Auto-park24.ru

Журнал "Автопарк"
19 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Электромагнитная схема асинхронного двигателя с 3 парами полюсов

Принцип действия трехфазного асинхронного двигателя

В асинхронной машине одну из обмоток размещают на статоре 1 (рис. 1, а), а вторую — на роторе 3. Между ротором и статором имеется воздушный зазор, который для улучшения магнитной связи между обмотками делают по возможности малым. Обмотка статора 2 представляет собой трехфазную (или в общем случае многофазную) обмотку, катушки которой размещают равномерно по окружности статора. Фазы обмотки статора АХ, BY и CZ соединяют по схеме Υ или Δ и подключают к сети трехфазного тока (рис. 1,6). Обмотку ротора 4 выполняют трехфазной или многофазной и размещают равномерно вдоль окружности ротора. Фазы ее в простейшем случае замыкают накоротко.

Рис. 1. Электромагнитная схема асинхронной машины, направления токов и электромагнитного момента при работе в двигательном режиме

При питании обмотки статора трехфазным током создается вращающееся магнитное поле, частота вращения которого (синхронная)

Если ротор неподвижен или частота его вращения меньше синхронной, то вращающееся магнитное поле пересекает проводники обмотки ротора и индуцирует в них ЭДС. На рис. 1, а показано, согласно правилу правой руки, направление ЭДС, индуцированной в проводниках ротора при вращении магнитного потока Ф по часовой стрелке, при этом проводники ротора перемещаются относительно потока Ф против часовой стрелки. Активная составляющая тока ротора совпадает по фазе с индуцированной ЭДС; поэтому условные обозначения (крестики и точки) на рис. 1 показывают одновременно и направление активной составляющей тока.

На проводники с током, расположенные в магнитном поле, действуют электромагнитные силы, направление которых определяется правилом левой руки. Суммарное усилие Fрез, приложенное ко всем проводникам ротора, образует электромагнитный момент М, увлекающий ротор за вращающимся магнитным полем. Если этот момент достаточно велик, то ротор приходит во вращение и его установившаяся частота вращения п2 соответствует равенству электромагнитного момента тормозному, создаваемому приводимым во вращение механизмом и внутренними силами трения. Такой режим работы асинхронной машины является двигательными, очевидно, в данном случае 0 ≤ п2 s > 0.

Если ротор асинхронной машины разогнать с помощью внешнего момента (например, каким-либо двигателем) до частоты, большей частоты вращения магнитного поля п1 то изменится направление ЭДС в проводниках ротора и активной составляющей тока ротора, т. е. асинхронная машина перейдет в генераторный режим (рис. 2, а). При этом изменит свое направление и электромагнитный момент М, который станет тормозящим. В генераторном режиме асинхронная машина получает механическую энергию от первичного двигателя, превращает ее в электрическую и отдает в сеть, при этом s

Если изменить направление вращения ротора (или магнитного поля) так, чтобы магнитное поле и ротор вращались в противоположных направлениях (рис. 2,6), то ЭДС и активная составляющая тока в проводниках ротора будут направлены так же, как в двигательном режиме, т. е. машина будет получать из сети активную мощность. Однако в данном режиме электромагнитный момент М направлен против вращения ротора, т. е. является тормозящим. Этот режим работы асинхронной машины называют режимом электромагнитного торможения. Так как ротор вращается в обратном направлении (относительно направления магнитного поля), то n2 1.

Рис. 2. Электромагнитная схема асинхронной машины, направления токов и электромагнитного момента при работе ее в режимах.

Таким образом, характерной особенностью асинхронной машины является наличие скольжения, т. е. неравенство частот вращения n1 и п2. Только при указанном условии в проводниках обмотки ротора индуцируется ЭДС и возникает электромагнитный момент. Поэтому машину называют асинхронной (ее ротор вращается несинхронно с полем).

На практике обычно встречается двигательный режим асинхронной машины, поэтому теория асинхронных машин изложена здесь применительно к этому режиму с последующим обобщением ее на другие режимы работы.

Принцип работы асинхронного двигателя

Асинхронные двигатели, подключаемые к однофазной или трехфазной сети переменного тока, используются для привода механизмов бытовой техники и промышленного оборудования. Установленный на подшипниковых опорах ротор вращается с частотой, отличной от количества оборотов магнитного поля, создаваемого зафиксированными обмотками статора.

Что такое асинхронный двигатель

Асинхронный электродвигатель представляет собой машину, преобразующую электрическую энергию в механическую. Агрегат состоит из металлического немагнитного корпуса цилиндрической конфигурации, на внешней поверхности которого расположены ребра для охлаждения. Внутри кожуха находится обмотка, подключаемая к бытовой или промышленной сети переменного тока. С торцов корпус закрыт крышками, в которых предусмотрены постели для подшипниковых опор. Могут использоваться подшипники качения или скольжения с ручной или автоматической подачей масла.

Ротор, изготовленный из электротехнической стали установлен на подшипниках, обеспечивающих снижение трения и поддерживающих равномерный интервал между внешней поверхностью детали и внутренней плоскостью статора. В схеме узла предусмотрена обмотка (короткозамкнутого или фазного типа). В короткозамкнутых конструкциях отсутствуют коллектор и щетки, что увеличило надежность мотора. В фазных предусмотрено использование коллекторного узла, что позволяет повысить пусковой вращающий момент.

История создания

Теоретическая база асинхронной электрической установки была разработана в 1888 г. итальянским техником Г. Феррарисом и ученым Николой Тесла, причем специалисты вели исследования параллельно. Изначальные расчеты показали низкий КПД устройства, но российский инженер М.О. Доливо-Добровольский опроверг это предположение. Уже в 1889-90 гг. изобретатель из России получает несколько патентов на асинхронные силовые установки, а в 1903 г. в Новороссийске начинает работать элеватор с механизмами, оснащенными трехфазными асинхронными моторами.

Область применения

Основные сферы применения электромоторов асинхронного типа:

  • для привода шпинделей и вспомогательных механизмов металлообрабатывающих станков;
  • для обеспечения движения конвейерных лент;
  • для вращения рабочих колес вентиляторов и насосов, перекачивающих воду и агрессивные жидкости;
  • для передачи крутящего момента к лебедкам грузоподъемной техники;
  • для привода механизмов в автоматических системах.

Типы двигателей

Основные типы двигателей асинхронного типа:

  1. Мотор однофазного типа, оборудованный ротором с короткозамкнутой намоткой. В конструкции статора предусмотрена рабочая намотка для 1-й фазы, но для раскрутки вала двигателя используется пусковой элемент. Дополнительные витки провода подключаются через конденсатор или катушку индуктивности. Схема коммутации обеспечивает сдвига фаз, позволяющий провернуть стальной ротор.
  2. Двигатель двухфазного или конденсаторного типа, отличающийся повышенной эффективностью при коммутации к бытовой сети переменного тока напряжением 220 В. В конструкции статора предусмотрены 2 катушки, смонтированные под углом 90°. Первичная намотка коммутируется к сети напрямую, а вторичная подсоединяется через емкость, обеспечивающую смещение фазы.
  3. Агрегат трехфазного типа оборудован 3 неподвижными обмотками, установленными через 120°. После подачи напряжения формируется вращающееся магнитное поле, обеспечивающее поворот вала с короткозамкнутыми витками провода. Выводы статора соединяются “звездой” или “треугольником”, что допускает применение электромотора при напряжении 220 или 380 В. Изделия подобной конструкции используются в станках и грузоподъемных механизмах.
  4. Трехфазная машина с фазной обмоткой оснащается подвижным ротором с сердечником с пазами, в который уложены витки медного провода. В остальных конструкциях в сердечнике находятся алюминиевые элементы. Концы проводки, соединенной “звездой” выведены на коллекторные кольца, которые изолированы от стальной оси двигателя. При помощи щеток на кольца подается переменное напряжение, обеспечивающее при пуске увеличенный крутящий момент. Устройства используются в механизмах, включаемых под нагрузкой (например, лебедки лифтов).
Читать еще:  Устройство работа и обслуживание двигателя внутреннего сгорания

Существуют моторы с питанием роторных катушек при помощи несимметричного раствора щеток. В конструкции подвижного элемента установлены 2 катушки, которые подключены к внешней сети и к вторичной неподвижной намотке на статоре. Конструкция позволяет регулировать частоту вращения, но отличается повышенной сложностью и требует регулярного обслуживания.

Изделия использовались в 30-40-х гг. прошлого столетия для привода промышленного оборудования, но затем были вытеснены стандартными электродвигателями с фазными роторами.

Принцип работы

При подведении напряжения к неподвижным обмоткам трехфазного мотора асинхронного типа в фазах формируется магнитное переменное поле. Поток изменяется в соответствии с частотой подведенного тока. Поскольку в конструкции узла использованы 3 катушки, то сформированные потоки имеют смещение по времени и пространству на 120°. Итоговый индукционный поток вращается, пересекая центральный подвижный сердечник и обеспечивая наводку разницы потенциалов в коротко замкнутых проводниках, расположенных в теле ротора.

Поскольку цепи замкнуты, то электродвижущая сила формирует ток, вступающий во взаимодействие с подвижным магнитным полем от намотки статора. В результате искажения поля формируется крутящий момент, стремящийся провернуть вал в сторону движения магнитной индукции от неподвижной обмотки. Нарастающий крутящий момент преодолевает силы торможения ротора (из-за веса детали, приложенной внешней нагрузки и силы трения в подшипниковых опорах), что приводит к началу раскрутки вала двигателя.

Устройство асинхронного двигателя

Корпус мотора отличается из серого чугуна или алюминиевого сплава, встречаются стальные конструкции сварного типа. Поскольку при прохождении тока через катушки происходит нагрев деталей, то на поверхности кожуха предусматриваются продольные ребра, обеспечивающие повышенный теплообмен. Внутренняя поверхность корпуса предназначена для установки сердечника статора, который установлен с натягом и дополнительно закреплен резьбовыми соединениями.

Сердечник собирается из деталей, полученных методом штамповки из листов электротехнической стали толщиной до 0,5 мм. Заготовки покрываются слоем специального лака, а затем соединяются в пакеты. Для фиксации элементов используются заклепки, скобы или сварка. Конструкция сердечника обеспечивает снижение вихревых токов, формирующихся при перемагничивании узла вращающимся магнитным полем. В конструкции пакета предусмотрены пазы, в которые укладываются витки провода, соединенные между собой на торцевых кромках (за пределами сердечника).

Ротор собран из элементов, отштампованных из стали (шихтованная схема), которые надеты на вал из конструкционной стали.

Элементы не имеют диэлектрического покрытия, поскольку генерируемые вихревые токи имеют небольшую частоту. Ось имеет поверхности, предназначенные для установки внутренних колец подшипников качения. Внешние концы вала нужны для установки шкивов или иных приспособлений для передачи крутящего момента. На тыловой части оси устанавливается вентилятор, обеспечивающий дополнительное охлаждение двигателя.

Процессы в асинхронной машине

Основные процессы, протекающие в электродвигателе асинхронного типа:

  1. Сформированное неподвижными катушками статора индукционное поле совершает вращательное движение относительно покоящегося корпуса мотора, способствуя наведению разницы потенциалов в проводниках, установленных в роторе. Параметр зависит от количества витков провода в катушке, частоты тока и значения магнитного поля. В расчетную формулу вводится поправочный коэффициент, учитывающий потери внутри катушек.
  2. Фаза неподвижной катушки находится в состоянии электрического равновесия, описываемого уравнением. При расчете учитываются значения напряжения во внешней сети и на входе в обмоточный провод, также на расчет оказывает влияние активное и индуктивное сопротивления катушек и сила тока в цепи. Формирующийся магнитный поток находится в зависимости от напряжения в катушках и частоты электрического тока, но на него не влияют режимы работы или замедляющий момент, приложенный к валу электродвигателя.
  3. В неподвижной роторной части частота наведенной электродвижущей силы соответствует частоте внешнего источника питания. По мере увеличения частоты вращения происходит корректировка частоты ЭДС пропорционально корректировке величины скольжения. Максимальное значение частоты достигается в момент начала вращения вала. Напряжение электродвижущей силы изменяется аналогично. Соотношение ЭДС в неподвижных катушках и в проводниках ротора называется коэффициентом трансформации.
  4. Важным эксплуатационным параметром является сила тока в подвижной части, которая зависит от индуктивного и активного сопротивлений, связанных с потоком рассеяния и тепловыми потерями внутри проводников. По мере увеличения скольжения машины происходит нарастание силы тока, кривая отстает от графика изменения значения напряжения электродвижущей силы.
  5. Поскольку ротор оборудован несколькими витками проводки, то при наведении тока образуется вращающееся поле. Периодичность вращения индукции от подвижных катушек равняется периодичности вращения поля неподвижных обмоток. За счет этого эффекта достигается неподвижность индукционных потоков относительно друг друга, что позволяет использовать для расчета параметров асинхронного оборудования законы и формулы, выведенные для трансформаторов.

Понятие скольжения

Скольжением асинхронного устройства называется соотношение числа оборотов магнитного поля, сформированного неподвижными катушками, к частоте вращения ротора электродвигателя.

Параметр выражается в процентном соотношении и используется при оценке эффективности работы силового привода. В момент пуска значение равно 100%, но по мере раскручивания вала параметр начинает снижаться. Одновременно уменьшаются значения электродвижущей силы и тока, наводимых в витках ротора, что ведет к падению кривой крутящего момента.

На холостом ходу (без приложения нагрузки) значение скольжения достигает минимального значения, но по мере приложения статической нагрузки параметр увеличивается (из-за замедления периодичности вращения вала электромотора). При превышении критического значения возникает эффект опрокидывания мотора, приводящий к нестабильной работе устройства. Процесс изменения скольжения прекращается при уравновешивании электромагнитного момента статора тормозным усилием, приложенным к валу машины.

Читать еще:  Ваз 2110 почему на горячий двигатель плохо заводиться

Условия для получения вращающегося магнитного поля

В пособиях по теории электродвигателей указываются следующие условия для получения магнитного поля:

  • применение 2 и более неподвижных обмоток;
  • обеспечение смещения фаз тока в каждой из катушек;
  • смещение осей катушек в пространстве.

Угол смещения зависит от количества пар полюсов. В простейшей трехфазной машине с единой парой контактов угол сдвига составляет 120°. Введение дополнительной пары полюсов обеспечивает уменьшение угла до 60°. Каждая последующая пара контактных элементов приводит к корректировке значения угла в 2 раза.

Когда возникает электромагнитный момент

Электромагнитный вращающий момент создается в результате взаимодействия тока, наведенного в подвижной части асинхронной машины, с совершающим вращательное движением магнитным полем от неподвижных катушек. Значения момента находится в пропорциональной зависимости от мощности электрических потерь в роторе. При расчете момента учитывается ряд параметров (например, напряжение в цепи питания и частота тока), которые не меняются в процессе работы электрической машины. В формуле присутствует коэффициент скольжения, оказывающий влияние на момент.

Его зависимость от скольжения

Кривая зависимости момента от коэффициента скольжения называется механической характеристикой асинхронного электродвигателя. Кривая состоит из участка генераторного режима, двигательного сектора и тормозного участка. Пик крутящего момента соответствует критическому значению скольжения, причем значение момента в режиме генератора выше аналогичного параметра в двигательном состоянии.

Пуск в ход асинхронного двигателя и регулирование частоты вращения

Методика прямого пуска используется на машинах с короткозамкнутой обмоткой ротора. При расчете оборудования обеспечивается пониженная сила тока в цепи, что позволяет избегать повышения температуры и электродинамического усилия. Способ непосредственного запуска используется на установках с низкой или средней мощностью (не требующих высокого стартового момента). Для раскрутки мощных электродвигателей методика не применяется, поскольку прямая коммутация приводит к временному падению напряжения во внешней сети на 10-15%.

Способ запуска при пониженном напряжении применяется при использовании моторов средней и высокой мощности в сетях с недостаточным ресурсом.

Стартовая обмотка переводится в схему “звезда”, а после раскрутки ротора катушки в “треугольник”. Допускается введение в цепи пуска сопротивлений или автоматических трансформаторов. Недостатком методики является падение значения момента (снижение прямо пропорционально квадрату напряжения на входе), пуск производится только без внешней нагрузки.

Пусковой реостат используется в цепях возбуждения устройств с фазной обмоткой на подвижном элементе. По мере увеличения частоты вращения происходит снижение сопротивления, что позволяет постепенно перевести двигатель в штатный режим работы. Способ используется при повышенной нагрузке на электромотор или при необходимости плавной регулировки частоты вращения.

Для регулировки частоты вращения применяются методики:

  • изменения активного сопротивления (только для изделий с фазным ротором);
  • корректировки напряжения во внешней сети;
  • отключения пар полюсов;
  • изменения частоты питающего тока.

Тормозные режимы

При работе асинхронной силовой машины существует 4 режима торможения. Рекуперативное замедление возможно при частоте вращения вала двигателя больше скорости вращения электромагнитного поля. Ситуация разгона вала происходит при спуске груза на лебедке, образующиеся излишки электромагнитной мощности возвращаются во внешнюю сеть. Динамическое торможение осуществляется путем подачи постоянного напряжения на неподвижные катушки, которое вызывает формирование неподвижного поля, замедляющего вращение вала.

Конденсаторное замедление осуществляется путем подключения емкостей к неподвижным обмоткам. Излишки энергии преобразуются в электричество, теряющееся в подвижном элементе двигателя. Методика применяется для установок мощностью до 5 кВт. Замедление противовключением подразумевает изменение чередования фаз, что позволяет резко остановить ротор. Магнитные потоки вращаются в противоположных направлениях, что приводит к увеличению коэффициента скольжения до значения более единицы.

Рекомендуем к просмотру:

  • Электромагнитное реле, что это такое, какой принцип…

Асинхронные машины. История создания и область применения асинхронных двигателей. Процессы в асинхронной машине , страница 9

В целом эти двигатели имеют жесткие механические характеристики, повышенный пусковой момент и меньшую кратность пускового тока, чем двигатели с короткозамкнутым ротором обычной конструкцией.

2.12. Регулирование частоты вращения асинхронных двигателей

При работе многих механизмов, приводящихся во вращение асинхронными двигателями, в соответствии с технологическими требованиями возникает необходимость регулировать скорость вращения этих механизмов. Способы регулирования частоты (скорости) вращения асинхронных двигателей раскрывает соотношение:

.

Отсюда следует, что при заданной нагрузке на валу частоту вращения ротора можно регулировать:

  1. изменением скольжения;
  2. изменением числа пар полюсов;
  3. изменением частоты источника питания.

2.12.1. Изменение скольжения

Этот способ используют в приводе тех механизмов, где установлены асинхронные двигатели с фазным ротором. Например, в приводе подъемно-транспортных машин. В цепь фазного ротора вводится регулировочный реостат. Увеличение активного сопротивления ротора не влияет на величину критического момента, но увеличивает критическое скольжение (рис. 2.21).

На рис. 2.21 приведены механические характеристики асинхронного двигателя при разных сопротивлениях регулировочного реостата Rр3>Rр2>0, Rр1=0.

Как следует из рис. 2.21 при этом способе можно получить большой диапазон регулирования частоты вращения в сторону понижения. Основные недостатки этого способа:

  1. Из-за больших потерь на регулировочном реостате снижается коэффициент полезного действия, т.е. способ неэкономичный.
  2. Механическая характеристика асинхронного двигателя с увеличением активного сопротивления ротора становится мягче, т.е. снижается устойчивость работы двигателя.
  3. Невозможно плавно регулировать частоту вращения.

Из-за перечисленных недостатков этот способ применяют для кратковременного снижения частоты вращения.

2.12.2. Изменение числа пар полюсов

Эти двигатели (многоскоростные) имеют более сложную обмотку статора, позволяющую изменять ее число пар полюсов, и короткозамкнутый ротор. При работе асинхронного двигателя необходимо, чтобы обмотки ротора и статора имели одинаковое число пар полюсов. Только короткозамкнутый ротор способен автоматически приобретать то же число пар полюсов, что и поле статора. Многоскоростные двигатели нашли широкое применение в приводе металлорежущих станков. Нашли применение двух, трех и четырех скоростные двигатели.

На рис. 2.22 показана схема соединения и магнитное поле статора двигателя при последовательном (б) и параллельном (а) соединении полуобмоток.

Читать еще:  Через сколько километров менять масло в двигателе кашкай

У двухскоростного двигателя обмотка каждой фазы состоит из двух полуобмоток. Включая их последовательно или параллельно можно в 2 раза изменять число пар полюсов.

У четырехскоростного двигателя на статоре должно размещаться две независимые обмотки с разным числом пар полюсов. Каждая из обмоток позволяет в два раза изменять число пар полюсов. Например, у двигателя, работающего от сети c частотой f=50 Гц, со следующими частотами вращения 3000/1500/1000/500 [об/мин] с помощью одной из обмоток статора можно получить частоту вращения 3000 об/мин и 1500 об/мин (при этом р=1 и р=2). С помощью другой из обмоток можно получить частоту вращения 1000 об/мин и 500 об/мин (при этом р=3 и р=6)..

При переключении числа пар полюсов изменяется и магнитный поток в зазоре, что приводит к изменению критического момента Мкр (рис. 2.23 б). Если при изменении числа пар полюсов одновременно изменять и подведенное напряжение, то критический момент может остаться неизменным (рис. 2.23 а). Поэтому при этом способе регулирования могут быть получены два вида семейства механических характеристик (рис. 2.23).

Достоинства этого способа регулирования: сохранение жесткости механических характеристик, высокий К.П.Д. Недостатки: ступенчатое регулирование, большие габариты и большая стоимость двигателя.

25. Электромагнитная схема асинхронного двигателя показана на рисунке:

26. Для создания вращающегося магнитного поля в трехфазных машинах необходимо:

1) расположить обмотки по окружности статора;

2) выполнить сдвиг токов в фазах на 120 электрических градусов во времени;

3) осуществить сдвиг начала обмоток на 180 электрических градусов в пространстве;

4) выполнить сдвиг токов в фазах на 90 электрических градусов во времени;

5) сместить обмотки на 120 электрических градусов в пространстве.

27. КПД трансформатора будет максимален когда:

1) ток вторичной обмотки равен нулю;

2) переменные потери равны постоянным потерям;

3) потери в стали будут минимальными;

4) потери в меди будут минимальными.

28. Принцип действия трансформатора основан на законе:

4) электромагнитной индукции.

29. График зависимости КПД трансформатора от коэффициента нагрузки показан на рисунке:

30. Временная диаграмма магнитных потоков трансформатора правильно изображена на рисунке:

31. Векторная диаграмма магнитных потоков трансформатора правильно изображена на рисунке:

32. Режим работы, при котором ротор асинхронной машины вращается в направлении вращения магнитного поля статора с частотой вращения выше синхронной, называется режимом:

2) синхронного двигателя;

4) индукционного регулятора.

33.Асинхронный пуск синхронного двигателя возможен:

1) при помощи асинхронного двигателя;

2) при наличии в полюсных наконечниках ротора пусковой обмотки;

3) при наличии пусковой емкости в одной из обмоток;

4) при наличии вспомогательного двигателя.

34. Электромагнитная схема синхронного генератора изображена на рисунке:

35. Режим работы, при котором ротор подключенной к сети асин­хронной машины вращается против вращения поля, называется:

1) генераторным режимом;

2) режимом противовключения;

3) двигательным режимом;

4) трансформаторным режимом.

36. Назначение обмоток а, б, в, г электромашинного усилителя;

1) а — компенсационная; 6 — дополнительных полюсов; в — возбуждения.

2) а — дополнительных полюсов; 6 — возбуждения; в — компенсационная;

3) а — возбуждения: б — компенсационная; в — дополнительных полюсов;

4) а — дополнительных полюсов; б- компенсационная; в — возбуждения.

37. Обмотка возбуждения ОВ на время пуска синхронного двигателя замыкается на сопротивление r с целью:

1) увеличения начального пускового момента;

2) увеличения максимального момента при пуске;

3) предотвращения пробоя изоляции обмотки

возбуждения из-за перенапряжения;

4) уменьшения максимального момента при пуске.

38. Уменьшить пусковой ток и одновременно увеличить пусковой момент возможно при включении асинхронного двигателя и схеме:

1)l;

УКАЖИТЕ НОМЕРА ДВУХ ПРАВИЛЬНЫХ ОТВЕТОВ

39. Для реверсирования двигателя постоянного тока необходимо:

1) поменять две фазы местами;

2) изменить направление тока в якоре;

3) выключить нагрузку;

4) изменить направление тока в обмотке возбуждения;

5) изменить сопротивление обмотки возбуждения.

40. В синхронном двигателе ротор может быть:

41. Основными типами однослойных обмоток асинхронной машины являются:

5) с укороченным шагом;

6) со скосом пазов.

42. Режимы работы синхронного компенсатора:

1) режим синхронизации;

2) режим стабилизации напряжения;

3) режим улучшения КПД;

4) режим улучшения cos ;

5) режим короткого замыкания.

43. Способы пуска синхронных двигателей:

1) с помощью пускового реостата;

2) с помощью пусковой емкости;

3) с помощью вспомогательного двигателя;

4) асинхронный пуск;

5) синхронный пуск.

УКАЖИТЕ НОМЕРА ТРЕХ ПРАВИЛЬНЫХ ОТВЕТОВ

44. Регулирование частоты вращения двигателя постоянного тока осуществляется изменением:

1) напряжения на якоре;

2) тока возбуждения;

4) сопротивления реостата в цепи якоря;

5)числа пар полюсов.

45. Возможные режимы электрического торможения двигателя постоянного тока:

5) свободный выбег.

46. Основные схемы соединения обмоток трехфазного трансформатора:

47. Коллектор в электрических машинах служит:

1) для выпрямления переменной ЭДС;

2) механическим инвертором;

3) для снятия и подачи напряжения с обмотки якоря;

4) для создания основного магнитного поля.

48. Уравнения приведенного трансформатора:

49. У машин переменного тока пазы выполняются:

50. Системы магнитопроводов трансформатора:

51. По способу соединения секций обмотки якоря подразделяются на:

1) петлевые простые и сложные;

3) простые волновые;

4) только сложные петлевые;

52. Частота вращения асинхронного двигателя с короткозамкнутым ротором регулируется:

1) изменением частоты тока;

2) изменением числа пар полюсов;

3) совмещением АД с машиной постоянного тока;

4) изменением величины первичного напряжения;

5) с помощью реостата в цепи ротора;

6) введением добавочной ЭДС во вторичную цепь двигателя.

53.Синхронные двигатели имеют следующие преимущества перед асинхронными:

1) простота пуска;

2) постоянство частоты вращения, не зависящей от нагрузки на валу;

3) способность вырабатывать реактивную мощность;

4) меньшая чувствительность к отклонениям напряжения;

5) возможность регулирования частоты вращения путем изменения частоты питающего напряжения.

Тут вы можете оставить комментарий к выбранному абзацу или сообщить об ошибке.

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector