Auto-park24.ru

Журнал "Автопарк"
2 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

В каком году был изобретен реактивный двигатель

История реактивных двигателей

История реактивных двигателей неразрывно связана с историей авиации. Прогресс в авиации на всём протяжении её существования обеспечивался, главным образом, прогрессом авиационных двигателей, а всё возраставшие требования, предъявляемые авиацией к двигателям, являлись мощным стимулятором развития авиационного двигателестроения. Считающийся первым самолётом «Флайер-1» (конструкции братьев Райт, США, 1903 год), был оснащён поршневым двигателем внутреннего сгорания, и это техническое решение на протяжении сорока лет [источник не указан 2862 дня] оставалось непременным в авиации. Другие имевшиеся в то время технические решения, например самолёт Можайского (Россия, 1885 год), который имел паровые двигатели, были менее удачными. Авиационные поршневые двигатели совершенствовались, возрастала их мощность и тяговооружённость самих самолётов.

Однако, к концу Второй мировой войны требование ещё бо́льшего повышения мощности поршневых двигателей внутреннего сгорания вошло в неразрешимое противоречие с другими требованиями, предъявляемыми к авиамоторам — компактностью и ограничением массы. Дальнейшее развитие авиации по пути совершенствования поршневых двигателей становилось невозможным, и почти одновременно со смертью младшего из братьев Райт — Орвилла (1948 г) закончилась и эпоха поршневой авиации.

В двигателестроении ожили идеи, предложенные намного раньше поршневого двигателя внутреннего сгорания, но не привлекавшие внимания авиаконструкторов, пока поршневой двигатель сохранял перспективу развития. Ещё в эскизах Леонардо да Винчи (XV век) было найдено изображение колеса с лопастями, приводимого в движение тягой каминной трубы (прообраз турбины) [уточнить] [1] , и вращавшего через зубчатую передачу шампур для жарки мяса. [источник не указан 2862 дня] Первый патент на турбинный двигатель был выдан англичанину Джону Барберу в 1791 году. [источник не указан 2862 дня] В 1913 году француз Рене Лорен получил патент на прямоточный воздушно-реактивный двигатель. [источник не указан 2862 дня]

Следует отметить, что ряд инженеров и учёных разных стран ещё в 30-е, и даже в 20-е годы XX века предвидели надвигающийся кризис в авиационном двигателестроении, и искали пути выхода из него, в том числе и за счёт ВРД . [источник не указан 2862 дня] К ним можно отнести Ф. Уиттла (Великобритания), фон Охайна (Германия), Рене Ледюка (René Leduc) (Франция). [источник не указан 2862 дня] В СССР этой проблемой занимались Ф. А. Цандер, Б. С. Стечкин, Ю. А. Победоносцев, А. М. Люлька и другие. [источник не указан 2862 дня]

Впервые в СССР проект реального истребителя с ВРД разработанным А. М. Люлькой, в марте 1943 года предложил начальник ОКБ-301 М. И. Гудков. [источник не указан 2862 дня] Самолёт назывался Гу-ВРД. Проект был отвергнут экспертами, главным образом, в связи с неверием в актуальность и преимущества ВРД в сравнении с поршневыми авиадвигателями.

Немецкие конструкторы и учёные, работавшие в этой и смежных областях (ракетостроение), оказались в более выгодном положении. Третий рейх планировал войну и выиграть её рассчитывал за счёт технического превосходства в вооружениях. Поэтому в Германии новые разработки в области авиации и ракетной техники субсидировались более щедро, чем в других странах. Первым самолётом, поднявшимся в небо с турбореактивным двигателем (ТРД) HeS 3 конструкции фон Охайна, был He 178 [источник не указан 2862 дня] (фирма Хейнкель Германия), управляемый лётчиком-испытателем флюг-капитаном Эрихом Варзицем (27 августа 1939 года). Этот самолёт превосходил по скорости (700 км/ч) все поршневые истребители своего времени, максимальная скорость которых не превышала 650 км/ч, [источник не указан 2862 дня] но при этом был менее экономичен, и вследствие этого имел меньший радиус действия. К тому же у него были бо́льшие скорости взлёта и посадки, чем у поршневых самолётов, из-за чего ему требовалась более длинная взлётно-посадочная полоса с качественным покрытием.

Работы по этой тематике неспешно продолжались почти до конца войны, когда Третий рейх, утратив своё былое преимущество в воздухе, предпринял безуспешную попытку восстановить его за счёт серийного выпуска с августа 1944 года реактивного истребителя-бомбардировщика Мессершмитт Me.262, оборудованного двумя турбореактивными двигателями Jumo-004 производства фирмы Юнкерс. Этот самолёт значительно превосходил всех своих «современников» по скорости и скороподъёмности. А с ноября 1944 года начал выпускаться ещё и первый реактивный бомбардировщик Arado Ar 234 Blitz с теми же двигателями, который из-за его скорости не могли перехватывать поршневые истребители того времени. Единственным реактивным самолётом союзников по антигитлеровской коалиции, формально принимавшим участие во Второй мировой войне, был «Глостер Метеор» (Великобритания) с ТРД Rolls-Royce Derwent 8 конструкции Ф. Уиттла (серийное производство которого началось даже раньше, чем немецких). [источник не указан 2862 дня]

После войны во всех странах, имевших авиационную промышленность, начинаются интенсивные разработки в области воздушно-реактивных двигателей. Реактивное двигателестроение открыло новые возможности в авиации: полёты на скоростях, превышающих скорость звука, и создание самолётов с грузоподъёмностью, многократно превышающей грузоподъёмность поршневых самолётов, как следствие более высокой удельной мощности газотурбинных двигателей в сравнении с поршневыми.

Первым отечественным серийным реактивным самолётом был истребитель Як-15 (1946 г), разработанный в рекордные сроки на базе планера Як-3 и адаптации трофейного двигателя Jumo-004, выполненной в моторостроительном КБ В. Я. Климова под обозначением. [2]

А уже через год прошёл государственные испытания первый, полностью оригинальный, отечественный турбореактивный двигатель ТР-1, [3] разработанный в КБ А. М. Люльки (ныне филиал УМПО). Такие быстрые темпы освоения совершенно новой сферы двигателестроения имеют объяснение: группа А. М. Люльки занималась этой проблематикой ещё с довоенных времён, но «зелёный свет» этим разработкам был дан, только когда руководство страны вдруг обнаружило отставание СССР в этой области.

Первым отечественным реактивным пассажирским авиалайнером был Ту-104 (1955 г), оборудованный двумя турбореактивными двигателями РД-3М-500 (АМ-3М-500), разработанными в КБ А. А. Микулина. К этому времени СССР был уже в числе мировых лидеров в области авиационного моторостроения. [источник не указан 2862 дня]

Запатентованный ещё в 1913 г, прямоточный воздушно-реактивный двигатель (ПВРД) привлекал конструкторов простотой своего устройства, но главное — своей потенциальной способностью работать на сверхзвуковых скоростях и в самых высоких, наиболее разреженных слоях атмосферы, то есть в условиях, в которых ВРД других типов неработоспособны или малоэффективны. В 1930-е годы с этим типом двигателей проводились эксперименты в США (Уильям Эвери), в СССР (Ф. А. Цандер, Б. С. Стечкин, Ю. А. Победоносцев).

В 1937 году французский конструктор Рене Ледюк получил заказ от правительства Франции на разработку экспериментального самолёта с ПВРД. Эта работа была прервана войной и возобновилась после её окончания. 19 ноября 1946 года состоялся первый в истории полёт аппарата с маршевымо ПВРД . [4] Далее в течение десяти лет было изготовлено и испытано ещё несколько экспериментальных аппаратов этой серии, в том числе, пилотируемые, [5] [неавторитетный источник?] а в 1957 году правительство Франции отказалось от продолжения этих работ — бурно развивавшееся в то время направление ТРД представлялось более перспективным.

В СССР с 1954 по 1960 гг в ОКБ-301 под руководством С.А.Лавочкина, [источник не указан 2862 дня] разрабатывалась крылатая ракета «Буря», предназначавшаяся для доставки ядерных зарядов [источник не указан 2862 дня] на межконтинентальные расстояния, и использовавшая в качестве маршевого двигателя ПВРД , разработанный группой М. М. Бондарюка, и имевший уникальные для своего времени характеристики: эффективная работа на скорости свыше трех Махов, и на высоте 17 км. [источник не указан 2862 дня] В 1957 году проект вступил в стадию лётных испытаний, в ходе которых выявился ряд проблем, в частности, с точностью наведения, которые предстояло разрешить, и на это требовалось время, которое трудно было определить. Между тем, в том же году на вооружение уже поступила МБР Р-7, имевшая то же назначение, разработанная под руководством С. П. Королёва. Это ставило под сомнение целесообразность дальнейшей разработки «Бури». Из числа более современных отечественных разработок можно упомянуть противокорабельные крылатые ракеты с маршевыми ПВРД : П-800 Оникс, П-270 Москит.

Пульсирующий воздушно-реактивный двигатель (ПуВРД) был изобретён в XIX веке шведским изобретателем Мартином Вибергом. [источник не указан 2862 дня] Немецкие конструкторы, ещё накануне Второй мировой войны проводившие широкий поиск альтернатив поршневым авиационным двигателям, не обошли вниманием и это изобретение, долгое время остававшееся невостребованным. Наиболее известным летательным аппаратом (и единственным серийным) c ПуВРД Argus As-014 производства фирмы Argus-Werken, явился немецкий самолёт-снаряд Фау-1. Главный конструктор Фау-1 Роберт Люссер выбрал для него ПуВРД не ради эффективности (поршневые авиационные двигатели той эпохи обладали лучшими характеристиками), а, главным образом, из-за простоты конструкции и, как следствие, малых трудозатрат на изготовление, что было оправдано при массовом производстве одноразовых снарядов. После войны исследования в области пульсирующих воздушно-реактивных двигателей продолжились во Франции (компания SNECMA) и в США (Pratt & Whitney, General Electric), кроме того, благодаря простоте и дешевизне, маленькие двигатели этого типа стали очень популярны среди авиамоделистов, и в любительской авиации, и появились коммерческие фирмы, производящие на продажу для этих целей ПуВРД и клапаны к ним (быстроизнашивающаяся запчасть). [6]

Читать еще:  Что будет если солярка попала в поддон двигателя

История реактивных двигателей

История реактивных двигателей неразрывно связана с историей авиации. Прогресс в авиации на всём протяжении её существования обеспечивался, главным образом, прогрессом авиационных двигателей, а всё возраставшие требования, предъявляемые авиацией к двигателям, являлись мощным стимулятором развития авиационного двигателестроения. Считающийся первым самолётом «Флайер-1» (конструкции братьев Райт, США, 1903 год), был оснащён поршневым двигателем внутреннего сгорания, и это техническое решение на протяжении сорока лет [источник не указан 2862 дня] оставалось непременным в авиации. Другие имевшиеся в то время технические решения, например самолёт Можайского (Россия, 1885 год), который имел паровые двигатели, были менее удачными. Авиационные поршневые двигатели совершенствовались, возрастала их мощность и тяговооружённость самих самолётов.

Однако, к концу Второй мировой войны требование ещё бо́льшего повышения мощности поршневых двигателей внутреннего сгорания вошло в неразрешимое противоречие с другими требованиями, предъявляемыми к авиамоторам — компактностью и ограничением массы. Дальнейшее развитие авиации по пути совершенствования поршневых двигателей становилось невозможным, и почти одновременно со смертью младшего из братьев Райт — Орвилла (1948 г) закончилась и эпоха поршневой авиации.

В двигателестроении ожили идеи, предложенные намного раньше поршневого двигателя внутреннего сгорания, но не привлекавшие внимания авиаконструкторов, пока поршневой двигатель сохранял перспективу развития. Ещё в эскизах Леонардо да Винчи (XV век) было найдено изображение колеса с лопастями, приводимого в движение тягой каминной трубы (прообраз турбины) [уточнить] [1] , и вращавшего через зубчатую передачу шампур для жарки мяса. [источник не указан 2862 дня] Первый патент на турбинный двигатель был выдан англичанину Джону Барберу в 1791 году. [источник не указан 2862 дня] В 1913 году француз Рене Лорен получил патент на прямоточный воздушно-реактивный двигатель. [источник не указан 2862 дня]

Следует отметить, что ряд инженеров и учёных разных стран ещё в 30-е, и даже в 20-е годы XX века предвидели надвигающийся кризис в авиационном двигателестроении, и искали пути выхода из него, в том числе и за счёт ВРД . [источник не указан 2862 дня] К ним можно отнести Ф. Уиттла (Великобритания), фон Охайна (Германия), Рене Ледюка (René Leduc) (Франция). [источник не указан 2862 дня] В СССР этой проблемой занимались Ф. А. Цандер, Б. С. Стечкин, Ю. А. Победоносцев, А. М. Люлька и другие. [источник не указан 2862 дня]

Впервые в СССР проект реального истребителя с ВРД разработанным А. М. Люлькой, в марте 1943 года предложил начальник ОКБ-301 М. И. Гудков. [источник не указан 2862 дня] Самолёт назывался Гу-ВРД. Проект был отвергнут экспертами, главным образом, в связи с неверием в актуальность и преимущества ВРД в сравнении с поршневыми авиадвигателями.

Немецкие конструкторы и учёные, работавшие в этой и смежных областях (ракетостроение), оказались в более выгодном положении. Третий рейх планировал войну и выиграть её рассчитывал за счёт технического превосходства в вооружениях. Поэтому в Германии новые разработки в области авиации и ракетной техники субсидировались более щедро, чем в других странах. Первым самолётом, поднявшимся в небо с турбореактивным двигателем (ТРД) HeS 3 конструкции фон Охайна, был He 178 [источник не указан 2862 дня] (фирма Хейнкель Германия), управляемый лётчиком-испытателем флюг-капитаном Эрихом Варзицем (27 августа 1939 года). Этот самолёт превосходил по скорости (700 км/ч) все поршневые истребители своего времени, максимальная скорость которых не превышала 650 км/ч, [источник не указан 2862 дня] но при этом был менее экономичен, и вследствие этого имел меньший радиус действия. К тому же у него были бо́льшие скорости взлёта и посадки, чем у поршневых самолётов, из-за чего ему требовалась более длинная взлётно-посадочная полоса с качественным покрытием.

Работы по этой тематике неспешно продолжались почти до конца войны, когда Третий рейх, утратив своё былое преимущество в воздухе, предпринял безуспешную попытку восстановить его за счёт серийного выпуска с августа 1944 года реактивного истребителя-бомбардировщика Мессершмитт Me.262, оборудованного двумя турбореактивными двигателями Jumo-004 производства фирмы Юнкерс. Этот самолёт значительно превосходил всех своих «современников» по скорости и скороподъёмности. А с ноября 1944 года начал выпускаться ещё и первый реактивный бомбардировщик Arado Ar 234 Blitz с теми же двигателями, который из-за его скорости не могли перехватывать поршневые истребители того времени. Единственным реактивным самолётом союзников по антигитлеровской коалиции, формально принимавшим участие во Второй мировой войне, был «Глостер Метеор» (Великобритания) с ТРД Rolls-Royce Derwent 8 конструкции Ф. Уиттла (серийное производство которого началось даже раньше, чем немецких). [источник не указан 2862 дня]

После войны во всех странах, имевших авиационную промышленность, начинаются интенсивные разработки в области воздушно-реактивных двигателей. Реактивное двигателестроение открыло новые возможности в авиации: полёты на скоростях, превышающих скорость звука, и создание самолётов с грузоподъёмностью, многократно превышающей грузоподъёмность поршневых самолётов, как следствие более высокой удельной мощности газотурбинных двигателей в сравнении с поршневыми.

Первым отечественным серийным реактивным самолётом был истребитель Як-15 (1946 г), разработанный в рекордные сроки на базе планера Як-3 и адаптации трофейного двигателя Jumo-004, выполненной в моторостроительном КБ В. Я. Климова под обозначением. [2]

А уже через год прошёл государственные испытания первый, полностью оригинальный, отечественный турбореактивный двигатель ТР-1, [3] разработанный в КБ А. М. Люльки (ныне филиал УМПО). Такие быстрые темпы освоения совершенно новой сферы двигателестроения имеют объяснение: группа А. М. Люльки занималась этой проблематикой ещё с довоенных времён, но «зелёный свет» этим разработкам был дан, только когда руководство страны вдруг обнаружило отставание СССР в этой области.

Первым отечественным реактивным пассажирским авиалайнером был Ту-104 (1955 г), оборудованный двумя турбореактивными двигателями РД-3М-500 (АМ-3М-500), разработанными в КБ А. А. Микулина. К этому времени СССР был уже в числе мировых лидеров в области авиационного моторостроения. [источник не указан 2862 дня]

Запатентованный ещё в 1913 г, прямоточный воздушно-реактивный двигатель (ПВРД) привлекал конструкторов простотой своего устройства, но главное — своей потенциальной способностью работать на сверхзвуковых скоростях и в самых высоких, наиболее разреженных слоях атмосферы, то есть в условиях, в которых ВРД других типов неработоспособны или малоэффективны. В 1930-е годы с этим типом двигателей проводились эксперименты в США (Уильям Эвери), в СССР (Ф. А. Цандер, Б. С. Стечкин, Ю. А. Победоносцев).

В 1937 году французский конструктор Рене Ледюк получил заказ от правительства Франции на разработку экспериментального самолёта с ПВРД. Эта работа была прервана войной и возобновилась после её окончания. 19 ноября 1946 года состоялся первый в истории полёт аппарата с маршевымо ПВРД . [4] Далее в течение десяти лет было изготовлено и испытано ещё несколько экспериментальных аппаратов этой серии, в том числе, пилотируемые, [5] [неавторитетный источник?] а в 1957 году правительство Франции отказалось от продолжения этих работ — бурно развивавшееся в то время направление ТРД представлялось более перспективным.

В СССР с 1954 по 1960 гг в ОКБ-301 под руководством С.А.Лавочкина, [источник не указан 2862 дня] разрабатывалась крылатая ракета «Буря», предназначавшаяся для доставки ядерных зарядов [источник не указан 2862 дня] на межконтинентальные расстояния, и использовавшая в качестве маршевого двигателя ПВРД , разработанный группой М. М. Бондарюка, и имевший уникальные для своего времени характеристики: эффективная работа на скорости свыше трех Махов, и на высоте 17 км. [источник не указан 2862 дня] В 1957 году проект вступил в стадию лётных испытаний, в ходе которых выявился ряд проблем, в частности, с точностью наведения, которые предстояло разрешить, и на это требовалось время, которое трудно было определить. Между тем, в том же году на вооружение уже поступила МБР Р-7, имевшая то же назначение, разработанная под руководством С. П. Королёва. Это ставило под сомнение целесообразность дальнейшей разработки «Бури». Из числа более современных отечественных разработок можно упомянуть противокорабельные крылатые ракеты с маршевыми ПВРД : П-800 Оникс, П-270 Москит.

Пульсирующий воздушно-реактивный двигатель (ПуВРД) был изобретён в XIX веке шведским изобретателем Мартином Вибергом. [источник не указан 2862 дня] Немецкие конструкторы, ещё накануне Второй мировой войны проводившие широкий поиск альтернатив поршневым авиационным двигателям, не обошли вниманием и это изобретение, долгое время остававшееся невостребованным. Наиболее известным летательным аппаратом (и единственным серийным) c ПуВРД Argus As-014 производства фирмы Argus-Werken, явился немецкий самолёт-снаряд Фау-1. Главный конструктор Фау-1 Роберт Люссер выбрал для него ПуВРД не ради эффективности (поршневые авиационные двигатели той эпохи обладали лучшими характеристиками), а, главным образом, из-за простоты конструкции и, как следствие, малых трудозатрат на изготовление, что было оправдано при массовом производстве одноразовых снарядов. После войны исследования в области пульсирующих воздушно-реактивных двигателей продолжились во Франции (компания SNECMA) и в США (Pratt & Whitney, General Electric), кроме того, благодаря простоте и дешевизне, маленькие двигатели этого типа стали очень популярны среди авиамоделистов, и в любительской авиации, и появились коммерческие фирмы, производящие на продажу для этих целей ПуВРД и клапаны к ним (быстроизнашивающаяся запчасть). [6]

Читать еще:  Через сколько километров менять масло в двигателе механика

Доклад-сообщение Реактивный двигатель

Реактивные двигатели уже около ста лет успешно используются на самолетах и в ракетостроении.

Реактивный двигатель – это устройство, которое создаёт силу тяги, необходимую для движения преобразовывая внутреннюю энергию топлива, то есть превращая ее в кинетическую энергию реактивной струи.

Для объяснения приведем пример с воздушным шариком. Если развязать горлышко шарика, то из шарика начнёт выходит струя воздуха( рабочее тело), а сам шарик под воздействием реактивной силы начнет свое движение в противоположную сторону.

Примерно таким же образом работает и реактивный двигатель, но что бы поднять ракету или самолет рабочее тело (реактивная струя) в нем должно имеет очень высокую скорость. В этом и заключается задача реактивного двигателя. Такая скорость достигается тем, что газ нагревают до очень высокой температуры.

Изобретателями первого реактивного двигателя являются Фрэнк Уиттл (1907–1996 гг.), а также Ганс фон Охайн (1911—1998гг.). В 1930 году патент на первый работающий реактивный двигатель был получен Фрэнком Уиттлом. Однако первую модель была собрана выдающимся инженером-конструктором Гансом фон Охайном.

Реактивный двигатель состоит из:

  • Камера сгорания: если сильно нагреть воздух то он расшириться и на выходе образует большую скорость. Именно для этих целей и используется камера сгорания. В ней газ в месте с кислородом нагревается до большой температуры.
  • После этого рабочее тело попадает в реактивное сопло, в котором скорость струи еще больше увеличивается из-за особой сужающейся формы сопла.

Но кроме того в реактивных двигателях используются также:

  • Компрессор: для эффективного сгорания необходим воздух относительно высокого давления и температуры. Для этих целей используется компрессор. Лопасти компрессора вращаясь увеличивают эти показатели.
  • Сам компрессор вращается благодаря турбине, установленной за камерой сгорания. Компрессор и турбина установлены на одном валу, поток выходящий из камеры сгорания поворачивает лопасти турбины, тем самым вращая его, а вместе с ним и компрессор.

Такие двигатели называются турбореактивными.

Заключение.

Изобретение реактивного двигателя совершило революцию в развитии человечества, благодаря этому стали возможны полеты в космос, перевозки пассажиров и товаров по воздуху.

Картинка к сообщению Реактивный двигатель

Популярные сегодня темы

  • Пшеница

Пшеница является одной из разновидностей злаковой культуры, однолетнее растение. Выращивают пшеницу уже более десятка тысяч лет, она считается одно из самых древних культур

Статуя Зевса, располагавшаяся в Олимпии – это уникальная работа Фидия, известного афинского скульптора своего времени. Для того, чтобы создать это великое творение, грекам пришлось немало пот

Первый паровоз был создан в 19 веке. В этой истории имеется большое количество интересных нюансов. Мало кто знает, что первый паровоз выглядел как деревянная телега. Колеса этой телеги крутил

Алтай одно из самых удивительных мест в России. Сюда приезжают люди со всех уголков мира, что полюбоваться и насладиться первозданной, чистой и довольно загадочной природой. Место, в котором

В Воронеже, 21 сентября 1824 года, в семье мещанина родился сын, нарекли его Иваном по отцу Савичем. Его отец был владельцем лавки по продаже свечей.

Лотос орехоносный – многолетнее травянистое цветущее растение, ведущее земноводный образ существования. Относится к роду Лотосовых. Занесен в Красную книгу России как редкий вид.

инженеров.net — научно-познавательный сайт

Saturday , Sep 25th

Last update 08:30:58 AM GMT

  • начало
  • транспорт
  • космос
  • наука
  • hi-tech
  • как это работает
  • сделай сам
  • интересно
  • инженерам
  • Skip to content

Реактивные, турбореактивные двигатели, их виды и принцип работы

  • 1
  • 2
  • 3
  • 4
  • 5

При всей своей мощи и кажущейся невероятной сложности — ракетные и турбореактивные двигатели на самом деле имеют довольно простой принцип работы.

Самым простым является ракетный двигатель. Начнем с него.


Для того, чтобы работать в условиях космоса, ракетные двигатели должны иметь собственный запас кислорода для обеспечения сжигания топлива. Топливо-воздушная смесь впрыскивается в камеру сгорания, где происходит ее постоянное сжигание. Образующийся во время сгорания газ под очень большим давлением высвобождается наружу через сопло, создавая реактивную силу и заставляя ракетный двигатель, а вместе с ним и ракету двигаться в противоположном направлении.
Наглдный пример реактивной силы в повседневной жизни это обычный воздушный шарик. Если его надуть и отпустить, не завязывая, то шарик будет двигаться за счет реактивной силы, создаваемой вылетающим из него воздухом.

Турбореактивный двигатель (ТРД)

Турбореактивный двигатель (ТРД) работает по тому же принципу, что и ракетный, за исключением того, что в нем сжигается атмосферный кислород.

Сходства:
Топливо постоянно сжигается внутри камеры сгорания турбины. Освобождающийся через сопло газ создает реактивную силу.

Различия:
На выходе из сопла установлены несколко ступеней турбины, закрепленные на общем валу. проходя через лопатки турбин газ приводит их во вращение. Между колесами турбин установлены неподвижные направляющие лопатки, которые придаю определенное направление потоку газа на пути ко следующей ступени (колесу) турбины, что создает более эффективое вращение.

Вместе с турбиной на едином валу в передней части двигателя установлен компрессор, который служит для сжатия и подачи воздуха в камеру сгорания.

Турбовинтовой двигатель (ТВД).

Принцип работы точно такой же как и у ТРД, за исключением того, что на валу перед компрессором установлен редуктор, приводящий во вращение воздушный винт с более низкими оборотами, чем турбина.
Получение мощности, необходимой для вращения ротора компрессора и воздушного винта, обеспечивается турбиной с увеличенным числом ступеней, поэтому расширение газа в турбине происходит почти полностью и реактивная тяга, получаемая за счет реакции газовой струи, вытекающей из двигателя, составляет только 10–15% суммарной тяги, в то время как воздушный винт создает основное тяговое усилие (85–90%).

ТВД сочетают в себе преимущества ТРД на больших скоростях полета (способность создавать большую тягу при относительно небольшой массе и габаритах двигателя) и ПД на малых скоростях (низкие расходы топлива) и, обладая высокой топливной эффективностью, широко применяются в силовых установках имеющих большую грузоподъемность и дальность полета самолетов (летающих на скоростях 600–800 км/ч) и вертолетов.

Турбовентиляторный двигатель (ТВлД)

Этот двигатель является неким копромиссом между турбореактивным и турбовинтовым двигателем. У турбовентиляторного двигателя (ТВлД) на валу перед компрессором установлен вентилятор, имеющий большее количество лопаток, чем воздушный винт и обеспечивающий высокий расход воздуха через двигатель на всех скоростях полета, включая низкие скорости при взлете.

Как работают ракетные двигатели?

Освоение космоса — самое удивительное из мероприятий, когда-либо проводимых человечеством. И большую часть удивления составляет сложность. Освоение космоса осложняется массой проблем, которые нужно решить и преодолеть. Например, безвоздушное пространство, проблема с температурой, проблема повторного входа в атмосферу, орбитальная механика, микрометеориты и космический мусор, космическая и солнечная радиация, логистика в условиях невесомости и другое. Но самая сложная проблема — это просто оторвать космический корабль от земли. Здесь не обойтись без ракетного двигателя, поэтому в этой статье мы рассмотрим именно это изобретение человечества.

С одной стороны, ракетные двигатели настолько просто устроены, что за небольшую копейку вы сможете построить ракету самостоятельно. С другой стороны, ракетные двигатели (и их топливные системы) настолько сложны, что доставкой людей на орбиту, по сути, занимаются только три страны мира.

Когда люди задумываются о двигателе или моторе, они думают о вращении. К примеру, бензиновый двигатель автомобиля производит энергию вращения, чтобы двигать колеса. Электродвигатель производит энергию вращения для движения вентилятора или диска. Паровой двигатель делает то же самое, чтобы вращать паровую турбину.

Ракетные двигатели принципиально отличаются. Ракетные двигатели — это реактивные двигатели. Основной принцип движения ракетного двигателя — это знаменитый принцип Ньютона, «на каждое действие есть равное противодействие». Ракетный двигатель выбрасывает массу в одном направлении, а благодаря принципу Ньютона движется в противоположном направлении.

Понятие «выбрасывания массы и движения по принципу Ньютона» может быть сложно понять с первого раза, потому что ничего не разобрать. Ракетные двигатели, кажется, работают с огнем, шумом и давлением, а не «толкают вещи». Давайте рассмотрим несколько примеров, чтобы получить более полную картину реальности.

Читать еще:  Где находится датчик температуры двигателя фиат пунто

Если вы когда-нибудь стреляли из оружия, желательно из дробовика 12-го калибра, то вы знаете, что такое отдача. Когда вы стреляете из оружия, оно отдает вам в плечо, достаточно ощутимо. Этот толчок и есть реакция. Дробовик выпуливает около 30 грамм металла в одном направлении со скоростью больше 1000 км/ч, и ваше плечо чувствует отдачу. Если бы вы стояли на скейтборде или были в роликах, то выстрел из дробовика сработал бы как реактивный двигатель, и вы покатились бы в противоположном направлении.

Если вы когда-либо наблюдали за работой пожарного шлага, вы наверняка заметили, что его достаточно сложно удержать (иногда пожарные вдвоем и втроем его держат). Шланг работает как ракетный двигатель. Он выбрасывает воду в одном направлении, а пожарные используют свою силу, чтобы противостоять реакции. Если они упустят рукав, он будет метаться повсюду. Если бы пожарные стоял на скейтбордах, пожарный рукав разогнал бы их до приличной скорости.

Когда вы надуваете воздушный шарик и выпускаете его, он летает по всей комнате, испуская воздух, — так работает ракетный двигатель. В данном случае вы выпускаете молекулы воздуха из шара. Многие считают, что молекулы воздуха ничего не весят, но это не так. Когда вы выпускаете их из шарика, шарик летит в противоположном направлении.

Еще один сценарий, который поможет объяснить действие и противодействие, — это космический бейсбол. Представьте, что вы вышли в скафандре в космос недалеко от своего космического судна, и у вас в руке бейсбольный мяч. Если вы его бросите, ваше тело среагирует в противоположном направлении от мяча. Допустим, он весит 450 гр, а ваше тело вместе со скафандром весит 45 кг. Вы бросаете бейсбольный мяч весом почти в полкило со скоростью 34 км/ч. Таким образом, вы ускоряете полукилограммовый мяч своей рукой так, что он набирает скорость 34 км/ч. Ваше тело реагирует в противоположном направлении, но весит в 100 раз больше мяча. Таким образом, оно принимает одну сотую ускорения мяча, или 0,34 км/ч.

Если вы хотите создать большую тягу от своего бейсбольного мяча, у вас есть два варианта: увеличить его массу или увеличить ускорение. Вы можете бросить мячик потяжелее или бросать мячи один за другим, либо бросить мяч быстрее. Но на этом все.

Ракетный двигатель, как правило, выбрасывает массу в форме газа под высоким давлением. Двигатель выбрасывает массу газа в одном направлении, чтобы получить реактивное движение в противоположном направлении. Масса идет от веса топлива, которое сгорает в двигателе ракеты. Процесс горения ускоряет массы топлива так, что они выходят из сопла ракеты на высокой скорости. Тот факт, что топливо превращается из твердого тела или жидкости в процессе сгорания, никак не меняет его массу. Если вы сожжете килограмм ракетного топлива, вы получите килограмм выхлопа в виде горячих газов на высокой скорости. Процесс сжигания ускоряет массу.

«Сила» ракетного двигателя называется тягой. Тяга измеряется в ньютонах в метрической системе и «фунтах тяги» в США (4,45 ньютона тяги эквивалентны одному фунту тяги). Фунт тяги — это количество тяги, необходимое для удержания 1-фунтового объекта (0,454 кг) неподвижным относительно силы тяжести Земли. Ускорение земной гравитации составляет 9,8 м/с².

Одной из забавных проблем ракет является то, что топливный вес, как правило, в 36 раз больше полезной нагрузки. Потому что помимо того, что двигателю нужно поднимать вес, этот же вес и способствует собственному подъему. Чтобы вывести крошечного человека в космос, нужна огромная ракета и много-много топлива.

Обычная скорость для химических ракет составляет от 8000 до 16 000 км/ч. Топливо горит около двух минут и вырабатывает 3,3 миллиона фунтов тяги на старте. Три основных двигателя космического шаттла, например, сжигают топливо в течение восьми минут и вырабатывают около 375 000 фунтов тяги каждый в процессе горения.

Далее мы рассмотрим топливные смеси твердотопливных ракет.

Твердотопливные ракеты: топливная смесь

Ракетные двигатели на твердом топливе — это первые двигатели, созданные человеком. Они были изобретены сотни лет назад в Китае и используются до сих пор. О красных бликах ракет поется в национальном гимне (написанном в начале 1800-х) — имеются в виду небольшие боевые ракеты на твердом топливе, используемые для доставки бомб или зажигательных устройств. Как видите, такие ракеты существуют уже давненько.

Идея, которая лежит в основе ракеты на твердом топливе, довольно проста. Вам нужно создать нечто, что будет быстро гореть, но не взрываться. Как вы знаете, порох не подходит. Оружейный порох на 75 % состоит из нитрата (селитры), 15 % угля и 10 % серы. В ракетном двигателе взрывы не нужны — нужно, чтобы топливо горело. Можно изменить смесь до 72 % нитрата, 24 % угля и 4 % серы. Вместо пороха вы получите ракетное топливо. Эта смесь будет быстро гореть, но не взорвется, если правильно ее загрузить. Вот типичная схема:

Твердотопливные ракеты: конфигурации

Читая описание для современных твердотопливных ракет, часто можно найти вот такое:

«Ракетное топливо состоит из перхлората аммония (окислитель, 69,6 % по весу), алюминия (топливо, 16 %), оксида железа (катализатор, 0,4 %), полимера (связующей смеси, удерживающей топливо вместе, 12,04 %) и эпоксидный отверждающий агент (1,96 %). Перфорация выполнена в форме 11-конечной звезды в переднем сегменте двигателя и в форме дважды усеченного конуса в каждом из остальных сегментов, включая конечный. Такая конфигурация обеспечивает высокую тягу при розжиге, а затем уменьшает тягу примерно на треть спустя 50 секунд после старта, предотвращая перенапряжение аппарата во время максимального динамического давления». — NASA

Здесь объясняется не только состав топлива, но и форма канала, пробуренного в центре топлива. «Перфорация в виде 11-конечной звезды» может выглядеть вот так:

Твердотопливные двигатели обладают тремя важными преимуществами:

  • простота
  • низкая стоимость
  • безопасность

Но есть и два недостатка:

  • тягу невозможно контролировать
  • после зажигания двигатель нельзя отключить или запустить повторно

Недостатки означают, что твердотопливные ракеты полезны для непродолжительных задач (ракеты) или систем ускорения. Если вам понадобится управлять двигателем, вам придется обратиться к системе жидкого топлива.

Жидкотопливные ракеты

В 1926 году Роберт Годдард испытал первый двигатель на основе жидкого топлива. Его двигатель использовал бензин и жидкий кислород. Также он пытался решить и решил ряд фундаментальных проблем в конструкции ракетного двигателя, включая механизмы накачки, стратегии охлаждения и рулевые механизмы. Именно эти проблемы делают ракеты с жидким топливом такими сложными.

Основная идея проста. В большинстве жидкотопливных ракетных двигателях топливо и окислитель (например, бензин и жидкий кислород) закачиваются в камеру сгорания. Там они сгорают, чтобы создать поток горячих газов с высокой скоростью и давлением. Эти газы проходят через сопло, которое еще больше их ускоряет (от 8000 до 16 000 км/ч, как правило), а после выходят. Ниже вы найдете простую схему.

  • Жидкий водород и жидкий кислород (основные двигатели космических шаттлов).
  • Бензин и жидкий кислород (первые ракеты Годдарда).
  • Керосин и жидкий кислород (использовались на первой ступени «Сатурна-5» в программе «Аполлон»).
  • Спирт и жидкий кислород (использовались в немецких ракетах V2).
  • Четырехокись азота/монометилгидразин (использовались в двигателях «Кассини»).

Будущее ракетных двигателей

Мы привыкли видеть химические ракетные двигатели, которые сжигают топливо для производства тяги. Но есть масса других способов для получения тяги. Любая система, которая способна толкать массу. Если вы хотите ускорить бейсбольный мячик до невероятной скорости, вам нужен жизнеспособный ракетный двигатель. Единственная проблема при таком подходе — это выхлоп, который будет тянуться через пространство. Именно эта небольшая проблема приводит к тому, что ракетные инженеры предпочитают газы горящим продуктам.

Многие ракетные двигатели крайне малы. К примеру, двигатели ориентации на спутниках вообще не создают большую тягу. Иногда на спутниках практически не используется топливо — газообразный азот под давлением выбрасывается из резервуара через сопло.

Новые конструкции должны найти способ ускорить ионы или атомные частицы до высокой скорости, чтобы сделать тягу более эффективной. А пока будем пытаться делать электромагнитные двигатели и ждать, что там еще выкинет Элон Маск со своим SpaceX.

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector