Auto-park24.ru

Журнал "Автопарк"
2 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

В чем отличие трехфазного двигателя от однофазного

Трехфазный асинхронный двигатель

Что такое асинхронный электродвигатель, история появления. Устройство и принцип действия асинхронных двигателей с короткозамкнутым и фазным ротором. Преимущества и недостатки.

  1. Определение и немного истории
  2. Трехфазный асинхронный двигатель с короткозамкнутым ротором
  3. Конструкция асинхронного электродвигателя
  4. Принцип работы. Вращающееся магнитное поле
  5. Концепция вращающегося магнитного поля
  6. Действие вращающегося магнитного поля на замкнутый виток
  7. Короткозамкнутый ротор асинхронного двигателя
  8. Скольжение асинхронного двигателя. Скорость вращения ротора
  9. Преобразование энергии
  10. Варианты исполнений
  11. IM 1081
  12. IM 1082
  13. IM 2081
  14. IM 2082
  15. IM 2181
  16. IM 2182
  17. IM 3081
  18. IM 3082
  19. IM 3681
  20. IM 3682
  21. Специальное исполнение
  22. Подключение асинхронного двигателя
  23. Трехфазный переменный ток
  24. Звезда и треугольник
  25. Обозначение выводов статора трехфазного электродвигателя
  26. Подключение трехфазного асинхронного двигателя к однофазной сети с помощью фазосдвигающего элемента
  27. Типовые значения оборотов асинхронных двигателей
  28. Двухполюсные (2P- 2 полюса)
  29. Четырехполюсные (4p- 4 полюса)
  30. Шестиполюсные (6P- 6 полюсов)
  31. Восьмиполюсные (8P- 8 полюсов)
  32. Двенадцатиполюсные (12P- 12 полюсов)
  33. Шеснадцатиполюсные (16P)
  34. Преимущества и недостатки
  35. Управление асинхронным двигателем
  36. Прямое подключение к сети питания
  37. Нереверсивная схема
  38. Реверсивная схема
  39. Плавный пуск асинхронного электродвигателя
  40. Частотное управление асинхронным электродвигателем
  41. Где купить асинхронный двигатель?
  42. Интернет магазин ТД “Мсо” по продаже электродвигателей
  43. Пункты самовывоза
  44. Основные технические характеристики
  45. Трехфазный асинхронный двигатель с фазным ротором
  46. Конструкция АДФР
  47. Фазный ротор
  48. Статор АДФР
  49. Обозначение выводов вторичных обмоток трехфазного АДФР
  50. Пуск АДФР
  51. Смотрите также
  52. Режимы работы
  53. Способы торможения двигателей

Определение и немного истории

Автором асинхронного двигателя считают Михаила Осиповича Доливо-Добровольского, который в 1889 году получил патент на двигатель с ротором типа «Беличья клетка», а в 1890 году на двигатель с фазным ротором, которые без особых изменений в конструкции используются и сегодня. А первые исследования и наработки в этом направлении были проведены в 1888 Галилео Феррарисом и Николой Тесла независимо друг от друга.

Главным отличием разработки Доливо-Добровольского от разработок Теслы было использование трёхфазной, а не двухфазной конструкции статора. Демонстрация первых двигателей состоялась на Международной электротехнической выставке во Франкфурте на Майне в сентябре 1891 года. Там представили три трёхфазных асинхронных электродвигателя, самый мощный из которых был на 1.5 кВт. Конструкция этих машин оказалась настолько удачно, что не пережила весомых изменений до наших дней.

Определение асинхронной машины звучит следующим образом:

Асинхронной называется электрическая машина переменного тока, в которой частота вращения ротора не равна частоте вращения магнитного поля, создаваемого обмотками статора.

Трехфазный асинхронный двигатель с короткозамкнутым ротором

, у которого ротор выполнен с короткозамкнутой обмоткой в виде беличьей клетки

Конструкция асинхронного электродвигателя

Трехфазный асинхронный электродвигатель, как и любой электродвигатель, состоит из двух основных частей – статора и ротора. Статор – неподвижная часть, ротор – вращающаяся часть. Ротор размещается внутри статора. Между ротором и статором имеется небольшое расстояние, называемое воздушным зазором, обычно 0,5-2 мм.

Статор состоит из корпуса и сердечника с обмоткой. Сердечник статора собирается из тонколистовой технической стали толщиной обычно 0,5 мм, покрытой изоляционным лаком. Шихтованная конструкция сердечника способствует значительному снижению вихревых токов, возникающих в процессе перемагничивания сердечника вращающимся магнитным полем. Обмотки статора располагаются в пазах сердечника.

Ротор состоит из сердечника с короткозамкнутой обмоткой и вала. Сердечник ротора тоже имеет шихтованную конструкцию. При этом листы ротора не покрыты лаком, так как ток имеет небольшую частоту и оксидной пленки достаточно для ограничения вихревых токов.

Принцип работы. Вращающееся магнитное поле

Принцип действия трехфазного асинхронного электродвигателя основан на способности трехфазной обмотки при включении ее в сеть трехфазного тока создавать вращающееся магнитное поле.

Вращающееся магнитное поле – это основная концепция электрических двигателей и генераторов.

Вращающееся магнитное поле асинхронного электродвигателя

Частота вращения этого поля, или синхронная частота вращения прямо пропорциональна частоте переменного тока f1 и обратно пропорциональна числу пар полюсов р трехфазной обмотки.

,

  • где n1 – частота вращения магнитного поля статора, об/мин,
  • f1 – частота переменного тока, Гц,
  • p – число пар полюсов
Концепция вращающегося магнитного поля

Чтобы понять феномен вращающегося магнитного поля лучше, рассмотрим упрощенную трехфазную обмотку с тремя витками. Ток текущий по проводнику создает магнитное поле вокруг него. На рисунке ниже показано поле создаваемое трехфазным переменным током в конкретный момент времени

Магнитное поле прямого проводника с постоянным током

Составляющие переменного тока будут изменяться со временем, в результате чего будет изменяться создаваемое ими магнитное поле. При этом результирующее магнитное поле трехфазной обмотки будет принимать разную ориентацию, сохраняя при этом одинаковую амплитуду.

Вращающееся магнитное поле

Действие вращающегося магнитного поля на замкнутый виток

Теперь разместим замкнутый проводник внутри вращающегося магнитного поля. По закону электромагнитной индукции изменяющееся магнитное поле приведет к возникновению электродвижущей силы (ЭДС) в проводнике. В свою очередь ЭДС вызовет ток в проводнике. Таким образом, в магнитном поле будет находиться замкнутый проводник с током, на который согласно закону Ампера будет действовать сила, в результате чего контур начнет вращаться.

Влияние вращающегося магнитного поля на замкнутый проводник с током

Короткозамкнутый ротор асинхронного двигателя

По этому принципу также работает асинхронный электродвигатель. Вместо рамки с током внутри асинхронного двигателя находится короткозамкнутый ротор по конструкции напоминающий беличье колесо. Короткозамкнутый ротор состоит из стержней накоротко замкнутых с торцов кольцами.

Короткозамкнутый ротор “беличья клетка” наиболее широко используемый в асинхронных электродвигателях (показан без вала и сердечника)

Трехфазный переменный ток, проходя по обмоткам статора, создает вращающееся магнитное поле. Таким образом, также как было описано ранее, в стержнях ротора будет индуцироваться ток, в результате чего ротор начнет вращаться. На рисунке ниже Вы можете заметить различие между индуцируемыми токами в стержнях. Это происходит из-за того что величина изменения магнитного поля отличается в разных парах стержней, из-за их разного расположения относительно поля. Изменение тока в стержнях будет изменяться со временем.

Вращающееся магнитное поле пронизывающее короткозамкнутый ротор

Вы также можете заметить, что стержни ротора наклонены относительно оси вращения. Это делается для того чтобы уменьшить высшие гармоники ЭДС и избавиться от пульсации момента. Если стержни были бы направлены вдоль оси вращения, то в них возникало бы пульсирующее магнитное поле из-за того, что магнитное сопротивление обмотки значительно выше магнитного сопротивления зубцов статора.

Скольжение асинхронного двигателя. Скорость вращения ротора

Отличительный признак асинхронного двигателя состоит в том, что частота вращения ротора n2 меньше синхронной частоты вращения магнитного поля статора n1.

Объясняется это тем, что ЭДС в стержнях обмотки ротора индуцируется только при неравенстве частот вращения n2 Режимы работы

Электродвигатель асинхронного типа универсальный механизм и по продолжительности работы имеет несколько режимов:

  • Продолжительный;
  • Кратковременный;
  • Периодический;
  • Повторно-кратковременный;
  • Особый.

Продолжительный режим — основной режим работы асинхронных устройств, который характеризуется постоянной работой электродвигателя без отключений с неизменной нагрузкой. Такой режим работы самый распространенный, используется на промышленных предприятиях повсеместно.

Кратковременный режим – работает до достижения постоянной нагрузки определенное время (от 10 до 90 минут), не успевая максимально разогреться. После этого отключается. Такой режим используют при подаче рабочих веществ (воду, нефть, газ) и прочих ситуациях.

Периодический режим – продолжительность работы имеет определенное значение и по завершении цикла работ отключается. Режим работы пуск-работа-остановка. При этом он может отключаться на время, за которое не успевает остыть до внешних температур и включаться заново.

Повторно-кратковременный режим – двигатель не нагревается максимально, но и не успевает остыть до внешней температуры. Применяется в лифтах, эскалаторах и прочих устройствах.

Особый режим – продолжительность и период включения произвольный.

В электротехнике существует принцип обратимости электрических машин — это означает, что устройство может, как преобразовывать электрическую энергию в механическую, так и совершать обратные действия.

Асинхронные электродвигатели тоже соответствуют этому принципу и имеют двигательный и генераторный режим работы.

Двигательный режим – основной режим работы асинхронного электродвигателя. При подаче напряжения на обмотки возникает электромагнитный вращающий момент, увлекающий за собой ротор с валом и, таким образом, вал начинает вращаться, двигатель выходит на постоянную частоту вращения, совершая полезную работу.

Генераторный режим – основан на принципе возбуждения электрического тока в обмотках двигателя при вращении ротора. Если вращать ротор двигателя механическим способом, то на обмотках статора образуется электродвижущая сила, при наличии конденсатора в обмотках возникает емкостный ток. Если емкость конденсатора будет определенного значения, зависящего от характеристик двигателя, то произойдет самовозбуждение генератора и возникнет трехфазная система напряжений. Таким образом короткозамкнутый электродвигатель будет работать как генератор.

Способы торможения двигателей

При торможении противовключением меняются два провода соединяющих трехфазную сеть с обмотками статора, изменяя при этом направление движения магнитного поля машины. При этом наступает режим электромагнитного тормоза. Для динамического торможения обмотка статора отключается от трехфазной сети и включается в сеть постоянного тока. Неподвижное поле статора заставляет ротор быстро останавливаться.

Для лучшего понимания механизмов торможения двигателей рекомендуем также подробнее прочитать все что нужно знать о шаговых электродвигателях.

После отключения от сети электродвигатель продолжает движение по инерции. При этом кинетическая энергия расходуется на преодоление всех видов сопротивлений движению. Поэтому скорость электродвигателя через промежуток времени, в течение которого будет израсходована вся кинетическая энергия, становится равной нулю.

Такая остановка электродвигателя при движении по инерции называется свободным выбегом. Многие электродвигатели, работающие в продолжительном режиме или со значительными нагрузками, останавливают путем свободного выбега.

Для защиты двигателя применяют реле контроля напряжения.

Для защиты двигателей от пропадания и перекоса (разницы напряжений) фаз питающего напряжения применяют реле контроля фаз, которые в этих случаях полностью отключают питание (с автоматическим или ручным дальнейшим включением). Возможна установка одного реле на группу двигателей.

Более грубой и универсальной защитой, обязательной по правилам эксплуатации и обычно достаточной при правильно подобранных параметрах, является установка трёхфазных автоматических выключателей (по одному на двигатель), которые отключают питание в случае длительного (до несколько минут) превышения номинального тока по любой из фаз, что является следствием перегрузки двигателя, перекоса или обрыва фаз.

Схема подключения трехфазного электродвигателя

Здравствуйте. Информацию по этой теме трудно не найти, но я постараюсь сделать данную статью наиболее полной. Речь пойдет о такой теме, как схема подключения трехфазного двигателя на 220 вольт и схема подключения трехфазного двигателя на 380 вольт.

Для начала немного разберемся, что такое три фазы и для чего они нужны. В обычной жизни три фазы нужны только для того, чтобы не прокладывать по квартире или по дому провода большого сечения. Но когда речь идет о двигателях, то здесь три фазы нужны для создания кругового магнитного поля и как результат, более высокого КПД. Двигатели бывают синхронные и асинхронные. Если очень грубо, то синхронные двигатели имеют большой пусковой момент и возможность плавной регулировки оборотов, но более сложные в изготовлении. Там, где эти характеристики не нужны, получили распространение асинхронные двигатели. Нижеизложенный материал подходит для обоих типов двигателей, но в бóльшей степени относится к асинхронным.

Что нужно знать о двигателе? На всех моторах есть шильдики с информацией, где указаны основные характеристики двигателя. Как правило, двигатели выпускаются сразу на два напряжения. Хотя если у вас двигатель на одно напряжение, то при сильном желании его можно переделать на два. Это возможно из-за конструктивной особенности. Все асинхронные двигатели имеют минимум три обмотки. Начала и концы этих обмоток выводятся в коробку БРНО (блок расключения (или распределения) начал обмоток) и в неё же, как правило, вкладывается паспорт двигателя:

Читать еще:  Что поставить на волгу двигатель от газ 53

Если двигатель на два напряжения, то в БРНО будет шесть выводов. Если двигатель на одно напряжение, то вывода будет три, а остальные выводы расключены и находятся внутри двигателя. Как их оттуда «достать» в этой статье мы рассматривать не будем.

Итак, какие двигатели нам подойдут. Для включения трёхфазного двигателя на 220 вольт подойдут только те, где есть напряжение 220 вольт, а именно 127/220 или 220/380 вольт. Как я уже говорил, двигатель имеет три независимых обмотки и в зависимости от схемы соединения они способны работать на двух напряжениях. Схемы эти называются «треугольник» и «звезда»:

Думаю, даже не нужно объяснять, почему они так называются. Нужно обратить внимание, что у обмоток есть начало и конец и это не просто слова. Если, к примеру, лампочке неважно, куда подключить фазу, а куда ноль, то в двигателе при неправильном подключении возникнет «короткое замыкание» магнитного потока. Сразу двигатель не сгорит, но как минимум не будет вращаться, как максимум потеряет 33% своей мощности, начнёт сильно греться и, в итоге, сгорит. В то же время, нет чёткого определения, что «вот это начало», а «вот это конец». Тут речь идет скорее об однонаправленности обмоток. Дам небольшой пример.

Представим, что у нас есть три трубки в некоем сосуде. Примем за начала этих трубок обозначения с заглавными буквами (A1, B1, C1), а за концы со строчными (a1, b1, c1) Теперь, если мы подадим воду в начала трубок, то вода закрутится по часовой стрелке, а если в концы трубок, то против часовой. Ключевое слово здесь «примем». То есть, от того назовём мы три однонаправленных вывода обмотки началом или концом меняется только направление вращения.

А вот такая картина будет, если мы перепутаем начало и конец одной из обмоток, а точнее не начало и конец, а направление обмотки. Эта обмотка начнёт работать «против течения». В итоге, неважно, какой именно вывод мы называем началом, а какой концом, важно, чтобы при подаче фаз на концы или начала обмоток не произошло замыкания магнитных потоков, создаваемых обмотками, то есть, совпало направление обмоток, или ещё точнее, направление магнитных потоков, которые создают обмотки.

В идеале, для трёхфазного двигателя желательно использовать три фазы, потому что конденсаторное включение в однофазную сеть даёт потерю мощности порядка 30%.

Ну, а теперь непосредственно к практике. Смотрим на шильдик двигателя. Если напряжение на двигателе 127/220 вольт, то схема соединения будет «звезда», если 220/380 – «треугольник». Если напряжения другие, например, 380/660, то для включения двигателя в сеть 220 вольт такой двигатель не подойдет. Точнее, двигатель напряжением 380/660 можно включить, но потери мощности здесь уже будут более 70%. Как правило, на внутренней стороне крышки коробки БРНО указано, как надо соединить выводы двигателя, чтобы получить нужную схему. Посмотрите ещё раз внимательно на схему соединения:

Что мы здесь видим: при включении треугольником напряжение 220 вольт подаётся на одну обмотку, а при включении звездой — 380 вольт подаётся на две последовательно соединённых обмотки, что в результате даёт те же 220 вольт на одну обмотку. Именно за счёт этого и появляется возможность использовать для одного двигателя сразу два напряжения.

Существует два метода включения трехфазного двигателя в однофазную сеть.

  1. Использовать частотный преобразователь, который преобразует одну фазу 220 вольт в три фазы 220 вольт (в этой статье мы рассматривать такой метод не будем)
  2. Использовать конденсаторы (этот метод мы и рассмотрим более подробно).

Схема включения трехфазного двигателя на 220 вольт

Для этого нам потребуются конденсаторы, но не абы какие, а для переменного напряжения и номиналом не менее 300, а лучше 350 вольт и выше. Схема очень простая.

А это более наглядная картинка:

Как правило, используется два конденсатора (или два набора конденсаторов), которые условно называются пусковые и рабочие. Пусковой конденсатор используется только для старта и разгона двигателя, а рабочий включен постоянно и служит для формирования кругового магнитного поля. Для того, чтобы рассчитать ёмкость конденсатора применяются две формулы:

Ток для расчёта мы возьмём с шильдика двигателя:

Здесь, на шильдике мы видим через дробь несколько окошек: треугольник/звезда, 220/380V и 2,0/1,16А. То есть, если мы соединяем обмотки по схеме треугольник (первое значение дроби), то рабочее напряжение двигателя будет 220 вольт и ток 2,0 ампера. Осталось подставить в формулу:

Ёмкость пусковых конденсаторов, как правило, берётся в 2-3 раза больше, здесь всё зависит от того, какая нагрузка находится на двигателе – чем больше нагрузка, тем больше нужно брать пусковых конденсаторов, чтобы двигатель запустился. Иногда для запуска хватает и рабочих конденсаторов, но это обычно случается, когда нагрузка на валу двигателя мала.

Чаще всего, на пусковые конденсаторы ставят кнопку, которую нажимают в момент запуска, а после того, как двигатель набирает обороты, отпускают. Наиболее продвинутые мастера ставят полуавтоматические системы запуска на основе реле тока или таймера.

Есть ещё один способ определения ёмкости, чтобы получилась схема включения трёхфазного двигателя на 220 вольт. Для этого потребуется два вольтметра. Как вы помните, из закона Ома, сила тока прямо пропорциональна напряжению и обратно пропорциональна сопротивлению. Сопротивление двигателя можно считать константой, следовательно, если мы создадим равные напряжения на обмотках двигателя, то автоматически получим требуемое круговое поле. Схема выглядит так:

Суть метода, как я уже говорил, заключается в том, чтобы показания вольтметра V1 и вольтметра V2 были одинаковые. Добиваются равенства показаний изменением номинала ёмкости «Cраб»

Подключение трехфазного двигателя на 380 вольт

Здесь вообще нет ничего сложного. Есть три фазы, есть три вывода двигателя и рубильник. Нулевую точку (где соединяются три обмотки, началами или концами – как я уже говорил выше, абсолютно неважно, как мы назовём выводы обмоток) при схеме соединения обмоток звездой, подключать к нулевому проводу не надо. То есть, для включения трехфазного двигателя в трехфазную сеть 380 вольт (если двигатель 220/380) нужно соединить обмотки по схеме звезда, и подать на двигатель только три провода с тремя фазами. А если двигатель 380/660 вольт, то схема соединения обмоток будет треугольник, ну а там точно нулевой провод некуда подключать.

Смена направления вращения вала трехфазного двигателя

Независимо от того, будет это конденсаторная схема включения или полноценная трехфазная, для смены вращения вала нужно поменять местами две любые обмотки. Другими словами поменять местами два любых провода.

На чём хочется остановиться более подробно. Когда мы считали ёмкость рабочего конденсатора, то мы использовали номинальный ток двигателя. Проще говоря, такой ток в двигателе будет только тогда, когда он будет полностью нагружен. Чем меньше нагружен двигатель, тем меньше будет ток, поэтому ёмкость рабочего конденсатора, полученная по этой формуле будет МАКСИМАЛЬНО ВОЗМОЖНОЙ ёмкостью для данного двигателя. Чем плохо использовать максимальную емкость для недогруженного двигателя – это вызывает повышенный нагрев обмоток. В общем, чем-то приходится жертвовать: маленькая ёмкость не даёт двигателю набрать полную мощность, большая ёмкость при недогрузке вызывает повышенный нагрев. Обычно в этом случае я предлагаю такой выход – сделать рабочие конденсаторы из четырёх одинаковых конденсаторов с переключателем или набором переключателей (что будет доступнее). Допустим, мы посчитали ёмкость 40 мкФ. Значит, для работы нам надо использовать 4 конденсатора по 10 мкФ (или три конденсатора 10, 10 и 20 мкФ) и в зависимости от нагрузки использовать 10, 20, 30 или 40 мкФ.

Ещё один момент по пусковым конденсаторам. Конденсаторы для переменного напряжения стоят гораздо дороже конденсаторов для постоянного. Использовать конденсаторы для постоянного напряжения в сетях с переменным, крайне не рекомендуется по причине того, что конденсаторы взрываются. Однако, для двигателей существует специальная серия конденсаторов Starter, предназначенная именно для работы, как пусковые. Использовать конденсаторы серии Starter в качестве рабочих тоже запрещено.

И в завершение нужно отметить такой момент – добиваться идеальных значений нет смысла, поскольку это возможно только, если нагрузка будет стабильной, например, если двигатель будет использоваться в качестве вытяжки. Погрешность в 30-40% это нормально. Другими словами, конденсаторы надо подбирать так, чтобы был запас по мощности в 30-40%.

В чем отличие трехфазного двигателя от однофазного

Инженер из г. Ростова-на-Дону Н. Ковалев на практике столкнулся с тем, что многие домашние мастера не знают, как подключить трехфазный асинхронный электродвигатель к бытовой электросети напряжением 220 В. Он решил, что будет полезно еще раз и более подробно изложить, как это правильно сделать.

Наиболее простой и широко используемый способ, обеспечивающий работу трехфазного электродвигателя от сети, которая имеет только одну фазу и ноль, — это подключение одной из трех его обмоток через фазосдвигающий конденсатор. При этом мощность на валу двигателя будет гораздо меньше той, которую двигатель имеет при питании от 3-х фаз.
С фазосдвигающим конденсатором в однофазном режиме хорошо работают моторы серии А, АО, А02, АОЛ, АПИ, УАД. Самый трудный вопрос при их использовании — это пуск двигателя под нагрузкой. В идеале емкость фазосдвигающего конденсатора должна уменьшаться с ростом числа оборотов ротора. Выполнить это условие сложно, и поэтому обычно используют два конденсатора. При пуске включают их параллельно, а после разгона оставляют включенным только один — рабочий.
Для правильного подключения обмоток электродвигателя к сети прежде всего нужно разобраться с их выводами. Выводы 3-х статорных обмоток имеют следующие обозначения:
С1, С2, СЗ — начала обмоток I, II и III фаз;
С4, С5, С6 — концы обмоток I, II и III фаз.
Начала обмоток в электрических схемах обычно отмечают точкой, как это показано на рис. 1.

Если на клеммной коробке или в паспорте о напряжении питания электродвигателя написано 220/380 В, то это означает, что его обмотки при напряжении трехфазной сети 220 В нужно включать по схеме «треугольника», а при 380 В — в «звезду» (рис. 2).

В настоящее время в России электрических сетей с напряжением между фазами 220 В практически не осталось.
В формулы для расчета фазосдвигающих конденсаторов входят две основные величины: U — напряжение питающей линии (сети) и I — ток, протекающий в обмотках двигателя. Если величину напряжения в сети мы знаем однозначно (конечно же, она — 220 В), то ток I можно определить только в том случае, если нам будет известна мощность двигателя — Р (Вт), коэффициент его полезного действия — η и коэффициент электрической мощности — cosφ данного типа двигателя. Эти характеристики указывают в паспорте. Подставив их величины в формулу
I=P/(1,73Uηcosφ)[A],
находим ток, значение которого используем для расчета рабочей и пусковой емкостей конденсаторов (Ср, Сп) в различных схемах их подключения к обмоткам (см. таблицу 1). В этой таблице указано и напряжение Uc, возникающее на конденсаторах.

Читать еще:  Что будет если снять термостат на 406 двигатель

*Где: Р — мощность двигателя (Вт); U — напряжение сети (В); η — К.П.Д.; cosφ -коэффициент мощности двигателя.

Емкость пускового конденсатора обычно в 2,5-3 раза больше емкости рабочего. Для сдвига фазы в цепи питания обмоток пригодны конденсаторы МБГО, МБГП, МБГТ, К42-4 на постоянное напряжение не ниже 600 В, а также МБГЧ, К42-19 — на переменное напряжение 250 В и выше. Электролитические конденсаторы при всех ухищрениях их включения с помощью диодов работают не надежно и рекомендовать к применению в данном случае не следует.
Для тех, кто затрудняется произвести расчеты необходимой емкости конденсаторов, примерное их значение в зависимости от мощности двигателя приводится в таблице 2.

Следует помнить, что при выборе конденсаторов по таблице возможны значительные ошибки, и двигатель во время работы может перегреваться. В этом случае подбором емкостей рабочего конденсатора необходимо добиться максимально возможного равенства напряжения на обмотках. Если двигатель используется в недогруженном режиме, то величина рабочей емкости может быть уменьшена.

Литература
1. Пестриков В.Н. «Домашний электрик и не только», С.-Пб., 2002, 59-71.
2. Виноградов В.Н., Виноградов Ю.Н. «Как самому рассчитать и сделать электродвигатель», М., «Энергия», 1976, 58-61.
3. Ерлыкин Е. А. «Практические советы радиолюбителю», М., «МО СССР», 1976, 284-250.

Наиболее оптимальный способ подключения трехфазного электродвигателя к однофазной сети с применением фазосдвигающего конденсатора предложил В. Клейменов из Москвы (журнал «Радио» №2, 2002г.). Он указал на то, что при включении обмоток по схеме 1 (см. табл. 1 и рис. 3А) в статоре образуется дополнительная компонента вращающегося магнитного поля, тормозящая ротор. Из-за этого крутящий момент на оси включенного подобным образом двигателя не превышает 35% номинального даже при оптимальном подборе рабочего конденсатора.
Простым отключением от сети обмотки III можно повысить крутящий момент до 41% от номинального. Но наиболее эффективным будет включение этой обмотки встречно обмотке II через отдельный конденсатор (рис. 3), либо через увеличенную в 2 раза емкость конденсатора обмотки II, как это показано на схеме пунктирной линией.

Трехфазный ток

В домовых распределительных электрических сетях в основном используются одна фаза и нулевой проводник. Этого достаточно для работы бытовых электроприборов, освещения и отопления. Для организации производственного технологического процесса применяют трехфазный ток. Потребители, шинные сборки, распределительные щитки, узлы учёта и вся электрическая схема настроены на работу от сетей трёхфазного тока.

Трехфазная система переменного тока

Сети трёхфазной системы рассчитаны на питание от подстанций, подающих напряжение по четырём проводам: три фазы и ноль. Это один из частных случаев многофазных цепей, где функционируют ЭДС, имеющие синусоидальные формы и равную частоту. Они произведены одним и тем же источником, но имеют угол сдвига между фаз в 120 градусов (2π/3).

Ещё электротехник М.О. Доливо-Добровольский, проводя изучение работы асинхронных двигателей, представил четырёхпроводную систему в качестве рабочей для питания такого типа машин и агрегатов. Каждый провод, образующий отдельную цепь внутри этой системы, называют «фазой». Структуру трёх смещённых по фазе переменных токов именуют трёхфазным током.

Важно! В подобной структуре фазное напряжение равно 220 В – это то, что покажет прибор при измерении между фазным и нулевым проводниками. Величина линейного напряжения составит 380 В при проведении измерения между двумя фазными тоководами.

Что такое трехфазный ток

Это система, объединяющая три электроцепи с токами, которые разнятся по фазе на 1/3 периода. Причём их собственные ЭДС совпадают по частоте и амплитуде и имеют такой же фазовый сдвиг. У такой структуры фазное и линейное напряжения соответственно равны 220 В и 380 В. Частота периодических колебаний – 50 герц (Гц).

Если подключить к осциллографу токовые синусоидальные сигналы от трёхфазной сети, то можно будет увидеть, что они совершают прохождение своих точек максимума в регулярной фазовой последовательности.

Общая формула мощности переменного тока:

где:

  • P – мощность, (Вт);
  • I – ток, (А);
  • U – напряжение, (В);
  • cosϕ – коэффициент мощности.

Значение cosϕ должно стремиться к единице. Средний коэффициент мощности лежит в интервале 0,7-0,8. Чем он выше, тем больше КПД установки.

В случае 3-х фазных сетей мощность будет зависеть от схемы соединения источника и нагрузки.

Почему используют трехфазный ток

Зная, что такое трехфазный ток, можно однозначно ответить на вопрос, почему он применяется.

Трехфазные системы переменного тока обладают целым рядом преимуществ, которые позволяют им выделяться среди многофазного построения электрических структур. К плюсам можно отнести следующие особенности:

  • экономичное транспортирование энергии на дальние расстояния без снижения параметров;
  • 3-фазные трансформаторы и кабели обладают меньшей материалоёмкостью, в отличие от однофазных моделей;
  • возможность обеспечить сбалансированность энергосистемы;
  • одновременное присутствие в установках двух напряжений для работы: фазное напряжение (220 В) и линейное (380 В).

К сведению. Подключение люминесцентных ламп к разным фазам и установка их в один светильник значительно уменьшат стробоскопический эффект и заметное глазу мерцание.

Неотъемлемой частью оборудования любого производственного предприятия являются асинхронные двигатели. Для их нормальной работы и развития паспортной мощности необходимо 3-х фазное питание. Оно обеспечивает возможность образования вращающегося МП (магнитного поля), которое приводит в движение ротор асинхронной машины. Такие двигатели экономичнее, проще в изготовлении и просты в эксплуатации, по сравнению с однофазными или любыми другими.

На электростанциях любого типа (ГЭС, АЭС, ТЭС), а также альтернативных обеспечено производство электроэнергии переменного типа при помощи генераторов.

Как осуществляется работа генератора

Устройство действует, превращая энергию вращения в энергию электричества. Электромашина, используя вращение МП, генерирует электрический ток. В тот момент, когда проволочная обмотка (катушка) крутится в МП, силовые линии магнитного поля пронизывают витки обмотки.

Внимание! В результате этого процесса электроны совершают перемещение в сторону плюсового полюса магнита. При этом ток движется, наоборот, в сторону отрицательного магнитного полюса.

Не важно, что вращается при механическом воздействии, обмотка или магнитное поле, – ток будет течь, пока вращение выполняется.

Генераторы, вырабатывающие трехфазное напряжение, могут иметь:

  • неподвижные магниты и подвижный (вращающийся) якорь;
  • неподвижный статор и магнитные полюса, которые вращаются.

В устройствах первой конструкции возникает потребность отбора большого тока при высоком напряжении. Для этого приходится использовать щётки (скользящие по контактным кольцам контакты).

Второе строение генератора проще и более востребовано. Здесь ротор – подвижный элемент, состоит из магнитных полюсов. Статор – неподвижная часть, собрана из пакета изолированных между собой листов железа и вложенной в пазы обмотки статора.

Информация. У ротора тело собрано из сплошного железа и имеет магнитные полюса в виде наконечников. Наконечники набираются из отдельных листов. Их форма подобрана с учётом того, чтобы генерируемый ток по форме был близок к синусоиде.

Полюсные сердечники имеют катушки возбуждения. На катушки подаётся постоянный ток. Подача осуществляется через графитовые щётки на кольца контакта, находящиеся на валу.

На схемах 3-х фазный генератор рисуют в виде трёх обмоток, угол между которыми равен 1200.

Существует несколько способов возбуждения генераторов, а именно:

  • независимый – с помощью аккумулятора;
  • от возбудителя – при помощи дополнительного генератора, закреплённого на одном валу;
  • благодаря самовозбуждению – собственным выпрямленным током.

Сюда же относится магнитное возбуждение, подаваемое от магнитов постоянной природы.

Схемы трехфазных цепей

Обмотки генератора или трансформатора в трёхфазных цепях можно соединить между собой по двум схемам:

  • звезда;
  • треугольник.

Соединения выполняются на клеммнике (борно) агрегата или трансформатора, куда выводятся концы обмоток.

Присоединение нагрузки к генератору (трансформатору) можно произвести по следующим схемам:

  • присоединение «звезда – звезда» с использованием нулевого проводника;
  • подключение «звезда – звезда» без использования нулевого провода;
  • подсоединение «звезда – треугольник»;
  • схема «треугольник – треугольник»;
  • соединение «треугольник – звезда».

Внимание! Такое разнообразие схем вызвано тем, что собственные обмотки генератора и собственные обмотки нагрузки могут быть соединены по-разному. При различных типах сопряжения получаются разные соответствия между фазными и линейными значениями.

Соединение может быть выполнено на заводе при сборке генератора, к месту подсоединения питающего кабеля уже выведены вторые концы обмоток. Информация о схеме соединения обмоток наносится на прикреплённую к статору машины табличку.

На электрических двигателях, трансформаторах или иных потребителях также производят необходимые манипуляции по переключению выводов обмоток. На картинке, приведённой ниже, красным маркером отмечены концы обмоток, соединённые перемычкой. Синим маркером – фазы питания.

Соединение звездой

Буквенное обозначение начала обмоток – «А», «В», «С», концов – «X», «Y», «Z». Нулевая точка маркируется как «О». У каждой обмотки есть два конца. При соединении «звезда» все три одноименных вывода обмоток (начала) соединяются между собой в одну точку «О». К свободным концам подключается нагрузка.

Соединение треугольником

При выполнении этого присоединения на борно ставятся перемычки, включающие обмотки в следующей последовательности:

  • конец «А» – с началом «В»;
  • конец «В» – с началом «С»;
  • конец «С» – с началом «А».

Графическое изображение катушек становится похожим на треугольник, отсюда пошло название.

Когда хотят использовать подключаемый асинхронный двигатель с максимальным коэффициентом полезного действия, то его обмотки соединяют в треугольник. В этом случае фазные напряжения совпадают (Uл = Uф), линейный ток будет вычисляться по формуле:

Подключая в качестве нагрузки двигатель, необходимо учесть ряд нюансов:

  • достигается увеличение мощности в 1,5 раза;
  • повышается значение пускового тока, по сравнению с рабочим в 7 раз из-за тяжёлого запуска;
  • резкое увеличение нагрузки на валу электромашины будет вызывать резкое увеличение тока.

Из-за всего этого есть риск возникновения перегрева машины, что не происходит при соединении обмоток нагрузки по схеме «звезда». Там двигатель не расположен к перегреванию, и его пуск осуществляется плавно.

При двух видах включения обмоток различают и дают определение двум видам токов: линейному и фазному. Запомнить различия просто:

  • ток, протекающий через проводник, который соединяет источник с приёмником, называется линейным;
  • ток, движущийся по обмоткам источника или нагрузки, называется фазным.

Стоит обратить внимание на формулы мощности при различных схемах соединения источника с нагрузкой.

Мощность тока при схеме «звезда» определяется по формуле:

P = 3*Uф*Iф*cosϕ = √3*Uл*Iл*cosϕ,

где:

  • Uф – фазное напряжение;
  • Uл – линейное напряжение;
  • Iф – фазный ток;
  • Iл – линейный ток;
  • cosϕ – сдвиг фаз.

Мощность тока при схеме «треугольник» вычисляется по формуле:

P = 3* Uф* Iф*cosϕ = √3*Uл*Iл*cosϕ.

К сведению. Обращать внимание на линейный и фазный токи необходимо тогда, когда генератор (источник) нагружается несимметрично при подключении нагрузки.

Фазное и линейное напряжение в трехфазных цепях

Следующий параметр, который требует внимательного рассмотрения, – это напряжение. Так же, как и токи, напряжение в этом случае бывает фазное и линейное. Чтобы было понятнее их отличие, лучше всего рассмотреть графическое изображение векторов напряжений (фаз). Уже известно, что они расположены друг к другу под углом 1200. Таков угол между обмотками трёхфазного генератора.

Сохраняя угол наклона вектора Ub, откладывают его (изменив знак) от точки, где заканчивается вектор Ua. Тогда из полученной векторной диаграммы видно, что вектор линейного напряжения Uл равен расстоянию между точкой начала вектора напряжения Ua и точкой конца вектора напряжения Ub. Заметно, что вектор линейного напряжения превышает фазное. Насколько большая эта разница, можно определить, пользуясь формулой:

Читать еще:  Через сколько менять моторное масло на бензиновом двигателе

Так как sin600= √3/2, то формула принимает вид:

Значит, Uл = 1,73*Uф

При практических измерениях параметров напряжения фазное напряжение измеряют, касаясь щупами тестера фазного и нулевого проводников. Линейное значение должно измеряться прикосновением щупами к двум фазным проводникам.

Подключение нагрузки к источнику в трёхфазной цепи может осуществляться, как по трём проводам, без нулевого проводника, так и с его использованием. Всё зависит от того, какого типа нейтраль у сети. В сетях с глухозаземлённой нейтралью нулевой проводник служит для избегания перекоса по фазам. К тому же его используют в цепях защиты от пробоя изоляции на корпус оборудования. Он даёт возможность для срабатывания защитного отключения или перегорания вставки предохранителя.

Сети с изолированной нейтралью прекрасно работают по трём фазным проводам. Соединения такого типа исключают одновременное использование и фазного, и линейного напряжения. При такой схеме существует риск получить удар током при пробое изоляции.

Отличия от однофазного тока

Как правило, в многоквартирные дома подводится трехфазный переменный ток. Это обусловлено подключением большого числа однофазных нагрузок. В этом случае есть возможность равномерно нагрузить каждую фазу цепи трансформаторной подстанции. Это позволит не допустить перекоса межфазного и фазного напряжений.

Основные различия, по сравнению с однофазным током, лежат в следующей плоскости:

  • линейное напряжение не рассчитано на питание однофазных потребителей;
  • величина мощности нагрузки зависит от сечения питающего кабеля;
  • возможность включения в сеть трёхфазных потребителей;
  • допустимость переключения однофазного потребителя на другую фазу.

В связи с этим использование трёхфазного тока более эффективно на производстве.

Важно! Стоимость оборудования, кабельной продукции, электроэнергии, приборов учёта при подведении к объекту напряжения, равного 380 В, значительно выше, чем однофазной сети.

Какой вариант тока выбрать, трёхфазный или однофазный, решать владельцу жилья. Особенно это касается больших частных домов, где современное электрооборудование требует наличия всех трёх фаз. Затраты на подведение 3-х фазного тока и установку узла учёта с лихвой окупятся возможностями использования трёхфазных потребителей в приусадебном хозяйстве.

Видео

Варианты подключения 3-х фазного двигателя к электросети

  1. Подключение трехфазного двигателя к сети 380В
  2. Треугольник и звезда
  3. Переходная схема
  4. Подключение трехфазного двигателя к сети 220В
  5. Схема подсоединения мотора 380 на 220
  6. Подбор конденсаторов

Асинхронные трехфазные двигатели распространены в производстве и быту. Особенность заключается в том, что подсоединить их можно как к трехфазной, так и однофазной сети. В случае с однофазными моторами это невозможно: они работают только при питании от 220В. А какие существуют способы подключения двигателя 380 Вольт? Рассмотрим, как соединять статорные намотки в зависимости от количества фаз в электросети с использованием иллюстраций и обучающего видео.

Подключение трехфазного двигателя к сети 380В

Различают две базовые схемы (видео и схемы в следующем подразделе статьи):

  • треугольник,
  • звезда.

Преимущество соединения треугольником – работа на максимальной мощности. Но при включении электродвигателя в намотках продуцируются высокие пусковые токи, опасные для техники. При подключении звездой пуск мотора плавный, поскольку токи при нем низкие. Но достичь максимальной мощности при этом не получится.

В связи с вышесказанным двигатели при питании от 380 Вольт соединяют только звездой. Иначе высокий вольтаж при включении треугольником способен развить такие пусковые токи, что агрегат выйдет из строя. Но при высокой нагрузке выдаваемой мощности может не хватать. Тогда прибегают к хитрости: запускают двигатель звездой для безопасного включения, а затем переключаются с этой схемы на треугольник для набора высокой мощности.

Треугольник и звезда

Перед тем, как рассмотрим эти схемы, условимся:

  • У статора есть 3 обмотки, у каждой из которых – по 1 началу и по 1 концу. Они выведены наружу в виде контактов. Поэтому для каждой намотки их 2. Будем обозначать: обмотка – О, конец – К, начало – Н. На схеме ниже 6 контактов, пронумерованных от 1 до 6. Для первой обмотки начало – 1, конец – 4. Согласно принятым обозначениям это НО1 и КО4. Для второй обмотки – НО2 и КО5, для третьей – НО3 и КО6.
  • В электросети 380 Вольт 3 фазы: A, B и C. Их условные обозначения оставим прежними.

При соединении обмоток электродвигателя звездой сначала соединяют все начала: НО1, НО2 и НО3. Тогда к КО4, КО5 и КО6 соответственно подают питание от A, B и C.

При подключении асинхронного электродвигателя треугольником каждое начало соединяют с концом намотки последовательно. Выбор порядка номеров обмоток произвольный. Может получиться: НО1-КО5-НО2-КО6-НО3-КО2 .

Соединения звездой и треугольником выглядят так:

Смотрите видео, которое поможет разобраться в способах соединения намоток.

Переходная схема

Для плавного включения электродвигателя 380 в 3х фазную электросеть и высокой отдачи мощности запускают его звездой. После разгона он автоматически переключается со схемы и начинает работать треугольником. Недостаток метода – невозможность смены направления вращения вала.

Переходная схема подразумевает подключение через магнитный пускатель (смотрите также видео). Таких понадобится 3:

  1. Первый на схеме обозначен МП1 (магнитный пускатель 1). Он соединяет начала намоток статора НО1, НО2 и НО3 с фазами сети напряжением 380 Вольт: А, В и С.
  2. Второй пускатель – МП2. Он соединяет концы обмоток КО4, КО5 и КО6 с фазными проводами А, В и С треугольником.
  3. Третий пускатель – МП3. Необходим для соединения концов намоток с 3х фазной сетью звездой.

Внимание! Пускатель 2 и 3 нельзя включать одновременно, потому что возникнет короткое замыкание. В связи с этим произойдет защитное отключение на аварийном щитке. Чтобы случайно пускатель 2 не включился одновременно с 3, необходима электрическая блокировка. Тогда третий магнитный пускатель включится только после того, как выключится второй. И наоборот.

  1. Включается первый пускатель;
  2. Срабатывает реле времени, которое включает третий магнитный пускатель (пуск звездой);
  3. Через заданное время реле отключает третий и включает второй пускатель (работа треугольником).

Работу прекращают через размыкание МП1. При повторном запуске пункты 1-3 повторятся.

Подключение трехфазного двигателя к сети 220В

Подключение трехфазного двигателя к однофазной сети так же возможно, как и включение его в трехфазную сеть. Разница будет лишь в способе подключения и в выдаваемой мотором рабочей мощности. Она не сможет превышать 50% от максимального значения, достигаемого при питании от сети 380 Вольт, если соединить обмотки звездой. При подключении методом треугольника можно развить 70% от максимально возможной мощности. Поэтому, если питание подается от сети 220В, имеет смысл подключать электродвигатель только вторым способом.

Внимание! Если в электросети напряжение составляет 220 Вольт, то токи при запуске не достигают критических значений даже при соединении в треугольник. Поэтому данная схема является оптимальной.

Схема подсоединения мотора 380 на 220

При питании от 380 на каждую намотку приходится одна фаза. Но при подключении к 220 Вольт к двум обмоткам подключается фазный и нулевой провод, третья остается свободной. Для компенсации отсутствия третьей фазы запуск электродвигателя происходит через конденсатор.

Важно! Запустить мотор на 380 Вольт от напряжения 220В можно только с использованием конденсаторов. Без них могут работать только двигатели, рассчитанные на питание от 220 изначально.

Если запускается в ход маломощный мотор (не более 1500 Вт) без начальной нагрузки, то подключать можно лишь через рабочий конденсатор. От него идут два провода. Первый нужно соединить с нулем, а второй – с 3-ей вершиной треугольника.

Внимание! Если вам необходимо обратить направление вращения двигателя, подключенного к сети 220 Вольт, то первый вывод от конденсатора включите не через нуль, а через фазный провод.

При запуске мощного асинхронного двигателя (от 1500 Вт) или при пуске маломощного, но с начальной нагрузкой, подсоединяют его к 220В через рабочий и пусковой конденсаторы. Последний подключается параллельно первому. Он необходим для увеличения пускового момента, поэтому его включение происходит только в момент запуска мотора в ход.

Пусковой конденсатор включают в схему через кнопку, а подача питания в 220В происходит путем перевода специального тумблера в положение «включено», отключение – в состояние «выключено». Вместо тумблера можно воспользоваться кнопкой с двумя позициями. Тогда запуск будет следующим:

  • Питание подается через тумблер или специальную кнопку;
  • Нажимается кнопка пускового конденсатора;
  • Она удерживается до тех пор, пока электродвигатель не разгонится;
  • Кнопка пуска отпускается, отчего ее пружины размыкают цепочку конденсатора.

При включении электродвигателя в сеть 220 Вольт с реверсом для изменения направления вращения вала понадобится еще один тумблер. При смене положения один из выводов рабочего конденсатора будет соединяться то с фазой, то с нулем.

На рисунке выше предусмотрена схема подсоединения двигателя 380 к сети 220 с реверсом с пусковой кнопкой. Она актуальна, если мотор не набирает обороты с отсутствием пускового накопителя (он на рисунке находится справа).

Подбор конденсаторов

Емкость конденсаторов для подключения к 220В необходимо подбирать. В случае с рабочим накопителем это просто. Расчет его емкости происходит по формулам:

  • Соединение треугольником: Ср=4800*I/U.
  • Соединение звездой: Ср=2800*I/U.

Внимание! Ср – емкость рабочего конденсатора, I – сила тока (смотреть в паспорте к устройству), а U – напряжение, при котором работает мотор. Так как питание однофазное, то U равно 220 Вольтам.

Подбор пускового накопителя происходит опытным путем (смотрите видео). Обычно его емкость (Сп) больше в 2-3 раза по сравнению с Ср. Например: есть мотор с током в обмотках 2 ампера. При подсоединении намоток треугольником в сеть 220 Ср будет равен 25 мкФ. Тогда Сп будет варьироваться в диапазоне 50-75 мкФ. Но таких накопителей не найти в магазинах. Поэтому придется купит несколько с номинальной емкостью и соединить их параллельно. 25 мкФ можно получить из 2 по 10 мкФ и 1 по 5.

Если Сп будет меньше требуемого значения, то намотки статора будут перегреваться. Возможно даже плавление изоляционной оболочки. Если Сп будет больше требуемого, то нельзя будет развить достаточную мощность. Поэтому подбор начинайте с минимальной емкости (в примере это 50 мкФ), а затем ищите оптимальное значение путем добавления накопителей номинальной емкости.

Внимание! Не давайте двигателю работать без нагрузки. Если он переделан с 380 на 220, то он при этом сгорит! Нельзя запитывать моторы от бытовой сети 220В, если они развивают мощность более 3000 Вт. Это чревато плавлением старой или некачественно сделанной проводки или вышибанием пробок.

Для запитывания двигателя от 220В подойдут накопители от 300В следующих типов:

  • МБГЧ,
  • МБПГ,
  • МБГО,
  • БГТ.

Вы можете узнать все характеристики накопителя (емкость, тип, рабочее напряжение), взглянув на его корпус.

Теперь вы сможете пользоваться трехфазным асинхронным электродвигателем, включая его к сети 220В или 380В в зависимости от того, какая линия проходит рядом. Чтобы лучше понять принцип подсоединения обмоток и фаз с их началами и концами, посмотрите видео.

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector