Двигатель внутреннего сгорания 4 тактный принцип работы - Журнал "Автопарк"
Auto-park24.ru

Журнал "Автопарк"
16 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Двигатель внутреннего сгорания 4 тактный принцип работы

Двигатель внутреннего сгорания 4 тактный принцип работы

Пособие для водителей катеров, яхт, лодок, судов, водного транспорта

22.05.2015 22:10
дата обновления страницы

История изменения сайта

Принцип работы четырехтактного двигателя внутреннего сгорания .

Четырехтактный двигатель (рис. 39,4) имеет следующие механизмы и системы: кривошипно-шатунный механизм, механизм газораспределения, систему смазки, систему охлаждения, систему питания и двигатели легкого топлива, систему зажигания.

Кривошипно-шатунный механизм преобразует прямолинейное (возвратно-поступательное) движение поршня во вращательное движение коленчатого вала. В кривошипно-шатунный механизм входят следующие детали: цилиндр с головкой, поршень с поршневыми кольцами, поршневой палец, шатун, коленчатый вал, картер двигателя, маховик.

Механизм газораспределения служит для впуска в камеру цилиндра горючей смеси и выпуска из нее отработавших газов. В распределительный механизм входят два клапана, расположенных в верхней части цилиндра, направляющая втулка клапана, пружина клапана, упорная шайба, распределительный вал с шестеренчатым или цепным приводом, детали передачи от распределительного вала к клапанам.

Система смазки обеспечивает подачу масла к трущимся деталям двигателя, чем уменьшает их износ и силу трения, а также охлаждает трущиеся поверхности деталей и выносит продукты износа. В систему смазки входят следующие детали: масляный резервуар, масляный насос, масляные фильтры тонкой и грубой очистки, маслоохладители, маслопроводы и редукционные клапаны.

Сумма всех рабочих объемов цилиндров двигателя есть рабочий объем, или литраж, двигателя.

Система охлаждения отнимает излишнее тепло от стенок Цилиндра и поршня, сильно нагревающихся при работе двигателя.

Рис. 39. А — Схема одноцилиндрового четырехтактного двигателя: 1-Шестерни распределения; 2- Распределительный вал; 3-Толкатели; 4 — Карбюратор; 5-Впускная труба; 6- Выпускная труба; 7-Впускной клапан; в -Выпускной клапан; 9-Запальная свеча; 10- Цилиндр; II-Головка цилиндра; 12- Поршень; 13- Поршневом палец; 14-Шатун; 15- Водяной насос; 16- Верхняя часть картера; 17-Маховик; 18-Коленчатый вал; 19-Маслопровод; 20- Нижняя половина картера (поддон); 21-Масляный насос;

Рис. 39. Б — рабочий процесс 4-тактного двигателя

Система питания приготовляет рабочую смесь одного и того же состава на всех режимах работы двигателя. Система зажигания своевременно воспламеняет рабочую смесь в цилиндре при помощи электрической искры.

Рабочий цикл четырехтактного двигателя (рис. 39,Б) слагается из последовательно повторяющихся процессов. В замкнутое пространство камеры цилиндра при движении поршня вниз засасывается рабочая смесь, состоящая из паров бензина и воздуха,- 1-й такт. При движении поршня вверх смесь уплотняется (сжимается)-2-й такт, далее смесь воспламеняется и сгорает; образуется высокая температура и большое давление, под влиянием которого поршень движется вниз и через шатун вращает коленчатый вал — 3-й такт. Оставшиеся в цилиндре отработавшие газы при последующем движении поршня снизу вверх выталкиваются из камеры цилиндра в атмосферу — 4-й такт. Затем весь процесс многократно повторяется, обеспечивая непрерывную работу двигателя.

Рис. 40. Основные положения поршня (а) и определение объемов цилиндра (б)

Крайнее верхнее положение поршня называется верхней мертвой точкой (ВМТ), крайнее нижнее положение поршня — нижней мертвой точкой (НМТ). «Моментом мертвой точки» называется такое положение поршня, при котором шатун и колено вала вытянуты по одной прямой линии (рис. 40,а). Расстояние от ВМТ до НМТ принято называть ходом поршня. Процесс, происходящий в цилиндре за один ход поршня, называется тактом. При нахождении поршня в ВМТ объем становится минимальным и называется объемом камеры сжатия. Объем, описываемый поршнем во время его хода, называется рабочим объемом цилиндра (рис. 40,6). Сумма рабочего объема цилиндра и объем камеры сжатия есть полный объем цилиндра.
Отношение полного объема цилиндра к объему камеры сжатия есть степень сжатия (рис. 40,6)*. Степень сжатия показывает, во сколько раз сжимается засосанная поршнем в цилиндр рабочая смесь. Повышение степени сжатия повышает мощность и приводит к более экономичной работе двигателя. В карбюраторных двигателях степень сжатия рабочей смеси колеблется в пределах от 5,0 до 9,0.

Во время такта впуска камера цилиндра заполняется горючей смесью (см. рис. 39,5 — /). Поршень движется от ВМТ к НМТ; благодаря увеличению объема над поршнем создается разрежение; в это время кулачок распределительного вала поднимает впускной клапан, соединяя камеру цилиндра через впускной трубопровод с карбюратором. Под влиянием разрежения горючая смесь начинает поступать в цилиндр до момента закрытия впускного клапана. Поступившая в цилиндр горючая смесь смешивается в цилиндре с остатками отработавших газов, оставшихся от предыдущего цикла; получившаяся смесь называется рабочей смесью. Степень наполнения цилиндра определяется коэффициентом наполнения, который представляет собой отношение веса фактически засосанной в цилиндр смеси к весу смеси в объеме, равном рабочему объему цилиндра. Для современных бескомпрессорных двигателей коэффициент наполнения колеблется от 0,75 до 0,85 из-за наличия сопротивления в трубопроводах, ограниченного диаметра впускных отверстий и других причин. Давление в конце такта впуска равно примерно 0,7-0,8 кг/см2. Температура рабочей смеси в цилиндре колеблется от 90 до 130°.

Во время такта сжатия поршень идет от НМТ к ВМТ, т. е. движется вверх (рис. 39 5- 11 ). Оба клапана закрыты, объем под поршнем уменьшается, рабочая смесь сжимается. Чем больше степень сжатия, тем сильнее сжимается рабочая смесь и тем выше давление газов на поршень при сгорании. Чрезмерно высокая степень сжатия может привести к детонационному самовоспламенению рабочей смеси и нарушению протекания нормального ее сгорания в цилиндре двигателя; это приводит к резкому повышению давления газов в цилиндре и стукам двигателя, а несвоевременное ее воспламенение — к снижению мощности и перегреву двигателя. При высоких степенях сжатия в двигателях применяется топливо, обладающее хорошими антидетонационными свойствами (с большим октановым числом). Давление смеси в конце такта сжатия достигает 7-9 кг/см’2, а температура — около 300°.

При рабочем ходе (рис. 39,Б- III ) поршень под влиянием давления, развившегося в цилиндре при сгорании рабочей смеси, движется от ВМТ к НМТ. В конце такта сжатия, когда поршень находится в ВМТ, в цилиндр на свечу подается высокое напряжение, между ее контактами проскакивает искра, поджигающая рабочую смесь. Оба клапана при этом такте закрыты. Смесь сгорает очень быстро, выделяя большое количество тепла, что приводит к сильному расширению газов и появлению высокого давления в цилиндре порядка 30-40 кг/см2. Затем поршень с большой силой перемещается к НМТ и через шатун вращает коленчатый вал.

Температура газов в цилиндре в начале рабочего хода равна 1800-2000°. В конце рабочего хода давление в цилиндре падает до 3-4 кг/см1’2, а температура снижается до 1100- 800°.

