателя в форме Коши 5. Адекватность модели прямого пуска асинхронного двигателя.

курсовая работа [362,0 K], добавлен 08.04.2010

Рабочие характеристики асинхронного двигателя, определение его размеров, выбор электромагнитных нагрузок. Расчет числа пар полюсов, мощности двигателя, сопротивлений обмоток ротора и статора, магнитной цепи. Механические и добавочные потери в стали.

курсовая работа [285,2 K], добавлен 26.11.2013

Возможные неисправности электродвигателей и методы их устранения

Асинхронный электродвигатель АИР, многоскоростной или с повышенным скольжением АИРС при пуске не разворачивается, гудит. Возможно отсутствует или недопустимо занижено напряжение сети питания. В этом случае нужно найти и устранить неисправность сети питания электромотора. Также причиной неисправности могут оказаться перепутанные начало и конец обмотки. Тогда нужно произвести подсоединение фаз согласно схеме. Обязательно проверьте, не перегружен ли электродвигатель, при обнаружении снизьте нагрузку. Может также оказаться неисправным приводной механизм.

Работающий электродвигатель остановился. Возможно прекращена подача напряжения на электромотор вследствие разрыва цепи. Если двигатель заклинило, или заклинило приводной механизм, то необходимо устранить неисправность механизма. В случае если сработала защита, то нужно проверить обмотку статора и устранить причину.

Вращается вал, но нормальная частота вращения не достигается. Возможно во время разгона отключилась одна из фаз электромотора, нужно ее подключить. Причиной может быть и падение напряжения в сети питания, нужно довести его до номинального значения.

При работе электродвигатель сильно перегревается. Первая причина — мотор перегревается по току, в этом случае нужно снизить нагрузку до номинальной. Во втором случае может быть понижено или повышенно напряжение в сети питания, нужно установить его в пределах ГОСТ 183. В третьем может быть повышена температура окружающей среды, нужно установить температуру в пределах нормы. В четвертом, причиной может оказаться нарушенная нормальная вентиляция (загрязнены вентиляционные каналы) самого мотора, нужно их прочистить. И в пятом — может быть нарушена нормальная работа приводного механизма, нужно устранить неполадки.

Обмотка статора перегревается, мотор громко гудит и не развивает нормальной скорости. Возможно, причина в межвитковом замыкании в обмотке статора, если это так, то придется менять статор. Так же может оказаться, что обмотка одной фазы заземлена в двух местах, в этом случае нужно заменить статор. Причиной может быть и короткое замыкание, так же поможет только смена статора. При обрыве одной из фаз тоже рекомендуется замена статора.

При работе слышен стук. Неправильно отцентрованы электродвигатель с приводным механизмом, нужна переустановка. Второй причиной может быть повреждение подшипника в двигателе, который нужно заменить.

При работе повышена вибрация. Возможно электродвигатель установлен на недостаточно жестком фундаменте. Также могут быть несоосны вал мотора с валом приводного механизма, для устранения вибрации нужно улучшить соосность. Вибрацию может давать и неотбалансированные привод или соединительная муфта.

Причины отказов асинхронных электродвигателей.

К внешним неисправностям относятся:

обрыв одного или нескольких проводов, соединяющих асинхронный двигатель с сетью, или неправильное соединение;

перегорание плавкой вставки предохранителя;

неисправности аппаратуры пуска или управления, пониженное или повышенное напряжение питающей сети;

перегрузка асинхронного двигателя;

Внутренние неисправности асинхронного двигателя могут быть механическими и электрическими.

нарушение работы подшипников;

деформация или поломка вала ротора (якоря);

разбалтывание пальцев щеткодержателей;

образование глубоких выработок («дорожек») на поверхности коллектора и контактных колец;

ослабление крепления полюсов или сердечника статора к станине; обрыв или сползание проволочных бандажей роторов (якорей);

трещины и подшипниковых щитах или в станине и др.

обрывы в обмотках;

пробой изоляции на корпус;

распайка соединений обмотки с коллектором;

неправильная полярность полюсов;

неправильные соединения в катушках и др.

Наиболее распространенные неисправности асинхронных электродвигателей:

Перегрузка или перегрев статора электродвигателя — 31%.

Межвитковое замыкание — 15%.

Повреждения подшипников — 12%.

Повреждение обмоток статора или изоляции — 11%.

Неравномерный воздушный зазор между статором и ротором — 9%.

Работа электродвигателя на двух фазах — 8%.

Обрыв или ослабление крепления стержней в беличьей клетке — 5%.

Ослабление крепления обмоток статора — 4%. 9. Дисбаланс ротора электродвигателя — 3%. 1

Несоосность валов — 2%.

Ниже приведено краткое описание некоторых неисправностей в электродвигателях, возможные причины их возникновения.

Двигатель при пуске не вращается или скорость его вращения ненормальная. Причинами указанной неисправности могут быть механические и электрические неполадки.

К электрическим неполадкам относятся: внутренние обрывы в обмотке статора или ротора, обрыв в питающей сети, нарушения нормальных соединений в пусковой аппаратуре. При обрыве обмотки статора в нем не будет создаваться вращающееся магнитное поле, а при обрыве в двух фазах ротора в обмотке последнего не будет тока, взаимодействующего с вращающимся полем статора, и двигатель не сможет работать. Если обрыв обмотки произошел во время работы двигателя, он может продолжать работать с номинальным вращающим моментом, но скорость вращения сильно понизится, а сила тока настолько увеличится, что при отсутствии максимальной защиты может перегореть обмотка статора или ротора.

В случае соединения обмоток двигателя в треугольник и обрыва одной из его фаз двигатель начнет вращаться, так как его обмотки окажутся соединенными в открытый треугольник, при котором образуется вращающееся магнитное поле, сила тока в фазах будет неравномерной, а скорость вращения — ниже номинальной. При этой неисправности ток в одной из фаз в случае номинальной нагрузки двигателя будет в 1,73 раза больше, чем в двух других. Когда у двигателя выведены все шесть концов его обмоток, обрыв в фазах определяют мегаомметром. Обмотку разъединяют и измеряют сопротивление каждой фазы.

Скорость вращения двигателя при полной нагрузке ниже номинальной может быть из-за пониженного напряжения сети, плохих контактов в обмотке ротора, а также из-за большого сопротивления в цепи ротора у двигателя с фазным ротором. При большом сопротивлении в цепи ротора возрастает скольжение двигателя и уменьшается скорость его вращения.

Сопротивление в цепи ротора увеличивают плохие контакты в щеточном устройстве ротора, пусковом реостате, соединениях обмотки с контактными кольцами, пайках лобовых частей обмотки, а также недостаточное сечение кабелей и проводов между контактными кольцами и пусковым реостатом.

Плохие контакты в обмотке ротора можно выявить, если в статор двигателя подать напряжение, равное 20—25% номинального. Заторможенный ротор медленно поворачивают вручную и проверяют силу тока во всех трех фазах статора. Если ротор исправен, то при всех его положениях сила тока в статоре одинакова, а при обрыве или плохом контакте будет изменяться в зависимости от положения ротора.

Читать еще:  Был заменен двигатель на аналогичный как переоформить авто

Плохие контакты в пайках лобовых частей обмотки фазного ротора определяют методом падения напряжения. Метод основан на увеличении падения напряжения в местах недоброкачественной пайки. При этом замеряют величины падения напряжения во всех местах соединений, после чего результаты измерений сравнивают. Пайки считаются удовлетворительными, если падение напряжения в них превышает падение напряжения в пайках с минимальными показателями не более чем на 10%.

У роторов с глубокими пазами может также происходить разрыв стержней из-за механических перенапряжений материала. Разрыв стержней в пазовой части короткозамкнутого ротора определяют следующим образом. Ротор выдвигают из статора и в зазор между ними забивают несколько деревянных клиньев, чтобы ротор не мог повернуться. К статору подводят пониженное напряжение не более 0,25 Uном. На каждый паз выступающей части ротора поочередно накладывают стальную пластину, которая должна перекрывать два зубца ротора. Если стержни целые, пластина будет притягиваться к ротору и дребезжать. При наличии разрыва притяжение и дребезжание пластины исчезают.

Двигатель вращается при разомкнутой цепи фазного ротора. Причина неисправности — короткое замыкание в обмотке ротора. При включении двигатель медленно вращается, а его обмотки сильно нагреваются, так как в замкнутых накоротко витках вращающимся полем статора наводится ток большой величины. Короткие замыкания возникают между хомутиками лобовых частей, а также между стержнями при пробое или ослаблении изоляции в обмотке ротора.

Это повреждение определяют тщательным внешним осмотром и измерением сопротивления изоляции обмотки ротора. Если при осмотре не удается обнаружить повреждение, то его определяют по неравномерному нагреву обмотки ротора на ощупь, для чего ротор затормаживают, а к статору подводят пониженное напряжение.

Равномерный нагрев всего двигателя выше допустимой нормы может получиться в результате длительной перегрузки и ухудшения условий охлаждения. Повышенный нагрев вызывает преждевременный износ изоляции обмоток.

Местный нагрев обмотки статора, который обычно сопровождается сильным гудением, уменьшением скорости вращения двигателя и неравномерными токами в его фазах, а также запахом перегретой изоляции. Эта неисправность может возникнуть в результате неправильного соединения между собой катушек в одной из фаз, замыкания обмотки на корпус в двух местах, замыкания между двумя фазами, короткого замыкания между витками в одной из фаз обмотки статора.

При замыканиях в обмотках двигателя вращающимся магнитным полем в короткозамкнутом контуре будет наводиться э. д. с, которая создаст ток большой величины, зависящий от сопротивления замкнутого контура. Поврежденная обмотка может быть найдена по величине измеренного сопротивления, при этом поврежденная фаза будет иметь меньшее сопротивление, чем исправные. Сопротивление измеряют мостом или методом амперметра — вольтметра. Поврежденную фазу можно также определить методом измерения тока в фазах, если к двигателю подвести пониженное напряжение.

При соединении обмоток в звезду ток в поврежденной фазе будет больше, чем в других. Если обмотки соединены в треугольник, линейный ток в двух проводах, к которым присоединена поврежденная фаза, будет больше, чем в третьем проводе. При определении указанного повреждения у двигателя с короткозамкнутым ротором последний может быть заторможенным или вращаться, а у двигателей с фазным ротором обмотка ротора может быть разомкнута. Поврежденные катушки определяют по падению напряжения на их концах: на поврежденных катушках падение напряжения будет меньше, чем на исправных.

Местный нагрев активной стали статора происходит из-за выгорания и оплавления стали при коротких замыканиях в обмотке статора, а также при замыкании листов стали вследствие задевания ротора о статор во время работы двигателя или вследствие разрушения изоляции между отдельными листами стали. Признаками задевания ротора о статор являются дым, искры и запах гари; активная сталь в местах задевания приобретает вид полированной поверхности; появляется гудение, сопровождающееся вибрацией двигателя. Причиной задевания служит нарушение нормального зазора между ротором и статором в результате износа подшипников, неправильной их установки, большого изгиб вала, деформации стали статора или ротора, одностороннего притяжения ротора к статору из-за витковых замыканий в обмотке статора, сильной вибрации ро-тора, который определяют щупом.

Ненормальный шум в двигателе. Нормально работающий двигатель издает равномерное гудение, которое характерно для всех машин переменного тока. Возрастание гудения и появление в двигателе ненормальных шумов могут явиться следствием ослабления запрессовки активной стали, пакеты которой будут периодически сжиматься и ослабляться под воздействием магнитного потока. Для устранения дефекта необходимо перепрессовать пакеты стали. Сильное гудение и шумы в машине могут быть также результатом неравномерности зазора между ротором и статором.

Повреждения изоляции обмоток могут произойти от длительного перегрева двигателя, увлажнения и загрязнения обмоток, попадания на них металлической пыли, стружек, а также в результате естественного старения изоляции. Повреждения изоляции могут вызвать замыкания между фазами и витками отдельных катушек обмоток, а также замыкание обмоток на корпус двигателя.

Увлажнение обмоток происходит в случае длительных перерывов в работе двигателя, при непосредственном попадании в него воды или пара в результате хранения двигателя в сыром неотапливаемом помещении и т. д. Металлическая пыль, попавшая внутрь машины, создает токопроводящие мостики, которые постепенно могут вызвать замыкания между фазами обмоток и на корпус. Необходимо строго соблюдать сроки осмотров и планово-предупредительных ремонтов двигателей.

Сопротивление изоляции обмоток двигателя напряжением до 1000 в не нормируется, изоляция считается удовлетворительной при сопротивлении 1000 ом на 1 в номинального напряжения, но не менее 0,5 Мом при рабочей температуре обмоток. Замыкание обмотки на корпус двигателя обнаруживают мегаомметром, а место замыкания — способом «прожигания» обмотки или методом питания ее постоянным током.

Способ «прожигания» заключается в том, что один конец поврежденной фазы обмотки присоединяют к сети, а другой — к корпусу. При прохождении тока в месте замыкания обмотки на корпус образуется «прожог», появляются дым и запах горелой изоляции.

Двигатель не идет в ход в результате перегорания предохранителей в обмотке якоря, обрыва обмотки сопротивления в пусковом реостате или нарушения контакта в подводящих проводах. Обрыв обмотки сопротивления в пусковом реостате обнаруживают контрольной лампой или мегомметром.

Заводы-изготовители электродвигателей в своих инструкциях по эксплуатации обычно приводят перечень основных неисправностей, которые могут иметь место при работе электродвигателя, и дают рекомендации по их устранению.

Классификация реле.

Реле классифицируются по различным признакам: по виду входных физических величин, на которые они реагируют; по функциям, которые они выполняют в системах управления; по конструкции и т. д. По виду физических величин различают электрические, механические, тепловые, оптические, магнитные, акустические и т.д. реле. При этом следует отметить, что реле может реагировать не только на значение конкретной величины, но и на разность значений (дифференциальные реле), на изменение знака величины (поляризованные реле) или на скорость изменения входной величины.

Устройство реле

Реле обычно состоит из трех основных функциональных элементов: воспринимающего, промежуточного и исполнительного. Воспринимающий (первичный) элемент воспринимает контролируемую величину и преобразует её в другую физическую величину. Промежуточный элемент сравнивает значение этой величины с заданным значением и при его превышении передает первичное воздействие на исполнительный элемент. Исполнительный элемент осуществляет передачу воздействия от реле в управляемые цепи. Все эти элементы могут быть явно выраженными или объединёнными друг с другом. Воспринимающий элемент в зависимости от назначения реле и рода физической величины, на которую он реагирует, может иметь различные исполнения, как по принципу действия, так и по устройству.

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector