Auto-park24.ru

Журнал "Автопарк"
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Двигатели постоянного тока с тиристорными схемами управления

Digitrode

цифровая электроника вычислительная техника встраиваемые системы

  • Вычислительная техника
    • Микроконтроллеры микропроцессоры
    • ПЛИС
    • Мини-ПК
  • Силовая электроника
  • Датчики
  • Интерфейсы
  • Теория
    • Программирование
    • ТАУ и ЦОС
  • Перспективные технологии
    • 3D печать
    • Робототехника
    • Искусственный интеллект
    • Криптовалюты

Чтение RSS

Двигатели постоянного тока и управление ими с помощью широтно-импульсной модуляции. Часть 1.

Электродвигатели это очень распространенный объект управления в различных устройствах и технических комплексах. Без них наша современная жизнь была бы не такой уж и современной. Они используются во многих сферах потребительской техники и промышленной автоматизации, начиная от небольших двигателей, вращающих барабан стиральной машинки, и заканчивая огромными махинами, приводящими в движение заводские конвейеры и шахтные подъемники.

Традиционно электродвигатели делят на двигатели постоянного тока и двигатели переменного тока. Последние в силу бурного развития научно-технической мысли, которая предлагает более совершенные алгоритмы векторного управления и довольно дешевые и удобные в использовании частотники, приобретают все большую популярность. Но двигатели постоянного тока (ДПТ) тоже имеют свои преимущества, и они еще долгое время будут крутить свои валы в режиме нещадной эксплуатации в различных технических областях, поэтому сегодня речь пойдет именно о ДПТ, точнее об управлении коллекторными электродвигателями постоянного тока.

Такие агрегаты были первыми двигателями, нашедшими широкое применение в промышленном оборудовании, и их до сих пор используют там, где требуется невысокая стоимость конечного устройства, простая установка и управление. На роторе этих двигателей располагается обмотка (1 на рисунке 1), а на статоре — электромагниты (2 на рисунке 1). Щеточные контакты (3 на рисунке 1), которые устанавливаются по окружности вала ротора, применяются для переключения полярности напряжения, прикладываемого к обмотке ротора. Они же создают основную проблему эксплуатации коллекторного ДПТ — ненадежность, поскольку претерпевают сильный износ и требуют периодической замены. Также между щетками и коммутаторными контактами в ходе работы возникают искры, что может привести к возникновению сильных электромагнитных помех. Кроме того, при неправильной эксплуатации всегда имеется риск создать электрическую дугу в коллекторе или, как еще это называют, круговой огонь. В этом случае якорь двигателя гарантированно отживает свой срок.

Рисунок 1 – двигатель постоянного тока

Сегодня получили распространение две схемы управления двигателем такого типа: генератор-двигатель (Г-Д) и преобразователь-двигатель (тиристорный ТП-Д и транзисторный ТрП-Д).

Рисунок 2 – силовые схемы электроприводов постоянного тока а) Г-Д, б) ТП-Д или ТрП-Д

На рисунке 2 показаны две схемы управления ДПТ с независимым возбуждением. В обоих случаях управление угловой скоростью и моментом по абсолютному значению и направлению осуществляют путем регулирования напряжения на якоре двигателя. Напряжение на якоре двигателя Д в системе Г-Д регулируют путем изменения силы тока в обмотке возбуждения генератора (ВГ). Для этой цели служит возбудитель генератора ВГ, в качестве которого используют силовые магнитные усилители (системы МУ-Г-Д, хотя это прошлый век, и в современных системах такого не встретишь), тиристорные (ТВ-Г-Д) или транзисторные (ТрВ-Г-Д) преобразователи. В системах ТП-Д напряжение на якоре двигателя регулируют путем фазового управления коммутацией тиристоров, а в системах ТрП-Д путем изменения скважности пульсирующего питающего напряжения, то есть с помощью широтно-импульсной модуляции (ШИМ).

Популярность Г-Д, а также ТП-Д с каждым годом падает из-за их громоздкости, аппаратной избыточности и сложности в управлении, по сути, они в основном применяются в промышленности для управления крупными двигателями. А ТрП-Д все чаще применяется в различных технических системах благодаря своей простоте, дешевизне и удобству управления. Также за счет обилия на рынке различных моделей MOSFET и IGBT-транзисторов и драйверов управления их затворами системы ТрП-Д применяются для управления как маломощными, так и крупными двигателями. Думаю, это стоит того, чтобы познакомиться с такими системами ближе.

Итак, сердцем ТрП-Д является широтно-импульсный преобразователь (ШИП), который состоит из четырех транзисторов (рисунок 3). В диагональ такого транзисторного моста включается нагрузка, то есть якорь двигателя. Питается ШИП от источника постоянного тока.

Рисунок 3 – схема транзисторного ШИП

Есть несколько способов управления ШИП по цепи якоря. Самый простой – это симметричный способ. При таком управлении в состоянии переключения находятся все четыре транзистора, и выходное напряжение ШИП представляет собой знакопеременные импульсы, длительность которых регулируется входным сигналом. Сам принцип переключения показан на рисунке 4. Логично предположить, если относительная продолжительность включения будет равна 50%, то на выходе ШИП получим 0 В. Преимуществом симметричного способа является простота реализации, но двухполярное напряжение на нагрузке, вызывающее пульсации тока в якоре, является его недостатком. По сути, он используется для управления маломощными ДПТ.

Рисунок 4 – симметричный способ управления ДПТ

Более совершенным является несимметричный способ управления. Как мы видим на рисунке 5, он обеспечивает на выходе ШИП однополярное напряжение. В данном случае переключаются лишь два транзистора Т3 и Т4, при этом Т1 постоянно открыт, а Т2 постоянно закрыт. Для того, чтобы среднее напряжение на выходе ШИП было равно нулю, достаточно чтобы нижний переключающийся транзистор оставался в закрытом состоянии. Такой подход тоже не очень хорош тем, что верхние ключи загружены по току больше, чем нижние. При больших нагрузках это может привести к перегреву и выходу транзисторов из строя.

Рисунок 5 – несимметричный способ управления ДПТ

Но и с этим недостатком справились, придумав способ поочередного управления (рисунок 6). Здесь как при движении как в одну сторону, так и в другую будут переключаться все четыре транзистора. Обязательным условием является нахождение в противофазе управляющих напряжений транзисторов Т1 и Т2 для одной группы и Т3 и Т4 для другой.

Рисунок 6 – поочередный способ управления ДПТ

Из рисунка видим, что при определенном знаке сигнала задания на скорость длинные импульсы с разницей в полпериода подаются на диагонально противоположные ключи (в данном случае Т1 и Т4). Соответственно, также со сдвигом полпериода на ключи противоположной диагонали подаются короткие импульсы. Таким образом, нагрузка подключается к источнику во время отсутствия коротких импульсов, а во время их присутствия закорачивается либо на питание, либо на землю. При изменении знака задания транзисторы управляются противоположным образом.

В общем, такой краткий теоретический экскурс, надеюсь, поможет понять, как легко и просто запускать ДПТ. Для более подробного осмысления и понимания, что такое двигатели постоянного тока (да и не только постоянного) рекомендую книгу Кацмана М.М. «Электрические машины автоматических устройств». А для детального ознакомления с силовой частью электропривода и принципами управления советую почитать Семенова Б.Ю. «Силовая электроника: от простого к сложному», Розанова Ю.К. «Основы силовой электроники» и Воронина П.А. «Силовые полупроводниковые ключи».

Во второй части на конкретном примере мы более детально рассмотрим ШИМ-управление и поймем, что двигатель крутится вовсе не потому, что он круглый!

ГЛАВА 2. ИСПОЛНИТЕЛЬНЫЕ МЕХАНИЗМЫ НА БАЗЕ ЭЛЕКТРОПРИВОДА ПОСТОЯННОГО ТОКА

§2.3.Импульсный способ регулирования скорости исполнительных двигателей постоянного тока

Широтно-импульсный способ управления. Наиболее широкое применение из всех видов импульсного регулирования для управления двигателями постоянного тока нашло широтно-импульсное регулирование напряжения (ШИР).

При импульсном способе (рис 2.13) к микродвигателю подводятся импульсы неизменного по амплитуде напряжения управления Uу.ном,в результате чего его работа состоит из чередующихся периодов разгона и торможения. Если эти периоды малы по сравнению с полным временем разгона и остановки ротора, то угловая скорость ротора не успевает к концу каждого периода достигать установившихся значений и установится некоторая средняя угловая скорость &#969cp . Значение &#969cp при неизменных моменте нагрузки и напряжении возбуждения однозначно определяется относительной продолжительностью импульсов &#949 :

где tи— длительность импульса; Ти — период.

С увеличением относительной продолжительности импульсов (рис.2.13, &#949 ‘> &#949 ) угловая скорость ротора растет ( &#969’cp > &#969cp ).В период паузы tп ротор обязательно должен тормозиться. Если это условие не будет выполняться, то угловая скорость ротора при любом значении ? будет непрерывно увеличиваться, пока не достигнет значения угловой скорости х.х., так как во время импульса угловая скорость будет возрастать, а во время паузы – оставаться практически неизменной.

С ростом частоты управляющих импульсов амплитуда колебаний скорости уменьшается; среднее значение угловой скорости остается при этом неизменным.

Принципиальные схемы импульсного регулирования показаны на рис. 2.14.

Если к валу двигателя приложен статический момент нагрузки, приводящий к механическому торможению двигателя во время паузы, то возможно применение схемы (рис.2.14,а), в которой ключ К в течение одной части цикла подключает якорь непосредственно к источнику питания, создавая положительный момент (разгон), в течение же другой части – отключает якорь от источника питания (торможение). Если двигатель работает без или с малой статической нагрузкой, то возможно применение электрического торможения (динамического или противовключением) во время паузы. Например, в схеме на рис. 2.14,б ключ К переключает во время паузы якорь на сопротивление Rд для осу¬ществления динамического торможения. В качестве ключевых элементов в современных схемах используются транзисторы или тиристоры; контактные электромагнитные реле, ввиду их низкого быстродействия, практически не применяются.

Читать еще:  Что можно сделать из асинхронного двигателя своими руками

Рассмотрим механические и регулировочные характеристики исполнительного двигателя постоянного тока при импульсном управлении с торможением за счет статического момента сопротив¬ления Mст на валу (рис.2.14,а). Под механической характеристикой при импульсном управлении понимают зависимость средней угловой скорости от среднего значения момента при неизменной относительной продолжительности импульсов &#949. Под регулировочной характеристикой понимают зависимость средней угловой скорости ротора от относительной продолжительности импульсов &#949 при неизменном среднем моменте на валу двигателя.

В зависимости от параметров двигателя схемы управления и момента нагрузки возможны два основных режима работы двигателя: режим прерывистого тока и режим непрерывного тока.

Режим прерывистого тока характеризуется тем, что ток якоря течет во время импульса, а в течение основного времени паузы tп равен нулю. Этот режим может возникнуть в схеме рис. 2.14,а при &#964я &#969cp*=1 — Mcp*/&#949 , (2.23)

Механические характеристики – линейные и начинаются из одной общей точки х.х.; жесткость механических характеристик уменьшается при уменьшении &#949 . Регулировочные характеристики – нелинейные; регулирование возможно только при Mcp*!!=0.

Режим непрерывного тока характеризуется тем, что во время паузы tп уменьшающийся ток якоря iя продолжает протекать по якорю в том же направлении, что и во время tи.

Этот режим может возникнуть, например, при регулировании по схеме рис. 2.14,а при Tи &#969cp*=&#949 — Mcp* , (2.24)

Механические и регулировочные характеристики будут иметь такой же вид, как и при непрерывном якорном способе управления (см.рис. 2.7) с заменой &#945 на &#949 . Как видно, закон регулирования угловой скорости в режиме непрерывного тока получается линейным.

В реальных схемах импульсного управления режим работы двигателя в одном диапазоне моментов и угловых скоростей ближе к режиму непрерывного тока, в другом – к режиму прерывистого тока.

Механические и регулировочные характеристики для этого случая представлены на рис. 2.15. Граница перехода из одного режима в другой показана пунктирной линией (механические характеристики,рис.2.15,а). С целью обеспечения линейности регулировочных характеристик (рис.2.15,б) диапазон прерывистых токов стремятся сузить.

Основные преимущества импульсного способа управления – меньшее значение средней потребляемой двигателем мощности; возможность управления при нерегулируемом источнике постоянного тока, например, бортовой аккумуляторной батарее. Однако аппаратура управления в общем случае более сложная, чем при непрерывном управлении.

На рис.2.16 приведена классификация основных типов широтно-импульсных преобразователей. Широтно-импульсные преобразователи состоят из силовой части, выполняемой на транзисторах, тиристорах или запираемых тиристорах, и схемы управления; питаются они от сети постоянного тока.

На первых этапах применения полупроводниковых ШИП выбор транзисторной или тиристорной элементной базы основывался на следующих соображениях. Транзисторные ШИП имеют относительно малую мощность, невысокую перегрузочную способность по току (2-2,5 Iном), но позволяют реализовать частоту импульсов до 5 кГц. Тиристорные ШИП более мощные и лучше выдерживают перегрузки по току и напряжению, но позволяют работать с импульсами частотой не более 1 кГц и требуют более сложной схемы управления.

Однако в настоящее время подход к выбору силовой элементной базы ШИП несколько меняется, что объясняется двумя основными факторами. С одной стороны, созданы силовые модули на основе биполярных транзисторов с изолированным затвором, по мощности и перегрузочной способности практически не уступающие тиристорным и работающие на частотах до 10кГц. С другой стороны, в настоящее время все более широко выпускаются достаточно мощные запираемые тиристоры , которые в отличие от обычных тиристоров можно и закрыть подачей соответствующего потенциала на управляющий электрод.

Принцип работы транзисторного ШИП основан на использовании транзисторов в ключевом режиме: транзистор пропускает ток при подаче управляющего сигнала и перестает его пропускать после снятия сигнала.

Транзисторные ШИП в первом приближении можно считать идеальными звеньями с бесконечно малой инерционностью и бесконечно малым внутренним сопротивлением и для анализа систем ШИП-Д пользоваться выражениями механической характеритики и передаточной функции, полученной непосредственно для двигателя.

Принцип работы ШИП на запираемых тиристорах не имеет существенных отличий от работы транзисторного ШИП.

Принцип работы ШИП с обычными тиристорами в отличие от транзисторных имеет две основные особенности. Во-первых, в состав тиристорного ШИП входит схема искусственной коммутации, которая должна при питании тиристора от сети постоянного тока в требуемый момент времени изменить полярность на аноде и катоде и запереть тиристор. Связано это с тем, что тиристор после отпирания теряет управляемость и запереть его подачей сигнала на управляющий электрод невозможно. Во-вторых, запирание тиристора требует определенного времени, что не позволяет реализовать относительную продолжительность импульсов &#949 , достаточно близкую к нулю.

Системы с тиристорными ШИП.В схемах искусственной коммутации, которые подразделяются на схемы параллельного и поледовательного типов, для запирания тиристоров обычно используется заряд, накапливаемый конденсатором.

В схемах с параллельной коммутацией, один из вариантов которых показан на рис. 2.17,а, конденсатор С подключен непосредственно к основному тиристору Т1, который отпирается импульсами управления Uи1, следующими с требуемым периодом Ти. Конденсатор С заряжается через добавочное сопротивление Rg и открытый тиристор Т1 до напряжения Uc &#8800 U .Для запирания тиристора Т1 – завершения подачи силового импульса на якорь двигателя Я, в момент времени tи подается управляющий импульс Uик на управляющий электрод вспомогательного тиристора Тк.

Тиристор Тк отпирается, конденсатор С начинает разряжаться и напряжение Uc, приложенное к тиристору Т1 в запирающем для него направлении, запирает тиристор Т1. При спаде разрядного тока до значения, меньшего удерживающего тока тиристора, запирается и тиристор Тк.

В схемах с последовательной коммутацией, один из вариантов которых показан на рис. 2.17,б, последовательно с якорем двигателя и основным тиристором Т1 включен дроссель L. Коммутирующая цепь, состоящая из конденсатора С, дополнительного дросселя Lк и диода Дк, подключается к источнику постоянного тока с напряжением Uк !! Uк.

При подаче управляющего импульса на вспомогательный тиристор Тк он открывается и возникает колебательный контур LC, в котором начинает протекать ток разряда конденсатора. В дросселе L возникает ЭДС самоиндукции, значение которой в первый момент времени равно Uc, а направление – противоположно току. Потенциал анода тиристора Т1 становится ниже потенциала катода, и тиристор запирается. Затем в результате колебательных процессов, происходящих в колебательных контурах LC и DкLкC, запирается тиристор Тк и заряжается конденсатор С.

Сравнение схем с параллельной и последовательной коммутацией показывает, что в схемах с последовательной коммутацией время запирания силовых тиристоров меньше за счет наличия колебательного контура. Однако наличие дросселя L в силовой цепи приводит, естественно, к росту постоянных времени системы ШИП-Д. Важным преимуществом схем с последовательной коммутацией является то, что заряд конденсатора происходит во время паузы в силовой цепи. Следовательно, длительность силового импульса tи можно снижать до значений, близких к нулю, не опасаясь того, что конденсатор не успеет зарядиться до требуемого напряжения. Это позволяет существенно расширить диапазон регулирования в область малых скоростей, вплоть до нуля. Выбор конкретной схемы зависит от требований к системе ШИП-Д.

Рассмотренные выше схемы ШИП были нереверсивными, реверсивные ШИП имеют двойной комплект ключевых элементов, включенных наиболее часто по мостовой схеме.

Особенности статических и динамических характеристик. Уравнение механических характеристик системы может быть получено на основе уравнений механических характеристик двигателя (2.4.) с учетом внутреннего сопротивления преобразователя Rшип.экв. Например, в режиме непрерывного тока уравнение будет иметь вид

Передаточная функция системы ШИП-Д может быть получена на основе теории непрерывных систем автоматического управления, поскольку частота коммутации тиристоров обычно настолько велика, что пульсацией угловой скорости двигателя при анализе динамических процессов можно пренебречь.

Тиристорный ШИП можно рассматривать как усилительное звено с запаздыванием &#964зап , вносимым схемой управления ШИП. Тогда передаточная функция ШИП

где Кшип – коэффициент передачи ШИП, равный отношению приращений среднего напряжения на якоре Uя.ср и напряжения управления Uу на входе схемы управления ШИП.

Постоянные времени двигателя &#964′м и &#964′я должны учитывать эквивалентное активное сопротивление Rшип.экв и индуктивность L шип.экв преобразователя, т.е. характеризуют динамические свойства двигателя в системе:

В целом ряде практических случаев значением Rшип.экв можно пренебречь, а в L шип.экв учитывать только индуктивность дросселя L при последовательной коммутации.

Следует отметить, что в реальных схемах время запаздывания обычно невелико и в первом приближении им можно пренебречь. По сравнению с системой УВ-Д система ШИП-Д отличается более высоким быстродействием при широком диапазоне регулирования скорости.

Реверс двигателя постоянного тока схемы.

В статье «Регуляторы оборотов электродвигателей » речь шла о регулировке оборотов коллекторных двигателей электроинструментов. Нередко возникает и другая задача: реверс двигателя постоянного тока, т.е. требуется обеспечить его вращение в одну и другую стороны. Реверс может понадобиться, например, для привода ворот в гараже или коттедже, в различных моделях и пр.

Проще всего такая задача с реверсом решается с помощью мостовой схемы, которая в общем виде представлена на рис.1 .
Схема реверса состоит из четырех ключей, двигателя и источника питания. Когда все ключи разомкнуты ( рис.1а ), ток через двигатель не течет. При коммутации первого и четвертого ключа ток через двигатель Iд течет слева направо ( рис.1б ), и двигатель вращается в одном направлении. А при коммутации второго и третьего ключей — ток течет справа налево ( рис.1в ), и двигатель вращается в обратном направлении.
Понятно, что руками коммутировать для реверса четыре переключателя неудобно, поэтому вместо ключей используем транзисторы ( рис.2 ).
Транзисторы могут быть разной проводимости, полевыми или биполярными. Работают они в ключевом режиме.
Обратно включенные диоды VD1. VD4 защищают транзисторы от выхода из строя, так как в момент выключения электродвигателя возникает достаточно большая ЭДС самоиндукции.
Силовая часть устройства реверса приведена на рис.3 .
Она состоит из четырех силовых и двух управляющих транзисторов; резисторов, ограничивающих базовые токи; шунтирующих диодов и гальванической развязки в виде двух оптопар.
Питание моста происходит от блока питания, подающего постоянное напряжение +50 В относительно земли. В cостоянии покоя на оба канала (А и Б) подается 0 В. Все транзисторы закрыты, на концах обмоток потенциал 0 В. Вал двигателя не вращается.
Для вращения двигателя в одну сторону на канал А подается постоянное напряжение +5 В или ШИМ-сигнал, на канал Б — 0 В. Открывается оптрон VU1, следом управляющий VТ5; при этом VТ6 закрыт.
Через резистор R2 протекает ток, открывающий силовые VТ1 и VТ4, а VТ2 и VТЗ закрыты.
Таким образом, на конце обмотки Я1 потенциал составляет +50 В, на конце обмотки Я2 — 0 В. Вал двигателя вращается (например, по часовой стрелке).
Чтобы включить реверс двигателя, на канал Б подается напряжение +5 В (ШИМ-сигнал), на канал А — 0 В. Управляющий VТ6 открыт, VТ5 — закрыт. Через резистор R4 в цепи коллектора VТ6 протекает ток, открывающий VТ2 и VТ3, а VТ1 и VТ4 закрыты. На конце обмотки Я1 потенциал составляет 0 В, на конце обмотки Я2 — +50 В. Вал двигателя вращается против часовой стрелки.
В случае подачи полoжительного напряжения на оба канала (А и Б) произойдет короткое замыкание, поэтому такой режим предотвращается управляющей частью устройства.
Реверс двигателя постоянного тока можно выполнить и на МОП-транзисторах ( рис.4 ). На входе схемы реверса последовательно установлены два инвертора так, что выход одного одновременно является входом другого. При этом сигнал управления (высокий или низкий логический уровень) на входе DD1.1 инвертируется и подается на вход DD1.2.
Выходы инверторов управляют полевыми транзисторами. При высоком уровне на входе, на выходе DD1.1 — низкий уровень, а на выходе DD1.2. — высокий. Благодаря этому VТ2 и VТЗ открыты и пропускают ток от отрицательного к положительному полюсу источника питания. Двигатель М1 вращается против часовой стрелки.
Если на вход схемы реверса подать низкий уровень, на выходе DD1.1 появится высокий уровень и откроются VT1 и VТ4, замыкая другую диагональ моста. Теперь ток потечет в другую сторону, и двигатель изменит направление вращения. Для управления устройством для реверса необходим логический сигнал МОП-уровня (0/+12 В).

Читать еще:  Чем промывать двигатель если в масло попал антифриз

Устройство для реверса испытывалось с электродвигателем автомобильного вентилятора. Мощные МОП-транзисторы (для КП74ЗБ напряжение сток-затвор составляет 80 В. максимальный ток стока — 4,9 А) обеспечивают запас по мощности и по напряжению.
Сопротивление открытого канала составляет 0,3.. .0,5 Ом. Для повышения эффективности VT1. . .VТ4 устанавливаются на теплоотводы.
Напряжение питания зависит от типа применяемого электродвигателя М1. Если его питания превышает 15 В, следует предусмотреть в схеме дополнительный стабилизатор для питания микросхемы DD1.
Вместо К561ЛА7 можно применить другую микросхему серии 561, если ее элементы обеспечивают инвертирование сигнала (К561ЛЕ5, К561ЛН2).
Другая схема управления реверсом, построенная на мощных комплементарных полевиках, показана на рис.5 .

Схема Управления Электрическим Двигателем

После восстановления нормального напряжения самопроизвольного пуска двигателя не произойдет. Типовые схемы управления АДс фазным ротором.


Схема управления асинхронным двигателем с использованием динамического торможения.

Переключение обмотки на роторе происходит при помощи графитовых щеток, единовременно под напряжением находится только одна из рамок, с магнитным полем, перпендикулярным полю статорной обмотки. При достижении заданного уровня реле снова сработает и разомкнет контакт РДmax.
Схемы управления магнитным пускателем

Контактор К обеспечивает минимальную защиту по напряжению.

Остановка двигателя производится нажатием кнопки SВ3, что вызовет отключение всех контакторов от сети и торможение двигателя выбегом.

Начинается процесс торможения двигателя выбегом под действием момента нагрузки на его валу. На рис.

Это асинхронные двигатели с однофазным или трехфазным питанием и коллекторные устройства.

Сервопривод Устройство позволяет точно контролировать угловое положение, скорость и ускорение исполнительного механизма посредством управления синхронным электродвигателем обычно СДПМ. Регулирование скорости рабочего органа машины или механизма.

схема подключения двигателя по реверсивной схеме

Наша группа «ВКонтакте»

К недостаткам можно отнести риск короткого замыкания при подаче на два входа; двойным H-мостом, собранным на маломощной микросхеме. Но реле не сразу отпускает свой якорь, это произойдет после истечения выдержки времени. Автоматический выключатель F1 исключает возможность обрыва одной фазы от срабатывания защиты при однофазном коротком замыкании, как это бывает при установке предохранителей рис.

Принципы действия схем см. При перегрузках в цепи двигателя возникает повышенный ток, который проходит через тепловые реле РТ1, РТ2.

Схема возвращается в исходное положение.

Именно этот способ сочетает в себе легкость выполнения и достаточные показатели мощности, но не предполагает одновременную подачу на две единицы. Одновременно срабатывает реле Р7, которое своим контактом запитывает соленоидный вентиль СВ — происходит сообщение полости компрессора с магистралью.

Из схемы следует, что в цепь контактора К включен резистор Rэ, он уменьшает напряжение на катушке К и тем самым уменьшает ее нагрев после срабатывания контактора напряжение на нем можно понизить. Фото схем электродвигателя Типовые конфигурации и принципы действия электродвигателей Есть два наиболее распространенных вида моторов, подключение которых можно выполнить без дополнительных деталей.

Шаговый режим работы двигателя создает благоприятные условия наладки.

Проверка проводных выходов и корпуса на короткое замыкание — застрахует от аварий.
Определение начала и конца обмоток трехфазного электродвигателя (простой способ)

Типовые схемы управления электроприводами с асинхронными двигателями

В асинхронных однофазных двигателях обмотка на роторе короткозамкнутая, по конструкции напоминающая колесо для белки.

Для отключения двигателя нажимается кнопка остановки SВ2, контактор КМ теряет питание и отключает двигатель от сети. Для исключения возможности одновременного подключения статора к источникам переменного и постоянного тока в схеме использована типовая блокировка с помощью размыкающих контактов КМ и КМ1, включенных перекрестно в цепи катушек этих аппаратов. После запуска двигателя M1 должны установиться нормальные параметры рассола и охлаждающей воды, о чем сигнализируют контакты: ДТР датчик температуры рассола ; РР реле расхода рассола ; РД реле давления, размыкает свой контакт в том случае, если давление в магистрали слишком понизится или повысится.

При этом отключается и выключатель М2. Для управления приводами применяются электрические коммутационные аппараты, такие как автоматические и неавтоматические выключатели, контакторы и магнитные пускатели.

Схемы автоматизированного управления На рис. Электрические блокировки для предотвращения одновременного включения двух контакторов осуществляются с помощью размыкающих контактов КM1 и КM2 рисунок 6, б. Вторым замкнувшимся контактом Р1 включается электромагнитный клапан продувания ЭМП.

Воздушный зазор между индуктором и якорем составляет всего 1 мм. В нормальном отключенном состоянии ротор электродвигателя расторможен под действием пружинного привода. Точка П является точкой трогания. В случае остановки электродвигателя М1 этот же контакт произведет автоматическое отключение двигателя М2.

Поиск по блогу


При перегрузках реле максимального тока РМ срабатывает и своим контактом выключает Л1, Л2. Схема одноступенчатого пуска АД в функции тока и динамического торможения в функции частоты вращения Схема рис.

Эта защита называется нулевой или нулевым блокированием. При снижении уровня жидкости в расходной цистерне ниже минимального замыкается реле РДmin.

При необходимости самостоятельного пуска электродвигателя при опробовании механизма в цепи управления имеется выключатель Q3, который необходимо предварительно замкнуть. На фото — схема подключения такого электродвигателя к питанию В через простой замыкающий выключатель. Главными недостатками асинхронных двигателей с короткозамкнутым ротором являются большие пусковые токи в раз больше номинального и невозможность простыми методами плавно изменять скорость вращения двигателей.
Схема управления двигателем с двух и трех мест

Схемы управления электроприводами

Cхема электропривода холодильной фреоновой установки На рис.

В случае, если одна из электрифицированных задвижек окажется неисправной, промежуточное реле PIT разрывает цепи автоматического управления насосными агрегатами гидроэлеваторов.

Для подключения к сети с одной фазой необходимо наличие переходного конденсатора, но в этом случае будут потери мощности и скорости оборотов двигателя. На выходе логической схемы включены командные реле, которые подают команды в схему управления электроприводами механизмов автоматического штабелера. В конце торможения, когда частота вращения будет близка к нулю и ЭДС ротора уменьшится, реле КV отключится и своим размыкающим контактом разомкнет цепь катушки контактора КМ2.

Читать еще:  Автомобили с каким двигателем имеют больший запас хода

Но эти аппараты при своей простоте и надежности являются аппаратами ручного управления. Двигатель получает пониженное напряжение. При этом отключается и выключатель М2. При отключении обмоток статора от сети ротор электродвигателя с рабочим механизмом, например дисковой пилой шпалорезного станка, продолжает сравнительно долгое время вращаться по инерции.

Эти схемы нашли широкое применение для управления нереверсивными электроприводами транспортеров, воздуходувок, вентиляторов, насосов, лесоперерабатывающих и заточных станков. После запуска двигателя M1 должны установиться нормальные параметры рассола и охлаждающей воды, о чем сигнализируют контакты: ДТР датчик температуры рассола ; РР реле расхода рассола ; РД реле давления, размыкает свой контакт в том случае, если давление в магистрали слишком понизится или повысится. В дополнение к механической блокировке в схеме используется типовая электрическая блокировка, применяемая в реверсивных схемах управления. Если температура в помещениях поднимается выше установленной, замыкается контакт ДОТ, срабатывает реле Р2 и происходит пуск компрессора.

При нажатии каждой из кнопок цепь одного из пускателей замыкается, а цепь другого одновременно при этом размыкается. В соответствии с правилами технической эксплуатации грузоподъемных механизмов в отключенном состоянии привод и механизм подъема должны быть надежно заторможены. Схема включает блок управления тиристорами БУ и релейно-контактный узел управления. Нажатие кнопки SВ2 приводит одновременно к замыканию цепи питания катушки контактора КМ2, который, включившись, вновь подключает двигатель к сети, но уже с другим чередованием фаз сетевого напряжения на статоре. Пуск начинается после перемещения контактной щетки на вывод 1.

Также рекомендуем прочесть

Анимация процессов, протекающих в схеме с двумя пускателями показана ниже. Статор электродвигателя и обмотка электромагнита Y одновременно будут присоединены к сети. Для этого в цепь управления магнитного пускателя КМ2, осуществляющего пуск и остановку электродвигателя М2, включен замыкающий вспомогательный контакт КМ1, связанный с пускателем КМ1. Это позволяет снизить расход электроэнергии и износ мотора, предотвращает перегрев и дает ряд дополнительных возможностей для подключения автоматики.

Одновременно НО контакт реле РП сигнализирует на диспетчерский пункт. Для его ускорения ванну печи поворачивают относительно оси на 40 влево и вправо и в каждом из крайних положений производят проплавле-ние новых колодцев, что в конечном итоге приводит к обвалу шихты в печи и ускорению наиболее тяжелого с энергетической точки зрения режима расплавления шихты. При нажатии на кнопку первым отключается размыкающий контакт, а затем включается замыкающий. В этом случае он подключается от двух любых фаз, например, от А и B. Переключатель может иметь несколько положений для выбора различных способов подключения электродвигателя, что может позволить уменьшить пусковое напряжение, выбирать направление и скорость вращения.
Как читать Элекрические схемы

Как происходит управление двигателем постоянного тока

Двигатель постоянного тока способствует превращению энергии постоянного тока в работу механического типа.

На сегодняшний день практичное управление двигателем постоянного тока осуществляется не только в соответствии с традиционными схемами, но также согласно достаточно оригинальным или малоизвестным схемотехническим решениям.

Схема управления двигателем постоянного тока

Данный способ базируется на подаче питающего напряжения на движок в форме импульсов со стабильной частотой следования, но изменением длительности.

Вся ШИМ-сигнальная система имеет очень важный критерий, представленный коэффициентом стандартного заполнения (Duty сyсlе).

Такая величина соответствуют соотношению импульсной длительности к его периоду:

D = (t/Т) × 100 %

Для самой простой схемы реализации управления ДПТ характерно наличие полевой транзисторной части с подачей на затвор ШИМ-сигнальной системы. В подобной схеме транзистор представляет особый электронный ключ, которым один из двигательных выводов коммутируется на землю. В этом случае открытие полупроводникового триода осуществляется именно на момент импульсной длительности.

Конструкция двигателя постоянного тока

При низкой частоте и в условиях незначительного коэффициента ШИМ-сигнала преобразующее устройство срабатывает рывками. Высокая частота РWМ, составляющая несколько сотен Герц, способствует непрерывному вращению мотора, а скорость вращательного движения в этом случае изменяется строго пропорционально коэффициенту заполняемости.

Управление двигателем при помощи биполярного транзистора

Использование биполярного транзистора в качестве надежного переключателя — один из способов управления двигателем. Выбор пассивного элемента электрической цепи, или R, предполагает протекание тока, не превышающего показатели максимальных токовых величин в микроконтроллере.

Полупроводниковый триод должен иметь соответствующий коллекторный ток и оптимальные максимальные значения, а также выделяемую мощность:

P = Uкэ × Iк .

Одной из проблем, возникающих в процессе использования биполярных полупроводниковых триодов, является избыточный базовый ток.

Как правило, токовое соотношение на выходном сигнале и входном транзисторе составляет 100 hfe. Функционирование элемента в условиях насыщения вызывает сильное снижение коэффициента.

Индуктивные нагрузки

При выборе индуктивной нагрузки, представленной двигателем, решение проблемы режима плавного управления мощностными показателями мотора не всегда дается легко, что зависит от нескольких факторов, представленных:

  • мощностными показателями движка;
  • инерционностью нагрузочного уровня вала;
  • реактивными обмоточными показателями;
  • активными обмоточными показателями.

Управление двигателями постоянного тока

Оптимальным вариантом для решения практически всех перечисленных выше проблем является использование частотных инверторов.

Индуктивный тип схемы для управления двигателем ПТ не отличается особой сложностью по сравнению с частотным управлением, а также способен обеспечивать вполне приемлемую результативность.

Аспекты проблем при управлении двигателем ПТ

Качественное управление нагрузкой не требует в некоторых случаях потенциометра, а может быть задействовано на использовании микроконтроллера.

Наиболее важные проблемы управления представлены:

  • обязательным присутствием гальванической развязки;
  • плавным управлением мощностными показателями;
  • отсутствием старт-стопного типа управления;
  • контролированием перехода Zеrо — Сrоss;
  • некоторыми особенностями подбора RC-фильтра snubbеr сглаживающего типа.

Управление при помощи MOSFET транзистора

МОSFЕТ (mеtаl-охidе-sеmiсоnduсtоr fiеld еffесt trаnsistоr) — полевые полупроводниковые триоды или метал-окисел-полупроводники p-канального типа открываются на затворе отрицательным напряжением по отношению к источнику. Диод паразитного типа в канальной структуре анода подсоединяется к части стока, а катод соединяется с истоком.

Классическая схема включения MOSFET в ключевом режиме

Такой тип канала, как правило, подсоединяется таким образом, чтобы на сток приходились наиболее отрицательные показатели напряжения по сравнению с истоком.

MOSFET-транзисторы высокой степени мощности достаточно популярны, что обусловлено исключительно высокой переключательной скоростью в условиях низкого уровня мощности управления, прикладываемой к затвору.

Управление при помощи реле

Процесс управления достаточно мощным двигателем ПТ осуществляется посредством реле-модуля спаренного типа. Процесс подключения мотора к реле предполагает обязательный учет наличия трех выходных отверстий:

  • NО (Nоrmаlly ореn) — нормально-разомкнутого типа;
  • СОМ (Соmmоn) — общего типа;
  • NС (Nоrmаlly сlоsеd) — нормально-замкнутого типа.

Управление направлением вращения двигателя постоянного тока

Контактная группа устройства, преобразующего любой вид энергии в работу механического типа, подсоединяется к общим релейным контактам (СОМ). «Плюс» элемента питания подключается к контактам нормально-разомкнутого реле (NО), а «минус» фиксируется на контактной группе реле нормально-замкнутого типа (NС).

При помощи H-моста

Управление двигателем посредством H-моста с управляющими логическими сигналами на входах и вращением в две стороны осуществляется несколькими вариантами Н-мостов:

  • транзисторным H-мостом, простым в изготовлении и достаточно мощным. К недостаткам можно отнести риск короткого замыкания при подаче на два входа;
  • двойным H-мостом, собранным на маломощной микросхеме. Минусы данного варианта представлены слишком малой мощностью и необходимостью подключения вывода Е на питании к «плюсу»;
  • одиночным Н-мостом, собранным на микросхеме, что обеспечивает подачу единички на два входа и может стать причиной торможения работы двигателя.

Самым простым вариантом станет сборка Н-моста на МОSFЕT-транзисторах. Именно этот способ сочетает в себе легкость выполнения и достаточные показатели мощности, но не предполагает одновременную подачу на две единицы.

Управление шаговым двигателем

Для управления двигателем шагового типа необходима подача постоянного напряжения на обмоточную часть с соблюдением максимально точной последовательности, благодаря чему обеспечивается точность угла осевого поворота.

При наличии постоянных магнитов

Шаговые двигатели, имеющие постоянные магниты, чаще всего применяются в бытовых приборах, но могут встречаться в устройствах промышленного типа. Доступные по стоимости двигатели обладают низким крутящим моментом и низкой скоростью вращения, благодаря чему прекрасно подходят для компьютеров.

Управление шаговым двигателем

Изготовление двигателей шагового типа на основе постоянных магнитов не отличается сложностью и экономически целесообразно только при больших объемах производства, а ограниченность использования обусловлена относительной инертностью и неприемлемостью применения в условиях точного временного позиционирования.

При наличии переменного магнитного сопротивления

Шагового типа двигатели, имеющие переменное магнитное сопротивление в условиях отсутствия стабильного магнита, характеризуются свободным роторным вращением без крутящего вращения остаточного типа. Такие двигатели, как правило, устанавливаются в компактных агрегатах, включая системы микро-позиционирования. Основные достоинства такой схемы представлены чувствительностью к токовой полярности.

Гибридный вариант

Вариант характеризуется очень удачным сочетанием принципа работы моторов с переменными и постоянными магнитами.

Значительное количество двигателей гибридного типа отличается классическим двухфазным строением.

Заключение

Необходимость выполнять изменение полярности напряжения может возникать в процессе управления двигателем или при использовании схемы мостового преобразователя напряжения. В этом случае ключи чаще всего представлены реле, полевыми и биполярными транзисторами, а также H-мостами, встраиваемыми в микросхему.

Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector