Электрические двигатели переменного тока принцип работы и устройство
Принцип работы электродвигателей
Электродвигатель является одним из ключевых изобретений человечества. Именно благодаря электрическим моторам нам удалось добиться такого высокого развития нашей цивилизации. Основные принципы работы этого устройства изучаются уже в школе. Современный электродвигатель может выполнять множеств различных задач. В основе его работы лежит передача вращения электроприводного вала на другие виды движения. В этой статье мы подробно рассмотрим, как работает это устройство.
Характеристики электродвигателей
Электромотор, по сути, представляет собой прибор, при помощи которого электрическая энергия переходит в механическую. В основе этого явления лежит магнетизм. Соответственно, в конструкцию электродвигателя входят постоянные магниты и электрические магниты, а также различные другие материалы, обладающие притягивающими свойствами. Сегодня этот прибор используется практически повсеместно. Например, электромотор является ключевой деталью часов, стиральных машин, кондиционеров, миксеров, фенов, вентиляторов, кондиционеров и других бытовых приборов. Вариантов использования электродвигателя в промышленности бесчисленное множество. Их размеры тоже варьируются от головки спички до двигателя на поездах.
Виды электромоторов
В настоящее время производится множество разновидностей электромоторов, которые разделяются по типу конструкции и электропитания.
По принципу электропитания все модели можно разделить на:
- устройства переменного тока, которые в качестве питания используют электросеть;
- приборы постоянного тока, работающие от блоков питания, пальчиковых батареек, аккумуляторов и других подобных источников.
По механизму работы все электродвигатели разделяются на:
- синхронные, имеющие роторные обмотки и щеточный механизм, использующийся для подачи на обмотки электрического тока;
- асинхронные, отличающиеся более простой конструкцией без щеток и роторных обмоток.
Принцип работы этих электромоторов существенно отличается. Синхронный двигатель вращается с той же скоростью, что и магнитное поле, которое его вращает. В то же время, асинхронный мотор вращается с меньшей скоростью, чем электромагнитное поле.
Классы электродвигателей (различаются в зависимости от используемого тока):
- класс AC (Alternating Current) — работает от переменного источника тока;
- класс DC (Direct Current) — использует для работы постоянный ток;
- универсальный класс, который может использовать для работы любой источник тока.
Кроме того, электрические двигатели могут отличаться не только по типу конструкции, но и также по способам контроля скорости вращений. При этом, во всех устройствах независимо от типа используется один и тот же принцип преобразования электрической энергии в механическую.
Принцип работы агрегата на постоянном токе
Этот тип электромотора работает на основе принципа, разработанного Майклом Фарадеем в далеком 1821 году. Его открытие заключается в том, что при взаимодействии электрического импульса с магнитом есть вероятность возникновения постоянного вращения. То есть, если в магнитном поле разметить вертикальную рамку и пропустить по ней электрический ток, то вокруг проводника может возникнуть электромагнитное поле. Оно будет непосредственно контактировать с полюсами магнитов. Получается, что к одному из магнитов рамка будет притягиваться, а от другого отталкиваться. Соответственно, она повернется из вертикального положения в горизонтальное, в котором влияние магнитного поля на проводник будет нулевым. Получается, что для продолжения движения нужно будет дополнить конструкцию еще одной рамкой под углом или же поменять направление тока в первой рамке. В большинстве приборов это достигается за счет двух полуколец, к которым присоединяются контактные пластинки от аккумулятора. Они способствуют быстрому изменению полярности, в результате чего движение продолжается.
Современные электромоторы не имеют постоянных магнитов, так как их место занимаю электрические магниты и катушки индуктивности. То есть, если вы разберете любой такой двигатель, то увидите витки проволоки, покрытые изоляционным составом. По сути, они и представляют собой электромагнит, который еще называется обмоткой возбуждения. Постоянные магниты в конструкции электродвигателей применяются только в небольших детских игрушках, работающих от пальчиковых батареек. Все остальные более мощные электродвигатели оснащаются только электрическими магнитами или же обмотками. При этом, вращающаяся деталь получила название ротор, а статичная — статор.
Как работает асинхронный электромотор
Корпус асинхронного двигателя вмещает в себя обмотки статора, благодаря которым и создается вращающееся поле магнита. Концы для подключения обмоток выводят через специальную клеммную колодку. Охлаждение осуществляется за счет вентилятора, размещенного на вале в торце электрического двигателя. Ротор плотно соединен с валом, изготовленным из металлических стержней. Эти короткозамкнутые стержни замыкаются между собой с обеих сторон. За счет такой конструкции, двигатель не нуждается в периодическом обслуживании, так как здесь нет необходимости время от времени менять токоподающие щетки. Именно поэтому, асинхронные моторы считаются более надежными и долговечными, чем синхронные. В основном причиной поломки асинхронных двигателей является изнашивание подшипников, на которых осуществляется вращение вала.
Для работы асинхронных двигателей необходимо, чтобы вращение ротора осуществлялось медленнее, чем вращение электромагнитного поля статора. Именно за счет этого в роторе и возникает электрический ток. Если бы вращение осуществлялось с одинаковой скоростью, то по закону индукции ЭДС не образовывалось бы, и отсутсвовало вращение в целом. Однако, в настоящей жизни за счет трения подшипников и повышенной нагрузки на вал ротор будет крутиться медленнее. Магнитные полюса регулярно вращаются в обмотках ротора, за счет чего постоянно изменяется направление тока в роторе.
По этому же принципу работает и круговая пила, так как наибольшие обороты она набирает без нагрузки. Когда пила начинает резать доску, ее скорость вращения снижается и одновременно ротор начинает вращаться медленнее по отношению к электромагнитному полю. Соответственно, по законам электротехники в нем начинает возникать еще большая величина ЭДС. После этого возрастает потребляемый мотором ток и он начинает работу на полной мощности. При нагрузке, при которой мотор застопорится, может возникнуть разрушение короткозамкнутого ротора. Это возникает из-за того, что в двигателе возникает максимальная величина ЭДС. Именно поэтому необходимо подбирать электромотор необходимой мощности. Если взять двигатель слишком большой мощности, то это может привести к неоправданным затратам энергии.
Скорость, с которой вращается ротор, в данном случае зависит от количества полюсов. Если в устройстве имеется два полюса, то скорость вращения будет соответствовать скорости вращения магнитного поля. Максимально асинхронный электрический двигатель может развивать до 3 тысяч оборотов в секунду. Частота сети при этом может составлять до 50 Гц. Для уменьшения скорости в два раза вам придется повысить количество полюсов в статоре до 4 и так далее. Единственный недостаток асинхронных моторов — это то, что они могут поддаваться регулировке скорости вращения вала только посредством изменения частоты электрического тока. Кроме того, в асинхронном моторе вы не сможете добиться постоянной частоты вращения вала.
Как работает синхронный электрический двигатель переменного тока
Синхронный электрический двигатель применяется в тех случаях, когда нужна постоянная скорость вращения и возможность ее быстрой регулировки. Кроме того, синхронный мотор используется там, где нужно добиться скорости вращения более 3 тысяч оборотов, что является пределом для асинхронного двигателя. Поэтому, такой тип электродвигателя преимущество используется в бытовой технике, такой как пылесос, электрический инструментарий, стиральная машина и так далее.
Корпус синхронного мотора переменного тока содержит обмотки, которые наматываются на якорь и ротор. Их контакты припаиваются к секторам токосъемного коллектора и кольца, на которые посредством графитовых щеток подают напряжение. Выводы здесь располагаются так, чтобы щетки всегда подавали напряжения только на одну пару. Из недостатков синхронного мотора можно отметить их меньшую надежность, по сравнению асинхронными двигателями.
Самые частые поломки синхронных двигателей:
- Преждевременный износ щеток или нарушение их контакта из-за ослабления пружины.
- Загрязнение коллектора, который чистится при помощи спирта или нулевой наждачной бумаги.
- Изнашивание подшипников.
Принцип работы синхронного мотора
Вращающий момент в таком электродвигателе создается путем взаимодействия между магнитным полем и током якоря, которые контактируют между собой в обмотке возбуждения. По мере направления переменного тока будет изменяться и направление магнитного потока, что обеспечивает вращение в только в одну сторону. Скорость вращения регулируется путем изменения силы подаваемого напряжения. Изменение скорости напряжения чаще всего используется в пылесосах и дрелях, где для этой цели применяется переменное сопротивление или реостат.
Механизм работы отдельных типов двигателя
Промышленные электродвигатели могут работать как на постоянном, так и на переменном токе. В основе их конструкции лежит статор, который представляет собой электромагнит, создающий магнитное поле. Промышленный электромотор содержит обмотки, которые поочередно подключаются к источнику питания при помощи щеток. Они попеременно поворачивают ротор на определенный угол, что приводит его в движение.
Самый простой электродвигатель для детских игрушек может работать только при помощи постоянного тока. То есть, он может получать ток от пальчиковой батарейки или аккумулятора. Ток при этом проходит по рамке, находящейся между полюсами магнита постоянного типа. Благодаря взаимодействию магнитных полей рамки с магнитом она начинает вращаться. По завершению каждого полуоборота, коллектор переключает контакты в рамке, которые проходят к батарейке. В результате этого рамка совершает вращательные движения.
Таким образом, на сегодняшний день существует большое количество электродвигателей разнообразного предназначения, которые имеют один принцип работы.
Электрические двигатели: определение, разновидности, применение
Электрический двигатель – специальная машина (ее еще называют электромеханическим преобразователем), с помощью которой электроэнергия преобразовывается в механическое движение.
Побочный эффект такой конвертации – выделение тепла.
При-этом современные двигатели обладают очень высоким КПД, который достигает 98%, в результате чего их использование экономически более выгодно по сравнению с двигателями внутренного сгорания. Электрические двигатели используются во всех сферах народного хозяйства, начиная от бытового применения, заканчивая военной техникой.
- Электрические двигатели и их разновидности
- По принципу работы электродвигатели переменного тока бывают
- Преимущества и недостатки асинхронных двигателей
- Особенности работы синхронных двигателей
Электрические двигатели и их разновидности
Как известно с базового школьного курса физики, ток бывает переменным и постоянным. В бытовой электросети – переменный ток. Батарейки, аккумуляторы и другие мобильные источники питания предоставляют постоянный ток.
Электродвигатели постоянного тока характеризуются хорошими эксплуатационными и динамическими характеристиками.
Такие изделия широко используются в подъемных машинах, буровых станках, полимерном оборудовании, в некоторых агрегатах экскаваторов.
По принципу работы электродвигатели переменного тока бывают
- асинхронными;
- синхронными.
Подробное сравнение этих видов машин можно почитать тут.
Синхронные двигатели – электрические машины, где скорость вращения ротора полностью идентична частоте магнитного поля. Учитывая эту особенность, такие устройства актуальны там, где необходима стабильная высокая скорость вращения: насосы, крупные вентиляторы, генераторы, компрессоры, стиральные машины, пылесосы, практически все электроинструменты.
Особое внимание среди синхронных устройств, заслуживают шаговые двигатели. Они обладают несколькими обмотками. Такой подход позволяет с высокой точностью изменять скорость вращения таких электродвигателей.
Асинхронными двигателями называют такие машины, в которых скорость ротора отличается от частоты движения магнитного поля.
Нашли свое применение в подавляющем большинстве отраслей народного хозяйства: в приводах дымососов, транспортерах, шаровых мельницах, наждачных, сверлильных станках, в холодильном оборудовании, вентиляторах, кондиционерах, микроприводах.
Максимальная скорость вращения асинхронных установок – 3000 об/мин.
Интересное видео о двигателях смотрите ниже:
Преимущества и недостатки асинхронных двигателей
Асинхронные электродвигатели могут обладать фазным и короткозамкнутым ротором.
Короткозамкнутый ротор более распространен.
Такие двигатели обладают следующими преимуществами:
- относительно одинаковая скорость вращения при разных уровнях нагрузки;
- не боятся непродолжительных механических перегрузок;
- простая конструкция;
- несложная автоматизация и пуск;
- высокий КПД (коэффициент полезного действия).
Электродвигатели с короткозамкнутым контуром требуют большой пусковой ток.
Если невозможно реализовать выполнение этого условия, то используют устройства с фазным ротором. Они обладают такими достоинствами:
- хороший начальный вращающий момент;
- нечувствительны к кратковременным перегрузкам механической природы;
- постоянная скорость работы при наличии нагрузок;
- малый пусковой ток;
- с такими двигателями применяют автоматические пусковые устройства;
- могут в небольших пределах изменять скорость вращения.
К основным недостаткам асинхронных двигателей относят то, что изменять их скорость работы можно только посредством изменения частоты электрического тока.
Кроме того, частота вращения – относительна. Она колеблется в небольших пределах. Иногда это недопустимо.
Интересное видео об асинхронных электродвигателях смотрите ниже:
Особенности работы синхронных двигателей
Все синхронные двигатели обладают такими преимуществами:
- Они не отдают и не потребляют реактивную энергию в сеть. Это позволяет уменьшить их габариты при сохранении мощности. Типичный синхронный электродвигатель меньше асинхронного.
- В сравнении с асинхронными устройствами, менее чувствительны к скачкам напряжения.
- Хорошая сопротивляемость перегрузкам.
- Такие электрические машины способны поддерживать постоянную скорость вращения, если уровень нагрузок не превышает допустимые пределы.
В любой бочке, есть ложка с дегтем. Синхронным электродвигателям присущи такие недостатки:
- сложная конструкция;
- затрудненный пуск в ход;
- довольно сложно изменять скорость вращения (посредством изменения значения частоты тока).
Сочетание всех этих особенностей делает синхронные двигатели невыгодными при мощностях до 100 Вт. А вот на более высоких уровнях производительности, синхронные машины показывают себя во всей красе.
Появление электродвигателей переменного тока
АЛЕКСАНДР МИКЕРОВ, д. т. н., проф. каф. систем автоматического управления СПбГЭТУ «ЛЭТИ»
В предыдущих статьях [ 1 , 2 ] описывались первые электрические двигатели с питанием от гальванических батарей. Однако во второй половине XIX века в связи с развитием электрического освещения и дальней передачи электроэнергии появились сети однофазного переменного тока [ 3 ]. Это и дало толчок к изобретению электродвигателей переменного тока.
Рис. 1. Двигатель Уитстона
Первый однофазный двигатель был предложен в 1841 г. английским физиком Чарльзом Уитстоном (Charles Wheatstone), известным также своими изобретениями в области электрогенераторов и измерительной техники. Такой двигатель подключается к источнику переменного тока и содержит (рис. 1) статор с шестью электромагнитами (1) и ротор (2) в виде медного диска с тремя подковообразными магнитами (3) полярностью N и S.
Все электромагниты включены последовательно так, что при любой полярности питающего напряжения в промежутках между ними формируются магнитные потоки или полюса чередующейся полярности n и s, показанные на рис. 1 в начальный момент времени t1 для положительного полупериода питающего напряжения. Предположим, что ротор вращается против часовой стрелки, и рассмотрим силы, действующие на верхний магнит ротора (аналогично работают и остальные магниты). Поскольку разноименные полюса магнитов притягиваются, а одноименные отталкиваются, вращающий момент ротора будет направлен против часовой стрелки, поддерживая его вращение. Если ротор двигателя успеет за полупериод напряжения повернуться на 60°, то в следующий полупериод все полюса статора поменяют полярность и ротор повернется еще на 60°. Таким образом, ротор будет поворачиваться синхронно с частотой перемагничивания электромагнитов (частотой сети), отчего подобные двигатели по предложению Чарльза Штейнмеца и получили название синхронных.
Рис. 2. Векторная диаграмма двигателя
Магнитное поле статора такого двигателя можно изобразить в виде вектора (рис. 2), где Ф1, Ф2,… Ф6 — магнитные потоки статора, взаимодействующие с ротором в последовательные моменты времени t1, t2, … t6, когда питающее напряжение меняет свой знак. Получается, что вектор магнитного потока статора шагает по окружности синхронно с ротором, поэтому такое магнитное поле можно назвать шагающим.
При реальных частотах сети 50–60 Гц такой двигатель, конечно, запуститься не сможет, но если его ротор раскрутить, например, вручную или другим двигателем до синхронной скорости, то он будет устойчиво работать с частотой вращения, пропорциональной частоте сети. При электрификации Лондона посредством однофазного напряжения в 1889 г. в качестве такого «раскруточного» двигателя применили так называемый универсальный двигатель (рис. 3) с обмотками якоря (1) и возбуждения (2). Его конструкция была разработана в 1884–85 гг. независимо друг от друга Вернером Сименсом и соавторами трансформатора, венгерскими инженерами Микша Дери и Отто Блати [4–6].
Рис. 3. Универсальный двигатель
Универсальные двигатели до сих пор широко применяются при мощности до нескольких киловатт, особенно в бытовой технике. Они привлекают производителей легкостью изменения скорости с помощью регулирования напряжения, как в обычном двигателе постоянного тока. Однако для мощных приводов такое регулирование было в то время затруднительным. Поэтому для электрической тяги на железных дорогах и в лифтах с питанием от сети переменного тока стали применять так называемый репульсионный двигатель, изобретенный в 1885 г. знаменитым американским электротехником Илайю Томсоном (Elihu Thomson) и усовершенствованный позднее Микша Дери [3, 5, 6].
Рис. 4. Репульсионный двигатель
Илайю Томсон (1853–1937), родом из Англии, соединял в себе таланты блестящего университетского профессора, крупного инженера, плодовитого изобретателя (696 патентов) и успешного предпринимателя [7]. Он разработал различные системы электрического освещения, высокочастотные генератор и трансформатор, самопишущий ваттметр, один из способов электросварки, а также, например, улучшил рентгеновские трубки. Томсон основал электротехнические компании в Англии, Франции и США. В 1892 г. его компания Thomson–Houston слилась с компанией Эдисона, образовав крупнейшую электротехническую компанию мира — General Electric.
По конструкции репульсионный двигатель, схема которого показана на рис. 4, похож на универсальный двигатель с якорем (1) и возбуждением в виде электромагнита (2). Отличие состоит в том, что щетки двигателя (3) закорочены и могут вручную поворачиваться [8]. При питании переменным напряжением в закороченной обмотке якоря наводится ЭДС и идет ток, направление которого, в соответствии с законом Ленца, таково, что создаваемый им поток противодействует магнитному потоку статора.
Тогда, если в некоторый полупериод питающего напряжения электромагнит (2) имеет полюс N внизу, то якорь (1) — такой же полюс наверху, как показано на рис. 4, что приведет к их взаимному отталкиванию и вращению ротора по часовой стрелке. Это и объясняет название двигателя, которое в дословном переводе означает «отталкивающийся». При этом величина наводимой ЭДС, а значит, и вращающего момента определяются положением щеток. Когда они горизонтальны, ЭДС и момент максимальны (режим пуска). Далее при повороте щеток против часовой стрелки момент будет падать, а скорость нарастать. Таким образом, пуск и скорость репульсионного двигателя легко регулируются разворотом щеток без изменения напряжения питания.
Тем не менее проблемы всех коллекторных двигателей, связанные с искрением, помехами и быстрым износом, были решены лишь после создания асинхронного двигателя. По своему устройству он гораздо проще любого двигателя постоянного тока, поэтому удивительно, что он был изобретен почти на полстолетия позже, несмотря на то, что, как отмечал Илайю Томсон: «Трудно составить такую комбинацию из магнитов переменного тока и кусков меди, которая не имела бы тенденции к вращению» [5].
Рис. 5. Галилео Феррарис (1847–1897)
Асинхронный двигатель базируется на концепции вращающегося магнитного поля, выдвинутой практически одновременно в середине 1880-х гг. двумя выдающимися учеными — Николой Теслой [ 3 ] и итальянским профессором физики Галилео Феррарисом (Galileo Ferraris) (рис. 5). Последний родился на севере Италии в семье фармацевта и после окончания Туринского университета стал профессором Музея индустрии, где изучал трансформаторы, многофазные цепи, линии передачи переменного тока, а также оптические приборы. Он прожил короткую жизнь, но успел заслужить в Европе звание «отца трехфазного тока» [5, 9, 10].
Если вернуться к концепции, то во вращающемся магнитном поле вектор магнитного потока статора постоянен по величине, но, в отличие от шагающего поля (рис. 2), непрерывно (равномерно) вращается с синхронной скоростью. Тогда очевидно, что ротор в виде магнита, помещенный внутри такого поля, будет вовлекаться им в синхронное вращение, что и происходит в рассмотренном выше двигателе Уитстона. Однако выяснилось, что аналогично будет вращаться и немагнитный ротор из любого проводящего металла. Еще в 1824 г. известный французский физик академик Доминик Араго (Dominique Arago) продемонстрировал опыт, названный им «магнетизмом вращения» [5] и показанный на рис. 6.
Рис. 6. Опыт Араго
Диск (1) из меди или стали на стеклянной пластине (2) вращался в том же направлении, что и вращающийся магнит (3). Объяснение этому загадочному явлению нашел Майкл Фарадей в 1831 г. после открытия закона электромагнитной индукции (закона Фарадея). Согласно ему, вращающееся магнитное поле магнита индуцирует в диске вихревые токи, создающие собственное магнитное поле, взаимодействующее с вращающимся.
Рис. 7. Опыт Бейли
Этот принцип и лежит в основе современных асинхронных двигателей (в английской литературе — индукционных), имеющих металлический ротор и отличающихся только тем, что в них вращающееся магнитное поле образуется неподвижной обмоткой статора. Первый шаг к созданию такого двигателя был сделан английским физиком Уолтером Бейли (Walter Bailey) в 1879 г., заменившим в опыте Араго вращающийся магнит на четыре электромагнита (2–5), токи в которых переключались последовательно вручную (рис. 7) [5, 10]. Но такое устройство создавало шагающее через 90 o магнитное поле. А как получить непрерывно (равномерно) вращающееся магнитное поле?
На этот вопрос ответил вышеупомянутый Феррарис в 1888 г. в докладе Туринской академии наук, математически сформулировав два условия [5, 10]:
- Обмотка двигателя должна содержать две независимые части (называемые теперь фазами), магнитные потоки которых геометрически взаимно перпендикулярны.
- Фазы должны быть запитаны двумя гармоническими напряжениями, сдвинутыми на четверть периода (синус и косинус).
Позднее Михаил Осипович Доливо-Добровольский предложил называть такую систему токов Drehstrom, что в дословном переводе с немецкого означает «вращательный ток» [6].
Рис. 8. Двухфазный двигатель Феррариса
Свою теорию Феррарис блестяще подтвердил макетом двигателя мощностью 3 Вт (рис. 8), имеющего ротор (1) в виде полого медного стаканчика и статор (2) с фазами A и B. Фазы разделены на две секции с разным числом витков, намотанных проводом разного диаметра так, чтобы создавать индуктивный сдвиг фаз токов в 90° при питании от однофазной сети.
В 1890 г. французские инженеры Морис Хитин (Maurice Hutin) и Морис Леблан (Maurice Leblanc) предложили использовать для сдвига фаз токов конденсатор [6]. В таком виде двухфазный двигатель дожил до наших дней под названием конденсаторного двигателя. При этом габариты конденсатора соизмеримы с размерами самого двигателя, поэтому данное техническое решение пригодно только для маломощных двигателей.
Сам Феррарис также заявлял, что «…аппарат, основанный на исследованном нами принципе, не может иметь никакого промышленного значения как двигатель» [10]. Поэтому он его не запатентовал (как, впрочем, и остальные свои открытия) и отклонил, в отличие от Теслы, предложение Вестингауза о сотрудничестве. Тем не менее его работы дали впоследствии повод оспаривать патенты Теслы в некоторых из 25 судебных процессов компании Вестингауза [5, 9]. Пессимистический вывод о перспективах своего двигателя Феррарис сделал, оценив величину его КПД в точке максимума мощности на валу — ниже 50%. Однако в данной точке это справедливо и для двигателей постоянного тока. Поэтому в дальнейшем рабочие точки стали выбирать ближе к скорости холостого хода, где в идеале КПД любого электродвигателя стремится к 100%.
Рис. 9. Двигатель Теслы
Совершенно по другому пути пошел Тесла, предложив в 1887 г. многофазные системы, где сдвинутые напряжения питания фаз вырабатывались питающим генератором, как показано, например, на рис. 9, где: 1 — генератор, 2 — двухфазный двигатель, 3 — контактные кольца генератора, 4 — обмотка ротора (кольца двигателя не показаны) [5, 10].
При положении переключателя ON ротор запитывается постоянным напряжением, и это двухфазный синхронный двигатель с электромагнитным возбуждением. В положении OFF обмотка ротора закорачивается, и получается асинхронный двигатель, названный Теслой индукционным. Эксперт патентного ведомства поначалу не поверил в работоспособность такого странного двигателя, пока Тесла не продемонстрировал ему действующий макет (рис. 10).
Рис. 10. Макет двигателя Теслы
Двигатели Теслы и Феррариса легко запускались от питающей сети, однако с увеличением нагрузки их скорость падала, что подтверждается принципиальным отличием асинхронного двигателя от синхронного. Действительно, асинхронный двигатель развивает вращающий момент лишь при наличии тока, а следовательно, и ЭДС, индуцируемой в роторе. А, по закону Фарадея, это возможно лишь тогда, когда ротор пересекает силовые линии поля статора, т. е. когда скорости их вращения не одинаковы (не синхронны).
Как описано в статье [ 3 ], Тесла вместе с Вестингаузом начали активно внедрять асинхронные двигатели в жизнь, однако они были доведены до совершенства и приняли современный вид лишь благодаря трудам нашего соотечественника Михаила Осиповича Доливо-Добровольского, которые будут рассмотрены в следующих статьях.
Что касается многофазных синхронных двигателей, то они нашли широкое применение там, где требуется стабильная скорость вращения, например в компрессорах, приводах генераторов и т. д. Синхронные двигатели с постоянными магнитами входят в состав современных вентильных двигателей, создающих все большую конкуренцию пока еще наиболее распространенным электродвигателям постоянного тока.
Потребность в двигателях переменного тока возникла при внедрении однофазных осветительных сетей. Первым стал синхронный двигатель Уитстона с постоянными магнитами (1841 г.).
Однако такие двигатели не имели пускового момента, поэтому на практике применялись универсальные двигатели Сименса и репульсионные двигатели Томсона (1884-5 гг).
Достаточно мощные двигатели для промышленности были созданы только в середине 1880-х гг., после того как концепция вращающегося магнитного поля была математически сформулирована Феррарисом и реализована в многофазных синхронных и асинхронных двигателях Теслы, запущенных в производство на заводах Вестингауза.
Устройство и принцип работы электродвигателя
Электрические моторы нашли применения не только в промышленной сфере, но и в бытовой. Двигатели асинхронного типа, так же как и синхронные, выделяются таким свойством, как обратимость. Они могут функционировать не только в генераторном режиме, но и в двигательном. Читайте что такое гофра для кабеля и проводов и как выбрать на этой странице.
Устройство простейшего электродвигателя на рисунке
Как работает?
Надо более детально подойди к изучению электрических машин, поэтому рассмотрим принцип действия асинхронного движка:
- После того как этот электродвигатель будет подключен к сети, его обмотки нужно зафиксировать посредством треугольника.
- Когда на выводах клеммника маркировки нет, то начало и концевую часть обмотки нужно определить самостоятельно.
- После включения обмоток движка произойдет образование вращающегося поля движущей части.
- Подключать двигатель нужно в трехфазную сеть переменного электричества. Поле проникает не только в обмотку неподвижной части, но и в обматываемую часть ротора.
- Движущееся поле индуцирует электродвижущую силу. В обмотке неподвижной части наводится электродвижущая сила самоиндукции. Ее направленность ориентирована навстречу напряжению, также она играет роль ограничителя тока в обмотке статора.
- Обмотка движка замыкается накоротко. У двигателей с данным типом ротора под влиянием ЭДС в обмотке появляется ток. Благодаря тому, что ток в обмотке взаимодействует с магнитным полем, создается сила Fэм, являющаяся электромагнитной.
Коллекторные двигатели относятся так же как и асинхронные машины, к двигателям универсального типа.
Чтобы развить высокую частоту вращения, подобным движкам не нужны высокие нагрузки. В системах бытового плана пуск коллекторных моторов чаще всего выполняется под нагрузкой.
Для примера можно рассмотреть вентилятор обычного пылесоса. Те части машины, которые приводятся в движение, обычно фиксируются на вал мотора. Коллекторные универсальные двигатели имеют и некоторые недостатки. Кроме того, что они производят неприятный шум, они могут создавать помехи для различных радиоприборов. Такие моторы требуют особого ухода. Ознакомиться с руководством как выбрать детектор скрытой проводки и как им пользоваться можно здесь.
У коллекторных универсальных машин есть и свои достоинства. В бытовых машинах их используют намного чаще, чем асинхронные моторы. Скорость вращения коллекторных движков может достигать 25 000 оборотов в минуту. Несмотря на это, они выделяются плавной регулировкой скоростных режимов. В этом и заключается их универсальность.
Принцип функционирования коллекторного электромотора состоит в следующем: прямоугольная рамка с осью вращения, являющаяся проводником тока, помещенная меж полюсов электромагнита, непременно начнет двигаться. От того, куда направлен ток в рамке, будет зависеть и курс ее вращения.
От источника электричество может поступать в рамку через контактные щетки или через полукольца. Та часть мотора, которая находится в движении, известна под названием якоря, а статором обозначается надвигающаяся часть. Благодаря контактам в рамке будет переключаться ток через каждые пол-оборота. Она будет всегда двигаться по одному курсу. Смотрите обзор видов светодиодных фитоламп для рассады растений здесь: https://howelektrik.ru/osveshhenie/lampy/svetodiodnye-fitolampy-dlya-rassady-rastenij-obzor-vidov-i-kak-vybrat.html.
Принцип работы разных видов двигателей
На рисунке представлен асинхронный электродвигатель в разрезе
Принцип функционирования электрических моторов будет отличаться в зависимости от типа двигателя. Благодаря электрическим моторам, человек смог достичь такого высокого технологического прогресса. О том, как работает электрический движок постоянного тока, людей учат еще со школы. Практически все машины постоянного тока функционируют за счет магнитного притяжения и обратного процесса – отталкивания.
Двигатель постоянного тока на рисунке
На рисунке показан принцип работы генератора постоянного тока
- если пустить ток по верхним проводам якоря по курсу «от нас», а в обратном направлении пустить ток по нижним проводам,
- верхние проводники начнут выталкиваться в правую сторону, а нижние в левую.
- сила воздействия будет посылаться на провод якоря.
- благодаря этому процессу якорь начнет проворачиваться.
- вращающий момент передается на вал мотора, а тот начнет приводить в движение различные механизмы оборудования.
На рисунке изображен простейший двигатель переменного тока
На рисунке представлен принцип работы генератора переменного тока
Принцип работы коллекторного электродвигателя
На схеме представлен принцип работы инверторного двигателя
Видео
Смотрите видео-ролик об электродвигателях:
Постоянно вращение будет одностороннего типа. Чтобы изменить скорость движения, необходимо изменить напряжение. В дрелях или, например, в пылесосах, для регулировки скорости применяется сопротивление переменного типа.