Такт выпуска (рис. 39,Б-IV) предназначен для очищения камеры цилиндра от отработавших газов. Очистка цилиндра происходит за счет энергии, полученной маховиком при такте рабочего хода. Поршень двигается от НМТ к ВМТ, кулачок распределительного вала в этот момент открывает выпускной клапан, и отработавшие газы выталкиваются в атмосферу. Пол: ностью удалить из цилиндра отработавшие газы невозможно. Давление при такте выпуска в цилиндре колеблется от 1Д до 1,3 кг/см2, температура газов равна 700-800°.

Рабочий цикл четырехтактного дизеля состоит из тех же четырех тактов, что и у карбюраторного двигателя, т. е. из впуска, сжатия, рабочего хода и выпуска. Рабочий процесс дизеля показан на рис. 41.

При такте впуска поршень движется от ВМТ к НМТ. Впуск: ной клапан открыт, и в цилиндр засасывается чистый воздух. Процесс в дизеле отличается от процесса в карбюраторном двигателе, где во время такта впуска в цилиндр засасывается готовая горючая смесь.

При такте сжатия поршень движется от НМТ к ВМТ и оба клапана закрыты. Воздух в цилиндре сжимается в 14-18 раз, т. е. степень сжатия составляет в дизеле 14-18. Давление в цилиндре в конце такта сжатия возрастает до 34-38 кг/см2, а температура сжатого воздуха достигает 600-700° С. Высокая температура воздуха в конце такта сжатия допустима, так как сжимается только воздух и опасность возникновения детонационного сгорания смеси отсутствует. Высокая степень сжатия дизелей обеспечивает их главное преимущество, заключающееся в высокой экономичности и повышении КПД до 35-40% использования тепловой энергии топлива.

Рис. 41. Рабочий цикл четырехтактного дизеля: 1-форсунка; 2-топливный насос

В конце такта сжатия, когда поршень находится около ВМТ, в цилиндр дизеля из форсунки под очень большим давлением вспрыскивается топливо, мелко распыленные частицы которого, соприкасаясь с воздухом, нагретым до 600-700°, быстро сгорают, выделяя при этом большое количество тепла. Температура сгорания смеси около 1800-2000°, давление порядка 50- 60 кг/см2 и выше. Под влиянием давления поршень движется от ВМТ к НМТ. Оба клапана при этом закрыты.

При такте выпуска поршень движется от НМТ к ВМТ, выпускной клапан открыт; своим движением поршень через открытое отверстие выпуска выталкивает в атмосферу отработавшие газы из цилиндра.

В четырехтактном двигателе впуск, сжатие и выпуск являются подготовительными тактами к совершению рабочего процесса. Для совершения этих тактов к коленчатому валу надо приложить вращающее усилие двигателя извне. Для выполнения подготовительных тактов на коленчатом валу двигателя устанавливается маховик (рис. 39,а, 17). Маховик представляет собой тяжелый чугунный диск, который, имея значительный вес, накапливает энергию, достаточную для того, чтобы вращать коленчатый вал двигателя и перемещать поршень в цилиндре двигателя во время подготовительных тактов, т. е. за полтора оборота во время рабочего цикла. Наличие маховика на коленчатом валу двигателя приводит к равномерному вращению коленчатого вала и способствует переводу поршней через положения мертвых точек. В одноцилиндровом двигателе в момент вспышки рабочей смеси в цилиндре на картер двигателя передаются сильные толчки и коленчатый вал, несмотря на наличие маховика, вращается неравномерно. Чтобы избежать этого и получить равномерную работу двигателя, его делают многоцилиндровым.

Средства для чистки катеров

Двигатель внутреннего сгорания 4 тактный принцип работы

Двигателем внутреннего сгорания называется тепловой двига­тель поршневого типа, в котором химическая энергия топлива пре­образуется в тепловую непосредственно внутри рабочего ци­линдра. В результате химической реакции топлива с кислородом воздуха образуются газообразные продукты сгорания с высокими давлением и температурой, которые являются рабочим телом дви­гателя. Продукты сгорания оказывают давление на поршень и вы­зывают его перемещение. Возвратно-поступательное движение поршня с помощью кривошипно-шатунного механизма превра­щается во вращательное движение коленчатого вала.

Двигатели внутреннего сгорания работают по одному из трех циклов: изохорному (цикл Отто), изобарному (цикл Дизеля) и смешанному (цикл Тринклера), различающихся характером про­текания процесса сообщения тепла рабочему телу. В смешанном цикле часть тепла сообщается при постоянном объеме, а осталь­ная часть при постоянном давлении. Отвод тепла во всех циклах совершается по изохоре.

Совокупность последовательных и периодически повторяю­щихся процессов, необходимых для движения поршня — наполне­ние цилиндра, сжатие, сгорание с последующим расширением газов и очистка цилиндра от продуктов сгорания — называется рабочим циклом двигателя. Часть цикла, проходящая за один ход поршня, называется тактом.

Двигатели внутреннего сгорания делятся на четырехтактные и двухтактные; в четырехтактных двигателях рабочий цикл совер­шается за четыре хода поршня, а в двухтактных — за два.

Судовые двигатели внутреннего сгорания в основном работают по смешанному циклу. Крайние предельные положения поршня в цилиндре называются соответственно верхней и нижней мерт­выми точками (в. м. т., н. м. т.). Расстояние по оси цилиндра, проходимое поршнем от одного до другого крайнего положения, называется ходом поршня S (рис. 125). Объем, описываемый поршнем при его движении между в. м. т. и н. м. т., называется рабочим объемом цилиндра V s . Объем цилиндра над поршнем, когда последний находится в н. м. т., называется объемом камеры сжатия V с . Объем цилиндра при положении поршня в н. м. т. на­зывается полным объемом цилиндра V а : V a = V с + V s .

Отношение полного объема цилиндра к объему камеры сжатия называется степенью сжатия ? = V a / V c .

Величина степени сжатия зависит от типа двигателя. Для су­довых дизелей степень сжатия равна 12—18. Главными конструк­тивными характеристиками двига­теля являются диаметр цилиндра, ход поршня, число цилиндров и га­баритные размеры.

Четырехтактный двигатель.

На рис. 125 показана схема устройства четырехтактного дизеля. Фунда­ментная рама 15 дизеля покоится на судовом фундаменте 1 . Блок ци­линдров 11 закрепляется на станине двигателя 14. Поршень 9 под дей­ствием газов совершает возвратно-поступательное движение по зерка­лу цилиндровой втулки 10 и с по­мощью шатуна 13 вращает коленча­тый вал 2. Верхняя головка шатуна с помощью поршневого пальца 3 соединена с поршнем, а нижняя ох­ватывает мотылевую шейку колен­чатого вала. В крышке 7 цилиндра размещены впускной клапан 4, вы­пускной клапан 8 и топливная фор­сунка 6. Впускной и выпускной клапаны приводятся в действие через систему штанг и рычагов 5 от кулачных шайб распредели­тельных валов 12. Последние получают вращение от коленчатого вала.

Рабочий цикл в четырехтактном двигателе происходит за два оборота коленчатого вала — за четыре хода (такта) поршня. Из четырех ходов (тактов) три хода (такта) являются подготови­тельными, а один рабочим. Каждый такт носит название основ­ного процесса, происходящего во время данного такта.

Первый такт — впуск. При движении поршня вниз (рис. 126) над поршнем в цилиндре создается разрежение, и через принуди­тельно открытый впускной клапан а атмосферный воздух запол­няет цилиндр. Для лучшего заполнения цилиндра свежим заря­дом воздуха впускной клапан а открывается несколько раньше, чем поршень достигнет в. м. т.—точка 1 ; имеет место предваре­ние впуска (15—30° по углу поворота коленчатого вала). Закан­чивается впуск воздуха в цилиндр в точке 2. Впускной клапан а закрывается с углом запаздывания 10—30° после н. м. т. возможность использовать инерцию входящего с большой ско­ростью воздуха, что приводит к более полной зарядке цилиндра. Продолжительность впуска соответствует углу поворота коленча­того вала на 220—250° и на рисунке показана заштрихованным углом 1—2, а па диаграмме р—? — линией впуска 1—2.

Читать еще:  Высокие обороты холостого хода на прогретом двигателе калина

Второй такт — сжатие. С момента закрытия впускного кла­пана а (точка 2) при движении поршня вверх начинается сжатие. Объем уменьшается, температура и давление воздуха увеличи­ваются. Продолжительность сжатия составляет угол 140—160° по­ворота коленчатого вала и заканчивается в точке 3 . Давление в конце сжатия достигает 3—4,5 Мн/м 2 , а температура 800—1100° К. Высокая температура заряда воздуха обеспечивает самовоспламенение топлива. В конце хода сжатия, когда поршень .немного не дошел до в. м. т. (точка 3 ), производится впрыск топ­лива через форсунку б . Опережение подачи топлива (угол пред­варения 10—30°) дает возможность к приходу поршня в в. м. т. подготовить рабочую смесь к самовоспламенению.

Третий такт — рабочий ход. Происходит горение топлива и рас­ширение продуктов сгорания. Продолжительность сгорания топ­лива составляет 40—60° поворота коленчатого вала (процесс 3—4 на рисунке). В конце горения внутренняя энергия газов увеличи­вается, давление газов достигает значительной величины 58 Мн/м 2 , а температура 1500—2000° К. Точка 4 — начало рас­ширения газов. Под давлением газов поршень движется вниз, со­вершая полезную механическую работу. В конце расширения (угол опережения 20—40° до н. м. т.) — точка 5 — открывается выпускной клапан в, давление в цилиндре резко падает и по дости­жении поршнем н. м. т. оказывается равным 0,1—0,11 Мн/м 2 , а температура 600—800° К. Предварение выпуска обеспечивает минимальное сопротивление движению поршня вверх в последую­щем такте. Рабочий ход совершается за 160—180° угла поворота коленчатого вала.

Четвертый такт — выпуск. Продолжается от точки 5 до точки 6. При выпуске поршень, двигаясь вверх от н. м. т., выталкивает от­работавшие продукты сгорания. Выпускной клапан закрывается с некоторым запозданием (на 10—30° угла поворота коленчатого вала после в. м. т.). Это улучшает удаление отработавших про­дуктов горения за счет отсасывающего действия газов, тем более что в это время впускной клапан уже открыт. Такое положение клапанов называется «перекрытием клапанов». Перекрытие кла­панов обеспечивает более совершенное удаление продуктов сгора­ния. Выпуск осуществляется в течение 225—250° угла поворота коленчатого вала.

Двухтактный двигатель.

На рис. 127 показана схема работы двухтактного дизеля. Газораспределение в двухтактных двигате­лях осуществляется через продувочные окна П и выпускные окна В . Продувочные окна соединены с продувочным ресиве­ром Р , в который продувочным насосом Н нагнетается чистый воз­дух под давлением 0,12—0,16 Мн/м 2 . Выпускные окна, несколько выше расположенные, чем продувочные, соединяются с выпускным коллектором. Топливо подается в цилиндр форсункой Ф. Рабочий цикл двухтактного двигателя осуществляется за два хода поршня, за один оборот коленчатого вала. Открытие и закрытие выпускных и продувочных окон производится поршнем.

Рассмотрим последовательность процессов в цилиндре.

Первый такт — горение, расширение, выпуск и продувка. Пор­шень движется вниз от в. м. т. к н. м. т. В начале такта происхо­дит бурное горение с повышением давления газов до 5—10 Мн/м 2 и температуры до 1700—1900° К для тихоходных двигателей и 1800—2000° К для быстроходных. Горение заканчивается в точке 4 и затем происходит расширение продуктов сгорания (участок 4—5) до давления 0,25—0,6 Мн / м 2 и температуры 900—1200° К. При положении мотыля в точке 5 (за 50—70° до н. м. т.) откры­ваются выпускные окна, давление в цилиндре резко падает и на­чинается выпуск отработавших газов выпускного коллектора в ат­мосферу. Высота продувочных окон подбирается таким образом, чтобы к моменту их открытия давление газов в цилиндре было бы близко к давлению продувочного воздуха в продувочном ресивере. После открытия продувочных окон (точка 6) продувочный воздух, поступая в цилиндр, вытесняет продукты сгорания через выпускные окна, при этом часть воздуха уходит с отработавшими газами. При открытых продувочных окнах происходит принудительная очистка цилиндра и заполнение его свежим зарядом; этот процесс называется продувкой.

Второй такт. Процесс продувки продолжается также при дви­жении поршня вверх от н. м. т. до закрытия продувочных окон (точка 1). После закрытия поршнем выпускных окон (точка 2) процесс выпуска заканчивается и начинается процесс сжатия све­жего заряда воздуха. В конце сжатия (в. м. т.) давление воздуха равно 3,5—5 Мн/м 2 , а температура составляет 750—800° К. Высо­кая температура воздуха в конце сжатия обеспечивает самовос­пламенение топлива. Затем цикл повторяется.

По тем же соображениям, что и для четырехтактных дизелей, топливо в цилиндр подается с опережением в 10—20° поворота ко­ленчатого вала до в. м. т. (точка 3 ).

В настоящее время на судах применяют как двухтактные, так и четырехтактные дизели. Для крупнотоннажных грузовых и пас­сажирских судов основным является двухтактный двигатель. Ти­хоходные двухтактные крейцкопфного типа дизеля долговечны, отличаются высокой экономичностью, но имеют большой вес и га­бариты. При одной и той же частоте вращения и одинаковых раз­мерах цилиндров мощность двухтактного двигателя теоретически вдвое больше мощности четырехтактного. Увеличение мощности двухтактного двигателя обусловлено сгоранием вдвое большего количества топлива, чем в четырехтактном, но так как объем ра­бочего цилиндра (из-за наличия выпускных и продувочных окон) используется неполностью, а часть мощности (4—10%) затрачи­вается на приведение в действие продувочного насоса, то факти­ческое превышение мощности в двухтактном двигателе над мощ­ностью четырехтактного составляет 70—80%.

Четырехтактный двигатель при одинаковых мощности и ча­стоте вращения с двухтактным имеет большие размеры и вес. Двухтактный двигатель при одинаковых частоте вращения и числе цилиндров с четырехтактным вследствие удвоенного числа рабо­чих циклов работает более равномерно. Минимальное число ци­линдров, обеспечивающее надежный пуск для двухтактного дви­гателя — четыре, а для четырехтактного — шесть.

Отсутствие клапанов и приводов к ним у двухтактного двига­теля со щелевой продувкой упрощает его конструкцию. Однако на изготовление деталей требуются более прочные материалы, так как двухтактные двигатели работают при более высоких темпера­турных условиях.

В двухтактных двигателях очистка, продувка и зарядка све­жим воздухом цилиндра осуществляется на протяжении части одного хода, поэтому качество этих процессов ниже, чем у четы­рехтактного двигателя.

Четырехтактные двигатели удобнее в отношении повышения их мощности путем наддува. Для них используют более простую схему наддува, теплонапряженность цилиндров меньше, чем у двухтактных дизелей. Для современных четырехтактных дизелей с газотурбинным наддувом удельный эффективный расход топ­лива составляет 0,188—0,190 кг/(квт ? ч), а для двухтактных тихо­ходных дизелей с наддувом 0,204—0,210 кг/(квт?ч).

Устройство двигателя внутреннего сгорания

Изобретение двигателя внутреннего сгорания позволило человечеству в развитии шагнуть значительно вперед. Сейчас двигатели, которые используют для выполнения полезной работы энергию, выделяемую при сгорании топлива, используются во многих сферах деятельности человека. Но самое большее распространение эти двигатели получили в транспорте.

Все силовые установки состоят из механизмов, узлов и систем, которые взаимодействуя между собой, обеспечивают преобразование энергии, выделяемой при сгорании легковоспламеняемых продуктов во вращательное движение коленчатого вала. Именно это движение и является его полезной работой.

Чтобы было понятнее, следует разобраться с принципом работы силовой установки внутреннего сгорания.

Принцип работы

При сгорании горючей смеси, состоящей из легковоспламеняемых продуктов и воздуха, выделяется больше количество энергии. Причем в момент воспламенения смеси она значительно увеличивается в объеме, возрастает давление в эпицентре воспламенения, по сути, происходит маленький взрыв с высвобождением энергии. Этот процесс и взят за основу.

Если сгорание будет производиться в закрытом пространстве – возникающее при сгорании давление будет давить на стенки этого пространства. Если одну из стенок сделать подвижной, то давление, пытаясь увеличить объем замкнутого пространства, будет перемещать эту стенку. Если к этой стенке присоединить какой-нибудь шток, то она уже будет выполнять механическую работу – отодвигаясь, будет толкать этот шток. Соединив шток с кривошипом, при перемещении он заставит провернуться кривошип относительно своей оси.

В этом и заключается принцип работы силового агрегата с внутренним сгоранием – имеется закрытое пространство (гильза цилиндра) с одной подвижной стенкой (поршнем). Стенка штоком (шатуном) связана с кривошипом (коленчатым валом). Затем производится обратное действие – кривошип, делая полный оборот вокруг оси, толкает штоком стенку и так возвращается обратно.

Но это только принцип работы с пояснением на простых составляющих. На деле же процесс выглядит несколько сложнее, ведь надо же вначале обеспечить поступление смеси в цилиндр, сжать ее для лучшего воспламенения, а также вывести продукты горения. Эти действия получили название тактов.

Всего тактов 4:

  • впуск (смесь поступает в цилиндр);
  • сжатие (смесь сжимается за счет уменьшения объема внутри гильзы поршнем);
  • рабочий ход (после воспламенения смесь из-за своего расширения толкает поршень вниз);
  • выпуск (отведение продуктов горения из гильзы для подачи следующей порции смеси);

Такты поршневого двигателя

Из этого следует, что полезное действие имеет только рабочий ход, три других – подготовительные. Каждый такт сопровождается определенным перемещением поршня. При впуске и рабочем ходе он движется вниз, а при сжатии и выпуске – вверх. А поскольку поршень связан с коленчатым валом, то каждый такт соответствует определенному углу проворота вала вокруг оси.

Реализация тактов в двигателе делается двумя способами. Первый – с совмещением тактов. В таком моторе все такты выполняются за один полный проворот коленвала. То есть, пол-оборота колен. вала, при котором выполняется движение поршня вверх или вниз сопровождается двумя тактами. Эти двигатели получили название 2-тактных.

Второй способ – раздельные такты. Одно движение поршня сопровождается только одним тактом. В итоге, чтобы произошел полный цикл работы – требуется 2 оборота колен. вала вокруг оси. Такие двигатели получили обозначение 4-тактных.

Блок цилиндров

Теперь само устройство двигателя внутреннего сгорания. Основой любой установки является блок цилиндров. В нем и на нем располагаются все составные.

Конструктивные особенности блока зависят от некоторых условий – количества цилиндров, их расположения, способа охлаждения. Количество цилиндров, которые объедены в одном блоке, может варьироваться от 1 до 16. Причем блоки с нечетным количеством цилиндров встречаются редко, из выпускающихся ныне двигателей можно встретить только одно- и трехцилиндровые установки. Большинство же агрегатов идут с парным количеством цилиндров – 2, 4, 6, 8 и реже 12 и 16.

Силовые установки с количеством от 1 до 4 цилиндров обычно имеют рядное расположение цилиндров. Если количество цилиндров больше, их располагают в два ряда, при этом с определенным углом положения одного ряда относительно другого, так называемые силовые установки с V-образным положением цилиндров. Такое расположение позволило уменьшить габариты блока, но при этом изготовление их сложнее, чем рядным расположением.

Существует еще один тип блоков, в которых цилиндры располагаются в два ряда и с углом между ними в 180 градусов. Эти двигатели получили название оппозитных. Встречаются они в основном на мотоциклах, хотя есть и авто с таким типом силового агрегата.

Но условие количеством цилиндров и их расположением – необязательное. Встречаются 2-цилиндровые и 4-цилиндровые двигатели с V-образным или оппозитным положением цилиндров, а также 6-цилиндровые моторы с рядным расположением.

Используется два типа охлаждения, которые применяются на силовых установках – воздушное и жидкостное. От этого зависит конструктивная особенность блока. Блок с воздушным охлаждением менее габаритный и конструктивно проще, поскольку цилиндры не входят в его конструкцию.

Блок с жидкостным же охлаждением более сложен, в его конструкцию входят цилиндры, а поверх блока с цилиндрами расположена рубашка охлаждения. Внутри ее циркулирует жидкость, отводя тепло от цилиндров. При этом блок вместе рубашкой охлаждения представляют одно целое.

Сверху блок накрывается специальной плитой – головкой блока цилиндров (ГБЦ). Она является одной из составляющих, обеспечивающих закрытое пространство, в котором производится процесс горения. Конструкция ее может быть простая, не включающая дополнительные механизмы, или же сложная.

Кривошипно-шатунный механизм

Кривошипно-шатунный механизм, входящий в конструкцию мотора, обеспечивает преобразование возвратно-поступательного перемещения поршня в гильзе во вращательное движение коленвала. Основным элементом этого механизма является коленвал. Он имеет подвижное соединение с блоком цилиндров. Такое соединение обеспечивает вращение этого вала вокруг оси.

К одному из концов вала прикреплен маховик. В задачу маховика входит передача крутящего момента от вала дальше. Поскольку у 4-тактного двигателя на два оборота коленвала приходится только один полуоборот с полезным действием – рабочий ход, остальные же требуют обратного действия, которое и выполняется маховиком. Имея значительную массу и вращаясь, за счет своей кинетической энергии он обеспечивает провороты колен. вала во время подготовительных тактов.

Окружность маховика имеет зубчатый венец, при помощи его выполняется запуск силовой установки.

С другой стороны вала размещается приводная шестерня масляного насоса и газораспределительного механизма, а также фланец для крепления шкива.

Этот механизм также включает шатуны, которые обеспечивают передачу усилия от поршня к коленвалу и обратно. Крепление к валу шатунов тоже производится подвижно.

Поверхности блока цилиндров, колен. вала и шатунов в местах соединения напрямую между собой не контактируют, между ними находятся подшипники скольжения – вкладыши.

Цилиндро-поршневая группа

Состоит данная группа из гильз цилиндров, поршней, поршневых колец и пальцев. Именно в этой группе и происходит процесс сгорания и передача выделяемой энергии для преобразования. Сгорание происходит внутри гильзы, которая с одной стороны закрыта головкой блока, а с другой – поршнем. Сам поршень может перемещаться внутри гильзы.

Чтобы обеспечить максимальную герметичность внутри гильзы, используются поршневые кольца, которые предотвращают просачивание смеси и продуктов горения между стенками гильзы и поршнем.

Поршень посредством пальца подвижно соединен с шатуном.

Газораспределительный механизм

В задачу этого механизма входит своевременная подача горючей смеси или ее составляющих в цилиндр, а также отвод продуктов горения.

У двухтактных двигателей как такового механизма нет. У него подача смеси и отвод продуктов горения производится технологическими окнами, которые проделаны в стенках гильзы. Таких окон три – впускное, перепускное и выпускное.

Поршень, двигаясь производит открытие-закрытие того или иного окна, этим и выполняется наполнение гильзы топливом и отвод отработанных газов. Использование такого газораспределения не требует дополнительных узлов, поэтому ГБЦ у такого двигателя простая и в ее задачу входит только обеспечение герметичности цилиндра.

Читать еще:  Устройство для запуска двигателя при разряженном аккумуляторе

У 4-тактного двигателя механизм газораспределения имеется. Топливо у такого двигателя подается через специальные отверстия в головке. Эти отверстия закрыты клапанами. При надобности подачи топлива или отвода газов из цилиндра производится открывание соответствующего клапана. Открытие клапанов обеспечивает распределительный вал, который своими кулачками в нужный момент надавливает на необходимый клапан и тот открывает отверстие. Привод распредвала осуществляется от коленвала.

ГРМ с ременным и цепным приводом

Компоновка газораспределительного механизма может отличаться. Выпускаются двигатели с нижним расположением распредвала (он находится в блоке цилиндров) и верхним расположением клапанов (в ГБЦ). Передача усилия от вала к клапанам производится посредством штанг и коромысел.

Более распространенными являются моторы, у которых и вал и клапана имеют верхнее расположение. При такой компоновке вал тоже размещен в ГБЦ и действует он на клапана напрямую, без промежуточных элементов.

Система питания

Эта система обеспечивает подготовку топлива для дальнейшей подачи его в цилиндры. Конструкция этой системы зависит от используемого двигателем топлива. Основным сейчас является топливо, выделенное из нефти, причем разных фракций – бензин и дизельное топливо.

У двигателей, использующих бензин, имеется два вида топливной системы – карбюраторная и инжекторная. В первой системе смесеобразование производится в карбюраторе. Он производит дозировку и подачу топлива в проходящий через него поток воздуха, далее уже эта смесь подается в цилиндры. Состоит такая система и топливного бака, топливопроводов, вакуумного топливного насоса и карбюратора.

То же делается и в инжекторных авто, но у них дозировка более точная. Также топливо в инжекторах добавляется в поток воздуха уже во впускном патрубке через форсунку. Эта форсунка топливо распыляет, что обеспечивает лучшее смесеобразование. Состоит инжекторная система из бака, насоса, расположенного в нем, фильтров, топливопроводов, и топливной рампы с форсунками, установленной на впускном коллекторе.

У дизелей же подача составляющих топливной смеси производится раздельно. Газораспределительный механизм через клапаны подает в цилиндры только воздух. Топливо же в цилиндры подается отдельно, форсунками и под высоким давлением. Состоит данная система из бака, фильтров, топливного насоса высокого давления (ТНВД) и форсунок.

Недавно появились инжекторные системы, которые работают по принципу дизельной топливной системы – инжектор с непосредственным впрыском.

Система отвода отработанных газов обеспечивает вывод продуктов горения из цилиндров, частичную нейтрализацию вредных веществ, и снижение звука при выводе отработанного газа. Состоит из выпускного коллектора, резонатора, катализатора (не всегда) и глушителя.

Система смазки

Система смазки обеспечивает снижение трения между взаимодействующими поверхностями двигателя, путем создания специальной пленки, предотвращающей прямой контакт поверхностей. Дополнительно осуществляет отвод тепла, защищает от коррозии элементы двигателя.

Состоит система смазки из масляного насоса, емкости для масла – поддона, маслозаборника, масляного фильтра, каналов, по которым масло движется к трущимся поверхностям.

Система охлаждения

Поддержание оптимальной рабочей температуры во время работы двигателя обеспечивается системой охлаждения. Используется два вида системы – воздушная и жидкостная.

Воздушная система производит охлаждение путем обдува цилиндров потом воздуха. Для лучшего охлаждения на цилиндрах сделаны ребра охлаждения.

В жидкостной системе охлаждение производится жидкостью, которая циркулирует в рубашке охлаждения с прямым контактом с внешней стенкой гильз. Состоит такая система из рубашки охлаждения, водяного насоса, термостата, патрубков и радиатора.

Система зажигания

Система зажигания применяется только на бензиновых двигателях. На дизелях воспламенение смеси производится от сжатия, поэтому такая система ему не нужна.

У бензиновых же авто, воспламенение выполняется от искры, проскакивающей в определенный момент между электродами свечи накаливания, установленной в головке блока так, что ее юбка находится в камере сгорания цилиндра.

Состоит система зажигания из катушки зажигания, распределителя (трамблера), проводки и свечей зажигания.

Электрооборудование

Обеспечивает это оборудование электроэнергией бортовую сеть авто, в том числе и систему зажигания. Этим оборудование также производится и запуск двигателя. Состоит оно из АКБ, генератора, стартера, проводки, всевозможных датчиков, которые следят за работой и состоянием двигателя.

Это и все устройство двигателя внутреннего сгорания. Он хоть и постоянно совершенствуется, однако принцип работы его не меняется, улучшаются лишь отдельные узлы и механизмы.

Современные разработки

Основной задачей, над которой бьются автопроизводители – это снижение потребление топлива и выбросов вредных веществ в атмосферу. Поэтому они постоянно улучшают систему питания, результатом является недавнее появление инжекторных систем с непосредственным впрыском.

Ищутся альтернативные виды топлива, последней разработкой в этом направлении пока является использование в качестве топлива спиртов, а также растительных масел.

Также ученые пытаются наладить производство двигателей с совершенно иным принципом работы. Таковым, к примеру, является двигатель Ванкеля, но особых успехов пока нет.

Принцип действия дизельных двигателей. Индикаторные и круговые диаграммы

Дизелем называют ДВС с внутренним смесеобразованием, в котором тяжелое жидкое топливо, вводимое в распыленном состоянии в цилиндр в конце хода сжатия, самостоятельно воспламеняется в горячем сжатом воздухе. Основными понятиями, относящимися ко всем дизельным двигателям, являются (рис. 17):

  • верхняя мертвая точка (ВМТ) – положение поршня, при котором он наиболее удален от оси коленчатого вала;
  • нижняя мертвая точка (НМТ) – положение поршня наиболее близкое к оси коленчатого вала;
  • ход поршня S , [м] – расстояние между ВМТ и НМТ: S = 2R ;
  • рабочий объем цилиндра VS , [м3] – объем, описываемый поршнем при движении между ВМТ и НМТ :
  • объем камеры сжатия VC , [м 3 ] – объем цилиндра над поршнем при нахождении его в ВМТ;
  • полный объем цилиндра VA , [м 3 ] – сумма рабочего объема цилиндра и объема камеры сжатия:

Принцип действия четырехтактного дизеля

Рабочий цикл в цилиндре четырехтактного дизеля осуществляется за два оборота коленчатого вала (4 хода поршня). Цилиндр четырехтактного дизеля закрыт крышкой, в которой располагаются клапаны для впуска свежего заряда воздуха и выпуска продуктов сгорания (рис. 18). Впускные и выпускные клапаны удерживаются в закрытом положении пружинами и давлением, создаваемым в цилиндре в периоды сжатия, сгорания топлива и расширения. Открытие клапанов в необходимые моменты времени осуществляется с помощью газораспределительного механизма.

Рабочий цикл четырехтактного дизеля состоит из следующих процессов (тактов): впуска, сжатия, расширения (рабочего хода) и выпуска , и происходит следующим образом (рис. 18):

Первый такт – впуск. В начальный момент времени давление в цилиндре двигателя несколько выше атмосферного – точка 1 индикаторной диаграммы (рис. 18). Поршень из ВМТ начинает свое движение к НМТ, открывается впускной клапан и поршень всасывает в цилиндр свежий заряд воздуха (процесс 1− 2). При этом давление в цилиндре устанавливается чуть ниже атмосферного (для двигателей без наддува) за счет гидравлического сопротивления впускного клапана. Часто для увеличения массы свежего заряда воздух предварительно сжимают в компрессоре до избыточного давления 0,13 ÷ 0,4 МПа, а затем охлаждают в воздухоохладителе. Такое увеличение массы свежего заряда называется наддувом.

Второй такт – сжатие. Поршень из НМТ начинает движение к ВМТ. Впускной клапан закрывается и происходит сжатие воздуха, поступившего в цилиндр дизеля. При этом уменьшается объем заряда воздуха, повышается его давление (процесс 2 − 3 ) до 3,6 ÷ 4,0 МПа в дизелях без наддува, а при высоком наддуве – до 11,0 МПа, что сопровождается увеличением температуры воздуха до 500 °C и выше. В конце такта, при нахождении поршня вблизи ВМТ, в цилиндр через форсунку начинает поступать мелко распыленное топливо, которое от соприкосновения с горячим воздухом самовоспламеняется и начинает гореть. При сгорании топлива давление в цилиндре повышается до 5,5 ÷ 8,5 МПа в дизелях без наддува, и до 11,0 ÷ 14,5 МПа в дизелях с высокой степенью наддува. Процесс сгорания

40 % топлива в конце такта сжатия близок к изохорному (изображен на индикаторной диаграмме линией 3 − 4 ) и происходит при нахождении поршня вблизи ВМТ.

Третий такт – расширение (рабочий ход) . В начале такта расширения топливо продолжает поступать в цилиндр дизельного двигателя, и процесс сгорания

60 % топлива при начале движения поршня от ВМТ к НМТ близок к изобарному (процесс 4 − 5 на диаграмме). По окончании сгорания топлива происходит расширение продуктов сгорания (процесс 5 − 6 на индикаторной диаграмме). Расширяющиеся продукты сгорания воздействуют на поршень, совершая полезную работу. Давление газов в цилиндре двигателя и их температура в ходе процесса расширения понижаются.

Четвертый такт – выпуск. По окончании хода расширения открывается выпускной клапан, и поршень начинает движение от НМТ к ВМТ. При этом происходит выпуск отработавших газов через выпускной клапан (процесс 6 −1 на индикаторной диаграмме). Давление в цилиндре в процессе выпуска газов несколько выше атмосферного за счет гидравлического сопротивления выпускного клапана.

Таким образом в четырехтактном дизельном двигателе полезным является только такт расширения (рабочий ход), остальные три такта осуществляются за счет кинетической энергии вращающегося коленчатого вала с маховиком и работы других цилиндров двигателя.

Процессы газообмена в цилиндре дизельного двигателя (фазы газораспре-деления) могут быть изображены на двух окружностях, обозначающих периоды открытия впускных и выпускных клапанов в функции угла поворота коленчатого вала. Такие диаграммы называются диаграммами газораспределения или круговыми диаграммами.

В 4-хтактных дизелях на газообмен отведено 550 ÷ 570 градусов поворота коленчатого вала (ПКВ). Процесс газообмена в четырехтактных дизелях можно разбить на следующие периоды (рис. 19):

Свободный выпуск – осуществляется за счет разницы атмосферного давления и давления в цилиндре двигателя в момент открытия выпускного клапана (линия О − А диаграммы). При этом газы с большой скоростью устремляются в выпускной патрубок двигателя. Продолжительность периода свободного выпуска примерно соответствует углу предварения открытия выпускного клапана (ϕ1 = 40 ÷ 50° ПКВ). Тепловая и кинетическая энергия выпускных газов, как правило, используется для привода турбокомпрессора или работы утилизационных котлов.

Принудительный выпуск – теоретически начинается в НМТ и заканчивается в ВМТ. Это принудительное выталкивание продуктов сгорания из цилиндра телом поршня.

Продувка – в конце хода выпуска открывается впускной клапан (линия О − С , ϕ 3 = 50 ÷ 60° ПКВ до ВМТ), а выпускной остается открытым. При двух открытых одновременно клапанах происходит продувка камеры сгорания воздухом и удаление оставшихся в цилиндре газов. Кроме того, продувка снижает температуру стенок камеры сгорания, поршня и выпускных клапанов, улучшая условия работы и увеличивая срок их службы. Продолжительность продувки составляет

Наполнение – теоретически начинается в ВМТ, а фактически – с момента закрытия выпускного клапана (линия O − D , ϕ 4 = 50 ÷ 55° ПКВ за ВМТ) и частично протекает одновременно с продувкой. Окончание наполнения совпадает с приходом поршня в НМТ.

Дозарядка – поршень движется вверх по ходу сжатия, а впускной клапан некоторое время остается открытым до момента, соответствующего линии O − B на диаграмме (ϕ 2 = 30 ÷ 40° ПКВ после НМТ). Воздух продолжает поступать в цилиндр по инерции и несколько увеличивает плотность заряда в цилиндре.

Принцип действия двухтактного дизеля

Из рассмотрения индикаторной диаграммы четырехтактного дизельного двигателя видно, что он только половину времени, затраченного на цикл, работает как тепловой двигатель (такты сжатия и расширения). Остальное время (такты впуска и выпуска) двигатель работает как воздушный насос. Более полно время, отводимое на рабочий цикл, используется в двухтактных дизелях, в которых рабочий цикл осуществляется за один оборот коленчатого вала. Необходимая замена отработавших газов свежим воздухом происходит на небольшой части хода поршня в конце такта расширения и в начале такта сжатия, и составляет примерно 140 ÷ 150 ° ПКВ.

В отличие от четырехтактного, в двухтактном дизеле вместо впускных и выпускных клапанов в стенке цилиндра выполнены впускные (продувочные) ПО и выпускные ВО окна (рис. 20). Продувочным насосом ПН воздух нагнетается в воздушный ресивер Р, и через продувочные окна ПО поступает в цилиндр двигателя. Продукты сгорания топлива покидают цилиндр через выпускные окна ВО и выпускной патрубок ВП. Открытие и закрытие продувочных и выпускных окон осуществляется телом поршня при его движении в цилиндре.

Рабочий цикл двухтактного дизеля изображен на рис. 21 и состоит из следующих тактов:

Первый такт – сжатие. Поршень находится в НМТ. Продувочные и выпускные окна полностью открыты. При этом происходит продувка цилиндра, продолжающаяся до тех пор, пока поршень, двигаясь вверх, не перекроет продувочные окна (процесс 7 − 6 на диаграмме). При последующем движении поршень закроет выпускные окна, причем в период, изображенный на диаграмме линией 6 −1, из цилиндра выталкивается часть свежего заряда воздуха. После закрытия поршнем выпускных окон, начинается сжатие воздуха, сопровождающееся повышением давления и температуры (процесс сжатия изображен на диаграмме линией 1− 2 ). При подходе поршня к ВМТ в цилиндр впрыскивается мелко распыленное топливо, которое воспламеняется от соприкосновения с горячим воздухом. Часть топлива (

40 %) сгорает при постоянном объеме при нахождении поршня вблизи ВМТ (процесс 2 − 3).

Второй такт – рабочий ход (расширение). Поршень начинает движение от ВМТ к НМТ. Оставшаяся часть топлива (

60 %) сгорает при постоянном давлении (процесс 3 − 4 ). После полного сгорания топлива происходит расширение горячих газов (линия 4 − 5 ), которое заканчивается, когда поршень своей кромкой откроет выпускные окна в точке 5. С этого момента начинается свободный выпуск отработавших газов, сопровождающийся резким понижением давления в цилиндре (процесс 5 − 6 ). В точке 6 поршень открывает продувочные окна и начинается продувка цилиндра – принудительное вытеснение из него потоком воздуха отработавших газов и заполнение свежим зарядом воздуха (процессы 6 − 7 и 7 − 6 на диаграмме).

Теоретически при одинаковых размерах цилиндра и равных числах оборотов в минуту двухтактный дизель может развивать мощность в 2 раза большую, чем четырехтактный. В действительности мощность двухтактного дизеля (при прочих равных условиях) больше лишь в 1,7 ÷ 1,8 раза, чем у четырехтактного, так как часть хода поршня затрачивается на процессы выпуска и продувки. Кроме того на привод навешенного на двигатель продувочного насоса затрачивается 6 – 8 % мощности двигателя.

Читать еще:  Устройство для запуска двигателя автомобиля 7 букв

Весь процесс газообмена двухтактного дизеля можно условно разделить на следующие периоды (рис. 22):

Свободный выпуск – начинается с момента открытия поршнем выпускных окон (линия О − b ) и заканчивается в момент открытия поршнем продувочных окон (линия O − d ). В этот период происходит интенсивный выброс отработавших газов в выпускной тракт за счет перепада давлений в цилиндре (

0,45 МПа) и в выхлопном патрубке (

Принудительный выпуск и продувка – начинаются в точке d и заканчиваются в момент закрытия продувочных окон (линия O − d ′ ). При этом происходит принудительное вытеснение отработавших газов продувочным воздухом и одновременное заполнение цилиндра свежим зарядом.

Потеря заряда воздуха – объясняется тем, что верхние кромки выпускных окон расположены выше продувочных. Поршень при движении к ВМТ до момента закрытия выпускных окон (линия O − a ) успевает вытолкнуть через выпускные окна часть поступившего в цилиндр воздуха. Фаза потери заряда воздуха является нежелательной, поэтому существует ряд конструктивных решений для замены ее на фазу дозарядки. Например, вместо щелевой схемы продувки, описанной выше, используют прямоточную клапанно-щелевую схему. В таких конструкциях дизелей выпускные окна отсутствуют, а вместо них в крышке цилиндра устанавливается выпускной клапан, приводимый в действие от механизма газораспределения.

Литература

Судовые энергетические установки. Дизельные и газотурбинные установки. Болдырев О.Н. [2003]

Четырехтактный двигатель, устройство и принцип работы

В карбюраторном четырёхтактном двигателе рабочий цикл происходит следующим образом.

История

Примерно 1854-1857 годов итальянцы Евгенио Барсанти и Феличче Матоци создали устройство, которое, согласно существующим сведениям, походило на 4 тактный мотор. Несмотря на это, 4 тактный мотор был запатентован только в 1861 Алфоном де Роше, поскольку изобретение итальянцев было потеряно.

В первый раз пригодный к работе 4 тактный мотор был создан немецким инженером Николаусом Отто, в честь которого четырехтактный цикл назвали циклом Отто, а применяющий свечи зажигания 4 тактный мотор – двигателем Отто.

Виды двигателей внутреннего сгорания

В зависимости от типа потребляемого топлива двигатели внутреннего сгорания (ДВС) различают по видам:

  1. Карбюраторный бензиновый движок.
  2. Дизельный мотор.
  3. Газовый двигатель.

Карбюраторные силовые агрегаты работают на бензине, используя принудительное зажигание. Принцип работы карбюраторных моторов: топливо в расчетных количествах поступает в рабочий цилиндр после смешивания его с воздушными массами.

Дизели работают на дизельном топливе. Принцип работы: при помощи форсунок подаваемое дизельное топливо обогащается воздухом непосредственно в цилиндрах.

Газовый двигатель внутреннего сгорания использует пропано-бутановый газ. Принцип работы газового мотора состоит в предварительном смешивании газа с кислородом перед подачей его в цилиндр.

Конструкция агрегата

Устройство 4 тактного двигателя выглядит таким образом: распредвал размещен в крышке цилиндра и приводится в действие с помощью ведущего колеса, вмонтированного на коленчатом вале. В устройстве 4 тактного двигателя распределительный вал способен открывать и закрывать впускной и выпускной клапан, но лишь один из них, а какой конкретно – зависит от расположения поршня. Помимо этого, на распределительном вале расположены кулачки, с помощью которых приводятся в действие коромысла клапанов.

После своего срабатывания коромысла начинают воздействовать на один из двух клапанов, что приводит к его открытию. Стоит отметить, что между клапаном и регулировочным винтом должен быть узкий промежуток (его еще называют тепловым зазором) – во время нагрева происходит расширение металла, поэтому в случае неимения или слишком маленького размера зазора клапаны не смогут полностью закрыть каналы впуска и выпуска. Зазор при клапане выпуска должен быть большего размера, чем у клапана впуска, поскольку газы выхлопа более горячие, нежели горючая смесь, и, соответственно, это приводит к тому, что клапан выпуска нагревается больше клапана впуска.

Вот и все описание устройства 4 тактного двигателя.

Недостатки четырёхтактных двигателей:

Все холостые ходы (впуск, сжатие, выпуск) совершаются за счёт кинетической энергии, запасённой кривошипно-шатунным механизмом и связанными с ним деталями во время рабочего хода, в процессе которого химическая энергия топлива превращается в механическую энергию движущихся частей двигателя. Поскольку сгорание происходит в доли секунд, то оно сопровождается быстрым увеличением нагрузки на крышку (головку) цилиндра, поршень и другие детали двигателя внутреннего сгорания. Наличие такой нагрузки неизбежно приводит к необходимости увеличить массу движущихся деталей (для повышения прочности), что в свою очередь сопровождается ростом инерционных нагрузок на движущиеся детали.

Уступают по мощности двухтактным.

К незначительным недостаткам, которые с лихвой окупаются достоинствами, можно отнести работы по регулировке теплового зазора клапанов и время разгона с места, которое несколько больше, чем у двухтактных. Специализированное, мощное оборудование для ремонта и обслуживания. Четырехтактные ДВС имеют большие размеры, их детали более объёмны, сложны. Для осуществления ремонта таких двигателей, необходимо использовать тяжелое гаражное оборудование: стенды-кантователи, стенды для ремонта ДВС, кран-манипулятор и т.д.

Работа 4 тактного двигателя

Как уже было сказано, работа 4 тактного двигателя состоит из двух оборотов коленвала или, еще можно сказать, четырех тактов поршня.

Работа 4 тактного двигателя происходит таким образом:

  1. (впуск). Поршень продвигается в нижнюю сторону, что приводит к открытию клапана впуска. В итоге горючая смесь оказывается в цилиндре, куда она попадает из карбюратора. По достижению поршнем нижнего положения совершается закрытие клапана впуска.
  2. (сжатие). Поршень передвигается в верхнюю сторону, что провоцирует сжимание горючей смеси. После того, как поршень приближается к верхней мертвой точке, совершается возгорание сжатого поршнем бензина.
  3. (расширение). Происходит возгорание бензина, в результате которого он сгорает – это приводит к растяжению горючих газов и, соответственно, к движению поршня вниз (два клапана оказываются закрытыми).
  4. (выпуск). По инерции коленчатый вал продолжает кругооборот вокруг своей оси, а поршень – продвигаться вверх. Вместе с этим происходит открытие клапана выпуска, откуда выхлопные газы попадают в трубу. Когда поршень доходит до верхней мертвой точки, совершается закрытие клапана впуска.

По окончанию работы 4 тактного двигателя четыре такта проходят заново.

Рабочий цикл карбюраторного двигателя:

— Такт впускаВ течение этого такта поршень опускается из верхней мёртвой точки (ВМТ) в нижнюю мёртвую точку (НМТ). В это время кулачки распредвала открывают впускной клапан, и через этот клапан в цилиндр засасывается свежая топливно-воздушная смесь.
— Такт сжатия Поршень идёт из НМТ в ВМТ, сжимая рабочую смесь. При этом значительно возрастает температура смеси. Отношение рабочего объёма цилиндра в НМТ и объёма камеры сгорания в ВМТ называется степенью сжатия. Степень сжатия — очень важный параметр, обычно, чем она больше, тем больше топливная экономичность двигателя. Однако, для двигателя с большей степенью сжатия требуется топливо с большим октановым числом, которое дороже. Такт расширения, или рабочий ход

Незадолго до конца цикла сжатия топливовоздушная смесь поджигается искрой от свечи зажигания. Во время пути поршня из ВМТ в НМТ топливо сгорает, и под действием тепла сгоревшего топлива рабочая смесь расширяется, толкая поршень. При расширении газы совершают полезную работу, поэтому ход поршня при этом такте коленчатого вала называют рабочим ходом. Степень «недоворота» коленчатого вала двигателя до ВМТ при поджигании смеси называется углом опережения зажигания. Опережение зажигания необходимо для того, чтобы сгорание топлива успело, полностью закончится к моменту достижения поршнем НМТ, то есть для наиболее эффективной работы двигателя. Сгорание топлива занимает практически фиксированное время, поэтому для повышения эффективности двигателя нужно увеличивать угол опережения зажигания при повышении оборотов. В старых двигателях эта регулировка производилась механическим устройством (центробежным и вакуумным регулятором, воздействующим на прерыватель). В современных двигателях для регулировки угла опережения зажигания используют электронику.

Гифка наглядно демонстрирует процесс работы четырехтактного двигателя

— Такт выпуска После НМТ рабочего цикла открывается выпускной клапан, и движущийся вверх поршень вытесняет выхлопные газы из цилиндра двигателя. При достижении поршнем ВМТ выпускной клапан закрывается, и цикл начинается сначала.

Полностью очистить цилиндры двигателя от продуктов сгорания практически невозможно (слишком мало времени), поэтому при последующем впуске свежей горючей смеси она перемещается с остаточными отработавшими газами и называется рабочей смесью.

Коэффициент остаточных газов характеризует степень загрязнения свежего заряда отработавшими газами и представляет собой отношение массы продуктов сгорания, оставшихся в цилиндре, к массе свежей горючей смеси. Для карбюраторных двигателей коэффициент остаточных газов находится в пределах 0,06-0,12.

По отношению к рабочему ходу такты впуска, сжатия и выпуска являются вспомогательными.

Рабочий цикл дизельного двигателяРабочие циклы четырёхтактного дизеля и карбюраторного двигателя существенно различаются по способу смесеобразования и воспламенения рабочей смеси. Основное отличие состоит в том, что в цилиндр дизеля при такте впуска поступает не горючая смесь, а воздух, который из–за большой степени сжатия нагревается до высокой температуры, а затем в него впрыскивается мелкораспыленное топливо, которое под действием высокой температуры воздуха самовоспламеняется.

Функционирование двухтактного агрегата

Хоть и статья не об этом, однако стоит коротко описать функционирование двухтактного двигателя с целью сравнить их. Как становится понятно из наименования, функционирование такого мотора проходит только через два такта.

  1. Поршень продвигается наверх, что приводит к сжатию горючей смеси, после которого (без достижения верхней мертвой точки) она воспламеняется. По достижению поршнем верхней мертвой точки открываются окна впуска в стене цилиндра, из-за чего горючая смесь перетекает в кривошипную камеру.
  2. Под действием растягивающихся газов поршень продвигается в нижнюю сторону. Пребывая в нижнем положении, поршень открывает окна впуска и выпуска. Газы попадают в трубу выхлопа, а на их месте оказывается горючая смесь.

Преимущества четырёхтактных двигателей:

-экономичность расхода топлива; -надежность; -простота обслуживания; -четырехтактный двигатель работает тише и устойчивей.
В отличие от двухтактного двигателя, в котором смазка коленвала, подшипников коленвала, компрессионных колец, поршня, пальца поршня и цилиндра осуществляется благодаря добавлению масла в топливо; коленвал четырехтактного двигателя находится в масляной ванне. Благодаря этому нет необходимости смешивать бензин с маслом или доливать масло в специальный бачок. Достаточно залить чистый бензин в топливный бак и можно ехать, при этом отпадает необходимость покупки специального масла для 2-тактных двигателей.

Так же на зеркале поршня и стенках глушителя и выхлопной трубы образуется значительно меньше нагара. К тому же, в 2-тактном двигателе происходит выброс топливной смеси в выхлопную трубу, что объясняется его конструкцией.

Статьи по теме: 1. Устройство и принцип действия двухтактного двигателя внутреннего сгорания; 2. Роторные двигатели с послойным распределением заряда; 3. Недымящий двигатель Кушуля; 4. Роторный двигатель внутреннего сгорания Лаптевых; 5. Дизельный двигатель — поршневой двигатель внутреннего сгорания, работающий от воспламенения распыленного топлива.

Принцип работы и основная характеристика

Рабочий цикл ДВС (двигателя внутреннего сгорания) состоит из ряда процессов, при которых усиливается мощность двигателя, воздействующего на коленчатый вал. Состоит рабочий цикл из нескольких этапов:

  • цилиндр заполняется топливной смесью;
  • смесь сжимается;
  • топливная смесь воспламеняется;
  • газы расширяются и цилиндр очищается.

В ДВС поршень двигается в одном направлении (вниз или вверх). Коленчатый вал совершает один оборот в два такта. Рабочим ходом поршня называют тот, при котором совершается полезная работа, и расширяются сгоревшие газы.

Двухтактными называют двигатели, в которых цикл совершается в один оборот коленчатого вала или за два такта. Четырехтактные агрегаты характеризуются совершением рабочего цикла за два оборота коленвала или за четыре такта.

Основные характерные показатели 4 тактного двигателя:

  1. За счет движения рабочего поршня происходит обмен газов.
  2. Агрегат оснащен газораспределительным механизмом, позволяющим цилиндровую полость переключать на впуск и выпуск.
  3. Происходит обмен газов в момент отдельного полуоборота коленвала.
  4. Шестерные редукторы и ременная цепная передача дают возможность изменить моменты впрыскивания бензина, зажигания и привода газораспределительного механизма по отношению к частоте вращения коленвала.

Применение

Четырёхтактные двигатели могут быть как бензиновыми, так и дизельными. Они находят самое широкое применение в качестве первичных двигателей на стационарных и транспортных энергоустановках.

Как правило, четырёхтактные двигатели используются в тех случаях, когда имеется возможность более или менее широко варьировать соотношение оборотов вала со снимаемой мощностью и крутящим моментом либо тогда, когда это соотношение не играет роли при работе машины. Например, двигатель, нагруженный электрогенератором, в принципе может иметь любую рабочую характеристику и согласуется с нагрузкой только по рабочему диапазону оборотов, которые в принципе могут быть любыми, приемлемыми для генератора. Использование промежуточных передач вообще делает четырёхтактный двигатель более адаптированным к нагрузкам в самых широких пределах. Они же являются более предпочтительными в тех случаях, когда установка длительное время работает вне установившегося режима — благодаря более совершенной газодинамике их работа в переходных режимах и режимах со снятием частичной мощности оказывается более устойчивой.

При работе на вал в заданном диапазоне оборотов, особенно тихоходный (гребной вал теплохода), предпочтительнее использование двухтактных двигателей, как имеющих более выгодные массово-мощностные характеристики на низких оборотах.

Баланс энергии

Двигатели Отто имеют термический КПД около 40 %, что с механическими потерями дает фактический КПД от 25 до 33%.

Современные двигатели могут иметь уменьшенный КПД для удовлетворения высоких экологических требований.

КПД ДВС можно повысить с помощью современных систем процессорного управления топливоподачей, зажиганием и фазами газораспределения. Степень сжатия современных двигателей, как правило, имеет значения, близкие к предельным (спорный момент, см. Цикл Миллера).

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector