Auto-park24.ru

Журнал "Автопарк"
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Двигатель 6g74 не gdi что за двигатель

Mitsubishi GDI: Прямой или непосредственный впрыск топлива

Поговорим о «новом слове в двигателестроении» — двигателе, получившем аббревиатуру GDI (Gasoline Direct Injection), что можно перевести как «двигатель с непосредственным впрыском топлива», то есть, топливо на таком двигателе впрыскивается не во впускной коллектор, как на всех остальных двигателях, а прямо в цилиндры двигателя. На данный момент автомобили с двигателями системы GDI выпускают фирмы: Mitsubishi (6G74, 4G93, 4G-73), Toyota (3S-FSE, 1AZ-FSE), Nissan (3.0-litre Engines VG30dd), BOSCH (система Moronic MED7).

Остановимся на некоторых практических рекомендациях для владельцев GDI.

Первое, основное и главное, что надо бы уяснить для себя владельцам таких автомобилей — это качество топлива, которое вы будете заливать в топливный бак. Оно должно быть «самым-самым»: высокооктановым и чистым (по-настоящему высооктановым и по-настоящему чистым). Естественно, совершенно не допускается применения ЭТИЛИРОВАННОГО бензина. Так же не стоит злоупотреблять различного рода «присадками и очистителями», «повышателями октанового числа» и так далее и тому подобное, что находится в изобилии в десятках автомагазинах.

И причиной этого запрета являются сами принципы «построения» топливных насосов высокого давления, то есть принципы «сжимания и нагнетания топлива». Например, на двигателе 6G74 GDI в этом участвует клапан мембранного типа, а на двигателе 4G94GDI — целых СЕМЬ маленьких плунжеров, расположенных в специальной «обойме» похожей на револьверную и работающих по сложному механическому принципу.

И клапан мембранного типа, и плунжера являются деталями высокой точности и их поверхности обработаны с чистотой не менее 14 класса.
Естественно, если в топливе будут посторонние примеси или, не дай Бог, «обыкновенная» грязь, то, само собой разумеется, что через некоторое время эксплуатации топливный насос высокого давления просто-напросто «сядет», то есть, уже не будет нагнетать топливо в вихревые форсунки с нужным давлением.
Конечно, конструкторами предусмотрена очистка топлива, которая имеет несколько ступеней:

· Первая очистка топлива производится «сеточкой» топливоприемника топливного насоса, расположенного непосредственно в топливном баке.
· Вторая очистка топлива осуществляется «обычным» топливным фильтром (на Mitsubishi он располагается под днищем автомобиля, на Toyota в баке).
· Третья очистка топлива происходит при поступлении топлива в топливный насос высокого давления: на «входе» топливопровода стоит «сеточка — стакан», диаметром 4 мм и высотой 9мм.
· Четвертая очистка топлива осуществляется при ВЫХОДЕ топлива из «топливной рейки» обратно в бак — конструктивно «выход» топлива осуществляется опять же через корпус топливного насоса высокого давления: там стоит такая же «сеточка-стакан».
Очистка, согласимся, хорошая, но только не для нашего топлива. Например, можно привести случай с директором автозаправочной станции, ездившим на Mitsubishi-Pajero с двигателем 6G74 GDI. Уж как только он не очищал топливо, как только не берег свою «ласточку», заливая в бак топливо действительно «самое-самое». Но все равно, через некоторое время двигатель начал терять приемистость и, в конце концов, автомобиль начал двигаться еле-еле. А когда разобрали топливный насос высокого давления — руками развели! Все высокоточные, прецизионные детали топливного насоса были такого вида, словно их специально «шкрябали» наждачной бумагой…
Следует помнить, что в баке установлен «вспомогательный» насос подкачки топлива и топливный фильтр (см. рис.). Их неисправность также может вносить свою лепту состояние инжекторной системы.

Первым «звоночком» для владельца двигателя GDI о том, что с его двигателем «что-то не так» становится снижение мощности и приемистости, а если и на это он не обратит внимание, то далее, через некоторое время двигатель начинает отказываться заводиться.

Необходимое примечание: именно на этом этапе владельцу двигателя GDI надо все бросать и «лететь» на СТО занимающуюся ремонтом таких топливных насосов высокого давления, потому что в этом случае что-то еще можно будет поправить и хоть немного, но восстановить.

Проверить и удостовериться в «виновности» в этом топливного насоса высокого давления можно достаточно просто. Для этого можно применить методику, состоящую из нескольких «шагов»:

Шаг 1: «подтверждаем или опровергаем виновность» системы электронного обеспечения управления двигателем (всей электроники), для чего проводим ее диагностику и считывание DTC.

Необходимое примечание: топливный насос высокого давления GDI — высокоточное механическое прецизионное устройство, и из всей «электроники» на нем только электромагнитный клапан, «запирающий» топливо. Система самодиагностики на автомобилях с двигателями GDI — это действительно настолько «продвинутая» система, что иногда нам казалось, что она способна «думать».

Например, компьютер «знает», что двигатель после запуска из «холодного» состояния не способен прогреться за пару минут (проводя эксперименты, мы принудительно изменяли показания датчика температуры охлаждающей жидкости сразу же после запуска двигателя), и реагировал на наши действия лампочкой «CHECK» на приборной панели.
Так же компьютер «знает», сколько «воздуха надо для нормальной работы двигателя», и при его уменьшении (мы имитировали «забитость» воздушного фильтра) так же зажигает лампочку «CHECK» на приборной панели.

Мы провели около тридцати подобных тестов и выяснили, что система настолько «продвинута», что может вызывать уважение.
Однако, несмотря на свою «продвинутость», электронная система не может, она просто не «научена» реагировать на изменение давления топлива, вследствие ухудшения параметров «внутренностей» топливного насоса высокого давления (износа вследствие применения некачественного топлива). Поэтому мы делаем

Шаг 2: проверяем исправность электромагнитного «запирающего» клапана и если здесь все нормально, то делаем

Шаг 3: измеряем давление топливного насоса высокого давления на «выходе». И зная, что оно должно составлять от 40 до 50 кгсм2, смотрим на прибор и делаем вполне определенные выводы.

Автомобили с двигателями GDI пока еще не «научены» ездить на нашем топливе.

Ну а если у вас все же двигатель GDI и «деваться некуда», то единственное, что можно посоветовать — регулярно, через несколько тысяч километров производить полную очистку топливного насоса высокого давления в специализированной мастерской.

Виды впрыска топлива GDI

Начнем с того,что двигатели 4G93 выпускаются двух типов : для «чисто» Японии и для Европы.
И у них есть различия и,можно сказать,довольно основательные.

И не только по конструкции двигателей,топливного насоса высокого давления,но и в самой системе впрыска топлива.
Но для того,что бы и сейчас и в дальнейшем лучше и правильнее понимать друг друга, надо договориться о точности формулировок,что бы не возникало ни разночтений,ни разногласий.

Итак,начнем. Для «чисто» Японии существуют всего два вида впрыска топлива на двигателях GDI :
— режим работы на супер-обедненной топливо-воздушной смеси
( режим ULTRA LEAN COMBUSTION MODE )
— режим работы в стехиометрическом составе топливо-воздушной смеси
( режим SUPERIOR OUTPUT MODE )
Для автомобилей,которые «европейцы», был добавлен еще один режим — ДВУХступенчатый впрыск топлива под названием:
режим TWO-STAGE MIXING.

Переключение режимов работы

ULTPA LEAN COMBUSTION MODE — в данном режиме двигатель работает на скоростях до 115 — 125 км.час при условии, что ускорение совершается спокойно,мягко и плавно,без резкого нажатия на педаль акселератора.
SUPERIOR OUTPUT MODE — этот режим работы включается на скорости свыше 125 км.час или в том случае,если на двигатель «падает» большая нагрузка (прицеп,затяжной подъем в гору и так далее).
TWO-STAGE MIXING — резкий старт с места или резкое ускорение при обгоне.
Переключение режимов из одного в другой происходит автоматически и практически незаметно для водителя, всем управляет бортовой компьютер.

Режим ULTRA-LEAN COMBUSTION MODE

При реализации данного режима двигатель GDI работает на супер-обедненной топливо-воздушной смеси,приблизительно в соотношениях от 37:1 до 43:1. За «идеальное» соотношение принимается 40:1.

Именно при таком соотношении топливо-воздушная смесь сгорает полностью на скоростях спокойного движения автомобиля (без ускорений) до 115-125 кмчас и «выдает» наиболее максимальный крутящий момент на двигатель. Впрыск топлива происходит на такте сжатия,когда поршень еще не дошел до верхней мертвой точки . Топливо впрыскивается компактной струей и, закручиваясь по часовой стрелке, максимально пОлно размешивается воздухом. Время впрыска топлива составляет от 0.3 до 0.8 ms ( за идеальное время принимается 0.5 ms ).

Режим TWO-STAGE MIXING

Это режим двухступенчатого впрыска топлива,то есть, топливо впрыскивается в цилиндр два раза за четыре такта движения поршня.
Посмотрим на рисунок:

Во время первого впрыска топлива на такте впуска состав топливо-воздушной смеси составляет всего такое соотношение,как 60:1.
Это «два раза супер-обедненная смесь»и в таком соотношении она никогда не загорится (не вопламенится) и служит,в основном, для того, что бы охладить камеру сгорания,потому что чем ниже будет ее температура,тем больше войдет туда на такте впуска воздуха и,значит,тем больше топлива — соответственно , можно подать туда на втором такте — такте сжатия (см.рисунок). То есть,все это придумано только для того,что бы увеличить коэфициент наполнения камеры сгорания (тут есть о чем подумать. например,о «черных» свечах зажигания GDI — как ни посмотришь,а они — «черно-черные». И практически — всегда и на всех двигателях,которые приходят на диагностику или ремонт).

А если конкретно, то на такте сжатия в камере сгорания получается состав топливо-воздушной смеси равный 12:1 (сверх-обогащенная топливо-воздушная смесь).

Время впрыска топлива : на такте впуска — 0.5 — 0.8 ms
на такте сжатия — 1.5 — 2.0 ms

Все это позволяет получить максимальную мощность,для сравнения : при одних и тех же оборотах , например, RPM 3000, двигатель GDI «выдает» на 10% больше мощности,чем тот же MPI (распределенный впрыск топлива).

Общее устройство ТНВД GDI

. это только «черт страшен,когда его размалюют», а устройство ТНВД GDI достаточно простое.
Если разобраться и иметь некоторое желание,например.
Посмотрим на фото и увидим в разобранном состоянии односекционный семиплунжерный насос высокого давления GDI :

1-магнитный привод:приводной вал и шлицевый вал с магнитной проставкой между ними
2-опорная пластина плунжеров
3-обойма с плунжерами
4-седло обоймы плунжеров
5-редукционный клапан камеры высокого давления
6-клапан регулируемого высокого давления на выходе с форсунок-регулятор давления топлива
7-пружинный демпфер
8-барабан с нагнетательными камерами плунжеров
9-шайба-разделитель камер низкого и высокого давления с холодильниками для смазки бензином
10-корпус ТНВД с электромагнитным клапаном сброса и с портом для манометра

Читать еще:  Возможно ли поставить газовое оборудование на дизельный двигатель

Порядок сборки и разборки ТНВД показан на фото цифрами. Исключаем только позиции 5 и 6, потому что данные клапана можно устанавливать при сборке сразу же, до установки барабана с плунжерами ( о данных клапанах и их некоторых особенностях будет рассказано в другой статье,посвященной именно им).
После сборки насоса следует закрепить его и начать проворачивать вал,что бы убедиться в том, что все собрано правильно и вращается, не «клинит».
Это так называемая простая «механическая» проверка.
Что бы провести «гидравлическую» проверку,следует проверить работоспособность ТНВД «на давление». (о чем будет рассказано в дополнительной статье).

Да,устройство ТНВД «достаточно простое»,однако.
Много жалоб у владельцев GDI ,много!
И причина,как уже много раз говорилось «на просторах Инета» только одна — наше родное российское топливо.
От которого не только свечи зажигания «краснеют» и с понижением температуры автомобиль заводится отвратительно (если вообще заводится),но и «ласточка» с GDI все чахнет и чахнет с каждым литром залитого в нее русского топлива.
Посмотрим на фото и «покажем пальцем» на все то,что изнашивается в первую очередь и на что надо обратить внимание в первую очередь:

Обойма с плунжерами и барабан с нагнетательными камерами

фото 1 ( в сборе )

,-если вы посмотрите внимательно (приглядитесь),то сразу же заметите некоторые «непонятные потертости» на корпусе барабана. А что же тогда творится внутри?

фото 2 (раздельно)

фото 3 (барабан с нагнетательными камерами)

,- а вот здесь уже хорошо видно — ЧТО представляет из себя наш российский бензин. такая же красноватость,просто-таки ржавчина на плоскости барабана. Естественно,она (ржа),не только здесь остается,а попадает еще и на сам плунжер и на все то,»обо что он трется»,-смотрим фото далее.

,-и на этом снимке хорошо заметно, какие «маленькие неприятности» может принести нам наш — родной — бензин.
Стрелками показаны «некоторые потертости»,из-за которых плунжер (плунжера) перестают нагнетать давление и двигатель начинает «работать как-то не так. «, как говорят владельцы GDI .

Для восстановления ТНВД GDI хорошо бы иметь и «некоторые» запасные части:

. о других «слабых» местах топливного насоса высокого давления GDI будет рассказано в других статьях.
А так же и о многом другом.

Кстати, слышал такую мысль, что все движки с турбо не рекомендуется глушить сразу после окончания движения — необходимо позволить ему поработать минутку-другую на холостых. Так ли это?

Двигатель 6g74

Двигатель GDI 6G74 в наших условиях: Двигатель 6G74 достаточно распространен и надежен. На наш рынок поставлялся единственный бензиновый двигатель — впрысковый GDI V6 3.5 л (202 л. с.) модели 6G74. В то время как для Северной Америки, где Pajero всегда продавался под именем Montero, предлагались модификации двигателя 6G74 без всяких суперсовременных хайтековых технологий. Как будто японцы не знают, какого качества у нас бензин и что его до сих пор последователи Василия Алибабаевича из «Джентльменов удачи» разбавляют ослиной мочой. А еще климат у нас дождливо-снежный, и вода в топливе может оказаться не только путем прямого попадания в бак. Откушав водички, топливный насос высокого давления двигателя 6G74 откидывает копытца, даже и не пискнув. Кроме насоса, в зоне риска находятся форсунки высокого давления, не переваривающие грязь и нештатные присадки. Несколько улучшили ситуацию дополнительные топливные фильтры, с некоторых пор штатно устанавливаемые на официально продаваемые в России двигателя 6G74.

Бензиновый двигатель 6G74, V-образный шестицилиндровый с углом развала цилиндров 600 и верхним расположением распределительных валов и клапанов в головках цилиндров.

Блок цилиндров двигателя 6G74 выполнен из чугуна, головки блока цилиндров и корпус насоса охлаждающей жидкости — из алюминиевого сплава.

Кованный стальной коленчатый вал двигателя 6G74 опирается на четыре подшипника. Крышки подшипников объедены в постель коленчатого вала для повышения жесткости блока цилиндров.

Поршень отлит из специального алюминиевого сплава и соединен плавающим поршневым пальцем с шатуном. Поршневые кольца двигателя 6G74 чугунные. Первое кольцо имеет бочкообразную наружную поверхность, второе кольцо — коническую наружную поверхность со скосом. Маслосъемное кольцо составное, скребкового типа с пружинным расширителем. В двигателе 6G74 головках блока цилиндров расположены камеры сгорания шатрового типа. Впускные и выпускные клапаны изготовлены из жаропрочной стали, для автоматической регулировки зазора в приводе клапанов установлены гидрокомпенсаторы, для двигателей SОНС литой распределительный вал опирается на четыре подшипника. Существует две разновидности двигателя 6G74 — 12 клапанные и 24 клапанные. Для 12-клапанных двигателей 6G74 крышки подшипников объединены в постель вала. Для 24-клапанных двигателей 6G74 вал расположен в туннельном картере головки цилиндров. Для двигателей DОНС литой распределительный вал опирается на пять подшипников и закреплен крышками. Распределительные валы приводятся во вращение от коленчатого вала зубчатым ремнем. Для 24-клапанных двигателей 6G74 натяжение ремня регулируется автоматическим натяжителем. Коромысла с роликами отлиты из алюминиевого сплава и имеют износостойкую опорную поверхность, контактирующую с кулачком распределительного вала.

Полное описание, технические характеристики:

Марка двигателя: 6G74

Максимальная мощность, л.с./rpm: 240 (177) / 5500

Макс. крутящий момент,кг*м (Н*м) при об./мин: 35 (343) / 2500

Удельная мощность, кг/л.с. 8,13

Тип двигателя: DOHC 24 valve V-type 6 cylinder

Дополнительная информация о двигателе: J-TLEV. GDI

Используемое топливо: бензин

Система снижения количества вредных выбросов (LEV): J-TLEV. GDI

Флагман Mitsubishi Pajero встал в модельном ряду компании над Mitsubishi Outlander и составляет конкуренцию Land Rover Discovery, Mercedes-Benz G-Class, Toyota Land Cruiser Prado и многим другим.

Силовая поддержка популярной модели в основном состоит из дизельных моторов, но можно найти под капотом и бензиновые агрегаты объемом от 2,5 до 3,0 литров, а также классические V-образные шестерки.

Объемный 2,4-литровый 4G64 вошел в семейство Sirius и получил базу от 2,0-литровой версии 4G63. В новой модели изменили высоту чугунного блока цилиндров, увеличили ход поршня и расширили диаметр цилиндров.

Изначально алюминиевая ГБЦ была 8-клапанная с одним валом, затем ее заменили на 16-клапанную с одним распредвалом, а позже появились два распределительных вала.

На всех модификациях двигателя Mitsubishi 4G64установлены гидрокомпенсаторы, что избавляет водителя от необходимости регулировать зазоры клапанов, но ресурс гирокомпенсаторов составляет около 50 тысяч километров.

Ременной привод ГРМ требуется менять после каждых 90 тысяч километров.

В качестве проблемных мест указаны балансировочные валы, которым иногда недостает смазки.

Также отмечены вибрации двигателя из-за проблемных форсунок, датчиков температуры, замусоренной заслонки дросселя и регулятора ХХ. 4+

В 1986 году Mitsubishi представила семейство шестицилиндровых моторов 6G7: 2,0-литровый 6G71 и 3,0-литровый 6G72. Блок цилиндров последнего получил V-образную форму с углом развала 60 градусов.

Алюминиевая ГБЦ имеет 12 клапанов SOHC 12V и гидрокомпенсаторы, избавляющие от регулировки зазоров клапанов.

Позже на двигатель 6G72 устанавливали 24-клапнанные ГБЦ с одним распредвалом, что увеличивало производительность до 185 л.с.

К основным недостаткам двигателя относится высокий расход масла из-за несовершенных маслосъемных колец и колпаков.

Стуки двигателя связаны с гидрокомпенсаторами или проворачиванием вкладышей клапанов, что грозит капремонтом.

Проблема плавающих оборотов чаще всего связана с регулятором ХХ или возможно требуется чистка заслонки дросселя.

Также двигатель 6G72 каждые 100 тысяч километров требует замены свечей, для чего приходится снимать коллектор впуска. 5-

Силовой агрегат 6G74 стал более крупной версией из семейства Cyclone V6 и появился в 1992 году.

Инженеры доработали блок цилиндров под коленвал с большим ходом поршня. А диаметр цилиндров расширили до 93 мм. Все модификации ГБЦ получили гидрокомпенсаторы. Одну из самых простых SOHC 24V со степенью сжатия 9,5 и мощность 180-222 л.с. применяли на головках двигателей для Pajero Sport, Pajero 2/3/4 и других.

На базе двигателя мощностью 280 л.с. и ГБЦ DOHC со степенью сжатия 10 был разработан Mitsubishi Pajero Evolution.

Ременной привод ГРМ требует замены каждые 90 тысяч километров.

Минусы 3,5-литрового Mitsubishi 6G74 такие же как и у его менее объемного собрата Mitsubishi 6G72: жор масла, стуки, плавающие обороты. Помимо этого нередко возникают проблемы с GDI. 4

Самый габаритный двигатель серии Cyclone V6 6G75 3.8 л появился в 2003 году и устанавливался на Mitsubishi Pajero 3. От 3,5-литрового предшественника новый мотор отличал блок цилиндра на 22 мм выше с коленвалом с ходом поршня 90 мм и расширенным диаметром цилиндров. Шатуны стали кованными.

Одновальная ГБЦ получила систему ИФГР и высоту подъема клапанов MIVEC.

В ГРМ использован ремень, требующий замены каждые 90 тыс. километров наряду с заменой ролика и помпы.

Недостатки 6G75 аналогичны всем минусам серии Cyclone V6 и повышенный расход масла, стуки и плавающие обороты никуда не делись. 4

Mitsubishi 4G64 2.4 л

Mitsubishi 6G72 3.0 л

Mitsubishi 6G74 3.5 л

Mitsubishi 6G75 3.8 л

Материал блока цилиндров

Клапанов на цилиндр

Диаметр цилиндра, мм

10 (SOHC 12V/DOHC 24V)

Объем двигателя, куб.см

Мощность двигателя, л.с./об.мин

200-270/6000-6250 (1 Gen.)

265-280/6500 (3 Gen.)

141-162/5000-5500 (SOHC 12V)

170-185/5000-5500 (SOHC 24V)

197-225/5500-6000 (DOHC 24V)

215-240/5500-5750 (DOHC 24V GDI)

280-324/6000 (DOHC 24V Turbo)

202-245/5000-5500 (DOHC GDI)

Крутящий момент, Нм/об.мин

275-309/3000 (1 Gen.)

353-373/2750-3000 (2 Gen.)

343-407/2750-3000 (3 Gen.)

232-250/3600-4000 (SOHC 12V)

255-265/4500 (SOHC 24V)

265-278/4500 (DOHC 24V)

299-304/3250-3500 (DOHC 24V GDI)

415-427/2500 (DOHC 24V Turbo)

318-343/4000 (DOHC GDI)

Вес двигателя, кг

Расход топлива, л/100 км (для Evolution IX)

Двигатель 6G72 – это мощный шестицилиндровый силовой агрегат, который появился в 1986 году и смог продержаться на конвейере вплоть до 2008 года.

Этот мотор зарекомендовал себя как чрезвычайно надежный, экономичный и простой в обслуживании двигатель. Благодаря своим отличным эксплуатационным характеристикам этот силовой агрегат пользуется заслуженной любовью у автовладельцев.

Двигатель 6G72 имеет следующие технические характеристики:

Двигатель 6G72 устанавливался на Mitsubishi Galant, Eclipse III, Pajero/Montero, Dodge Daytona, Ram 50, Chrysler LeBaron, Sebring Coupe и ряд других популярных в конце прошлого века автомобилей.

Отметим, что этот японский автопроизводитель постоянно совершенствовал и модернизировал свои двигатели 6g72. Фактически изменения в его конструкцию вносились каждый год, что и объясняет столь большое количество разновидностей этих двигателей. Все они зарекомендовали себя как довольно надежные и простые в эксплуатации.

Читать еще:  Через сколько менять масло дизельном двигателе легкового автомобиля

Мотор 6g72 имел ременной привод газораспределительного механизма, при этом конструкция силового агрегата такова, что при обрыве ремня поршень соударяется с клапанами, вынуждая проводить дорогостоящий ремонт. Отметим, что такие сервисные работы по замене ремня ГРМ выполняются каждые 90 000 километров.

В восьмидесятых годах прошлого века японская компания Mitsubishi представила новое семейство инжекторных шестицилиндровых бензиновых двигателей 6g72, которые сначала были представлены двух (6G71) и трехлитровым (6G72) силовым агрегатом.

Вскоре предложение было расширено ещё тремя моторами, которые широко использовались на различных автомобилях этого японского автопроизводителя и устанавливались на американские машины по лицензии. Это V-образный чугунный шестицилиндровый двигатель, который имеет угол развала цилиндров в 60 градусов. Головка блока цилиндров у двигателя 6g72 выполнялась из алюминия, что позволило существенно облегчить этот силовой агрегат, улучшив показатели температурной стойкости.

Популярностью пользовался 3,5-литровый двигатель 6g74, который был точной копией базовой модели с расточенными цилиндрами. Он был прост в обслуживании, надежен и экономичен. Он также имел ременной привод ГРМ и требовал регулярной замены этого механизма каждые 70-90 тысяч километров. Двигатели 6g74 устанавливались на американские внедорожники и ряд топовых модификаций Паджеро.

Первоначально этот мотор и двигатели 6g74 имели два клапана на цилиндр, однако в середине девяностых годов проведен рестайлинг, после чего мотор получил новую головку блока цилиндров и клапанный механизм, который имел уже на каждый цилиндр по четыре клапана. За счёт подобной компоновки, а также инжекторной системы впрыска существенно повысилась мощность мотора. Предлагались как атмосферные версии, мощность которых составляла 141 лошадиную силу, так и турбированные двигатели (модификации 6G72TT), которые развивали 324 лошадиных силы мощности.

Несмотря на свой внушительный объем, двигатели 6g74 отличаются экономичностью и расходовали в городе 15-17 литров бензина на крупноразмерных внедорожниках и больших моделях от Dodge.

Также отметим соответствие экологическим нормам Euro 4. Мотор 6g74 в отличие от большинства других силовых агрегатов, выпущенных в восьмидесятых и девяностых годах прошлого века, изначально был разработан для использования на 95 бензине. Поэтому попытки заправлять 6g74 низкооктановым топливом неизменно приводили к поломкам этого силового агрегата.

Обслуживание двигателя 6g74 не представляет сложности и подразумевает регулярную замену масла и работы с приводом ГРМ.

В целом мотор 6g74 получился довольно успешным, за исключением разве что высокого расхода масла, что часто отмечается на старых автомобилях. Обусловлено это проблемами с маслосъемными колпачками, которые на 6g74 необходимо заменять при первых признаках расхода масла.

На сегодняшний день существует множество различных программ тюнинга этого двигателя:

  1. Так, возможен чип-тюнинг, когда изменяется прошивка управляющей электроники. Вы можете использовать новый блок управления, что позволит вам получить дополнительно около 20 лошадиных сил. В продаже можно найти десятки различных вариантов чип тюнинга этого мотора.
  2. Экстремальные варианты тюнинга подразумевают использование турбонаддува и фронтального интеркулера. В данном случае производится замена топливного насоса, устанавливается новый буст контроллер и ряд других элементов. При этом необходимо использовать соответствующие кит-комплекты. Подобные работы позволяют при давлении турбины в 1 бар поднять мощность этого двигателя до уровня в 400 лошадиных сил.

Двигатель Mitsubishi 6G72

Двигатель Mitsubishi 6G72 является достойным представителем серии 6G. Агрегат представляет собой V-образный, 3-литровый двигатель, имеющий 6 цилиндров и 12 клапанов с одним распредвалом. Он выпускается с 1986 года. ДВС с успехом работает в составе автомобилей «Крайслер». В семейство моторов 6G входят также модели серий 71, 73, 74 и 75. Все они находятся на производстве и регулярном выпуске.

Общее описание

ДВС Mitsubishi 6G72 имеет следующие особенности:

· в составе конструкции имеются подшипники (4 шт.), на которые опирается коленвал;

· крышки этих подшипников объединены в единую постель, что повышает уровень жесткости блока цилиндров;

· материал поршней – алюминиевый сплав;

· поршни соединены пальцем плавающего типа, в составе которого имеется шатун;

· поршневые кольца изготовлены из чугуна, одно из них имеет форму конуса со скосом;

· скребковые составные маслосъемные кольца с расширителем пружинного типа;

· в составе ГБЦ имеется набор шатровых камер сгорания;

· материал клапанов – огнеупорная сталь;

· для автоматической регулировки зазора предусмотрены гидрокомпенсаторы.

На современном рынке представлен 5 модификациями и с турбонаддувом. В ГБЦ входят распредвалы (клапаны), которые располагаются в верхней части конструкции. Двигатель относится к облегченному типу, который пришел на замену марке 6G71. Выпускается до сих пор, несмотря на массовый выпуск новой модели 6G75.

Технические особенности двигателя 6G72

Несмотря на ряд модификаций двигателя, представленный агрегат всегда производится с объемом 3 литра. Также ряд поршней из алюминия покрыт графитом, что обеспечивает дополнительную защиту. Шатровые камеры сгорания помещены внутрь ГБЦ, при этом работает GDI-установка прямого впрыска. Турбированная версия двигателя характеризуется наибольшей мощностью в серии. Установка этого мотора осуществлялась на автомобили Dodge Stels, а также Mitsubishi 3000 GT. При производстве ДВС Mitsubishi 6G72 производитель сосредоточился на попытке увеличения уровня мощности: стал выпускать турбированные версии, а для снижения уровня потребления топлива модернизировал систему клапанов. Также увеличился расход масла (до 800 г на 1 тыс. км). Это привело к тому, что капитальный ремонт такого двигателя потребуется уже после 150–200 тыс. км пробега.

Почему несколько моделей двигателя

По мнению многих экспертов, широкую линейку моторов Mitsubishi 6G72 производитель выпускает по причине стремления варьировать показатель мощности. В зависимости от версии мотор выдает от 141 до 225 л. с. (если речь идет о примитивной модификации 12- или 24-клапанного двигателя), от 215 до 240 л. с. (если говорить о версии прямого впрыска топлива) и от 280 до 324 л. с. в турбированных версиях. Крутящий момент у представителей линейки тоже разный. К примеру, в стандартных атмосферных версиях значения этого параметра находятся в пределах от 232 до 304 Н·м. Турбированные версии моторов имеют крутящий момент от 415 до 427 Н·м.

Особенности турбированных версий

Моторы с 24 клапанами начали выпускаться раньше, схема DOHC используется с начала 90 годов прошлого века. Представители 24-клапанных серий имеют только 1 распредвал, только часть из них имела в составе конструкции GDI прямой впрыск. Это и привело к увеличению степени сжатия. В состав турбированных версий ДВС Mitsubishi 6G72 входит компрессор марки MHI MHI TD04-09B. В паре с ним функционируют охладители, 2 шт. Такое количество необходимо по причине того, что один охладитель не в состоянии справиться с требуемым объемом воздушных ресурсов для 6 цилиндров. Модернизации подверглись также набор датчиков, масляные радиаторы, поршни и форсунки.

Преимущества и недостатки двигателя 6G72

· конструкция высокой надежности;

· увеличенный ресурс эксплуатации;

· экономия на расходе топлива;

· нет необходимости регулировать клапаны каждые 15 тыс. км, как это было в 6G71.

· разнообразие модельного ряда усложняет ремонт;

· разделение ГБЦ на 2 части, что влияет на обслуживание и увеличивает расход масла;

· в случае езды по городу большой шанс перегрева мощного двигателя;

· частое соскальзывание ремня ГРМ, что заставляет клапаны гнуться.

Изначально производителем закладывался большой потенциал в ДВС Mitsubishi 6G72. Он может развивать до 350 л. с., не утрачивая ресурса. Однако от модернизации с внедрением турбины эксперты рекомендуют отказаться. Более подробно об этой модели можно узнать из нашего каталога.

GDI двигатель: что это такое

История двигателей GDI (Gasoline Direct Injection) берет начало в 1925 году, когда шведский инженер Е.Хесселаман создал легкую и экономичную установку с искровым зажиганием, работающую сразу на нескольких видах топлива: бензине, солярке, масле и керосине. Подача топлива в камеры сгорания осуществлялась насосом, а для воспламенения слабо сжимаемой смеси использовались свечи. По мере изменения внешних температур менялся и вид топлива. В сравнении с предшественником современные GDI-агрегаты многократно улучшены и заслужили признание ведущих компаний мирового автопрома, хотя в качестве топлива в них используется лишь бензин. Первой серийный выпуск авто с установкой Gasoline Direct Injection начала компания Daimler-Benz. Рассмотрим подробнее, что такое GDI двигатель? Как он устроен? Что делает его популярным? И есть ли у него недостатки?

Чем отличается GDI двигатель

В GDI-двигателях реализована идея прямого впрыска топлива в камеру сгорания. Подобное решение для остальных бензиновых агрегатов нехарактерно. GDI двигатели объединили в себе некоторые черты двигателей на бензине и на дизельном топливе, получив в итоге очень достойные характеристики. От дизелей GDI достался топливный насос, подающий топливо под давлением около 4,8 Мпа (примерно 50кг/см 2 ) и система впрыска на финальной стадии сжатия, а от бензиновых – тип топлива и свечи зажигания. Форсунка в GDI направляет топливо прямо в цилиндр, там же происходит его смешивание с воздухом, однако для зажигания смеси используется искра.

Впрыск топлива в обычном инжекторном двигателе и GDI.

Концепция превосходства

Подаваемая в цилиндр смесь хорошо структурирована, направляется по выверенной траектории, распределяется по всему объему, но в разной концентрации. Обедненная порция так называемой «холодной» концентрацией достигает стенок цилиндра, тогда как более богатая «горячая» – остается в центре, где располагается свеча. В этом секрет сохранения работоспособности двигателя, несмотря на использование сверхобедненных смесей, что объясняется созданием необходимой концентрации у самой свечи. Вдобавок агрегат оснащается двумя топливными насосами, один из которых дислоцируется в баке, что типично, а другой, насос высокого давления (ТНВД), создает атмосферу в топливной рампе.

Благодаря ТНВД удалось свести к минимуму время открывания форсунок и понизить расход бензина, сохранив на достойном уровне крутящий момент и разгонные показатели. В двигателях с инжектором на холостых оборотах открытие форсунки происходит через 3 мс, а в GDI-двигателях – через 0,51 мс. Это в 6 раз быстрее!

На практике для достижения всех плюсов прямого впрыска инженерам пришлось сделать многое, например:

  • изменить форму поршневого днища так, чтобы она обеспечивала подачу смеси непосредственно к свече;
  • увеличить давление бензина с 3 до 50 бар;
  • выполнить в головке блока каналы впуска для получения воздушного винта в цилиндрах и др.
Читать еще:  Ваз 2108 карбюратор холостой ход дергается двигатель

Движение воздуха в камере сгорания и форма поршня. Двигатель Mitsubishi 4G93 GDI.

Читайте также: TDI двигатель — что это такое и чем он отличается от GDI.

Прогрессивность GDI

  • Выпускаемые в Японии агрегаты располагают режимом Ultpa Lean Combustion Mode, разрешающим использовать супер-обедненную смесь в пропорции 37-41:1. Этот режим задействуется до достижения порога в 115-120 км/ч если нет резких изменений нагрузки и обеспечивается постепенное наращивание скорости. Впрыск осуществляется спиральной струей по ходу стрелки часов.
  • Стехиометрический режим Superior Output Mode используется, когда стрелка показывает 125 км/ч и более, автомобиль преодолевает затяжной подъем или же буксирует прицеп.
  • В режиме Stich F/B состав рабочей смеси очень похож на характерный для стехиометрического. Технология имеет свои подрежимы, в одном из которых (Closed loop) воздушно-бензиновый баланс определяется показаниями кислородного датчика, в другом же (Open loop) — сенсоры на состав топливной смеси не влияют.
  • В двигателях GDI европейского образца есть еще одно усовершенствование – Two-Stage Mixing, – обеспечивающее эффективный двухступенчатый бензиновый впрыск в момент резкого старта либо стремительного обгона. Технология подразумевает двукратный впрыск в течение четырехтактного цикла. На впуске в цилиндр попадает двукратно супер-обедненная смесь, но она не воспламеняется и содействует преимущественно охлаждению камеры. А в момент сжатия подается уже сверх-обогащенная смесь, в пропорции воздуха и горючего 12:1, так коэффициент заполняемости камеры повышается и двигатель показывает предельную мощность.

Проблемы GDI двигателя

Основная проблема состоит в высокой чувствительности GDI-двигателей к качеству топлива. Это в равной мере относится и к любым неисправностям, способным хоть как-то отразиться на качестве подаваемой смеси.

На установках Gasoline Direct Injection иногда наблюдается сильное почернение свечей зажигания или они вовсе выходят из строя. Обычно это результат высокой чувствительности топливной аппаратуры к воде и мельчайшим примесям. Накопление сажи во впускном коллекторе объясняет её попаданием в камеру сгорания. Её частички могут оседать на клапанах и забивать форсунки, что мешает нормальному распылению бензина.

Вследствие накопления нагара на внутренней поверхности впускного коллектора меняется конфигурация спирали воздуха; она уже не соответствует норме для GDI, в итоге чего сгорание нарушается. По количеству нагара на свечах достаточно объективно определяется степень засоренности впускного тракта. До определенного момента нормальной их работе это не мешает, но через 20 тыс. км пробега можно подумать об замене, а впускной коллектор в профилактических целях рекомендуется очищать через 25-30 тыс. км.

Также проблемой является повышенная токсичность выхлопов. Сгорание сверхобедненной топливной смеси приводит к образованию токсичных окислов азота NOx. Чтобы подогнать показатели выхлопа под требования Euro 3 японские инженеры сначала модернизировали нейтрализаторы, а позже добились их невысокой чувствительности к серным примесям.

Читайте также: Особенности CRDI двигателя .

Видео на тему

Что такое двигатель GDI

Двигатель GDI (Gasoline Direct Injection) – бензиновый силовой агрегат с прямым (непосредственным) впрыском топлива. Моторы с аббревиатурой GDI производятся японскими компаниями Mitsubishi, Toyota, Nissan, корейскими автопроизводителями, а также фирмой Bosh.

Идея постройки двигателя с непосредственным впрыском топлива в цилиндры родилась достаточно давно, при этом массовый GDI впервые был представлен только в 1995 году. Моторы с технологией GDI в большинстве встречаются на автомобилях марки Mitsubishi. Перовой моделью с таким силовым агрегатом стала модель Mitsubishi Galant, которая получила силовую установку 1.8 GDI.

Особенности и отличия моторов GDI

Принцип работы двигателя GDI представляет собой своеобразный «симбиоз» привычных бензиновых и дизельных ДВС. Начнем с того, что для нормальной работы любого двигателя внутреннего сгорания в цилиндры необходимо подать так называемую топливно-воздушную смесь. Другими словами, определенная часть горючего смешивается в необходимой пропорции с частью воздуха применительно к разным режимам работы мотора. От состава смеси напрямую зависит мощность двигателя, КПД, экономичность, экологичность и ряд других характеристик.

Большинство бензиновых и дизельных двигателей сегодня:

  • моторы с внешним смесеобразованием. К таковым относятся устаревшие карбюраторные агрегаты на бензине и современные атмосферные, компрессорные или турбированные инжекторные бензиновые моторы. В таких двигателях процесс приготовления топливно-воздушной смеси происходит отдельно (во впускном коллекторе), после чего готовый заряд поступает в цилиндры и воспламеняется от свечи системы зажигания;
  • двигатели с внутренним смесеобразованием. Данный тип агрегатов представлен дизельными моторами, в которых порция дизтоплива подается напрямую в цилиндры и смешивается с уже имеющимся там воздухом. Воспламенение заряда происходит от контакта подаваемой солярки с разогретым от сжатия объемом воздуха, то есть без участия внешнего источника воспламенения;

Если сказать иначе, воздух поступает в двигатель отдельно, форсунка GDI осуществляет непосредственный впрыск топлива в цилиндр, затем происходит перемешивание компонентов, после чего поджиг смеси осуществляет электрическая искра свечи зажигания. Следует добавить, что во время такого смесеобразования конструкторами учитывается ряд аэродинамических особенностей для получения оптимально упорядоченного состава смеси. По этой причине конструкция поршня и камеры сгорания существенно отличается от аналогов в двигателях с внешним смесеобразованием, а также форкамерных ДВС. Днище поршня имеет особую форму для направления факела распыла на свечу зажигания, ГБЦ получила вертикальные прямые впускные каналы, что позволяет «закручивать» воздух в цилиндрах двигателя. Благодаря такому устройству топливно-воздушная рабочая смесь в GDI движется по строго заданной траектории.

Более того, состав смеси отличается в разных участках общего объема цилиндра. В результате подобных решений двигатели линейки GDI способны работать на сильно обедненной смеси, которая была бы непригодна для работы обычного бензинового мотора. Необходимое для воспламенения от искры соотношение топлива и воздуха концентрируется в цилиндре GDI в области расположения свечи зажигания, в то время как по условным «краям» цилиндра смесь остается максимально обедненной.

Еще одной особенностью двигателя GDI является наличие двух топливных насосов:

  • привычный электробензонасос в топливном баке;
  • топливный насос высокого давления (ТНВД) с механическим приводом от ДВС;

Данное решение также является аналогом принципа подачи топлива в дизельном двигателе. В моторах GDI давление впрыска составляет около 50 бар, в то время как в обычных бензиновых ДВС около 3 бар.

Впрыск топлива и разновидности GDI

Моторы GDI имеют целый ряд конструктивных различий, благодаря чему их можно разделить на две группы:

  • для внутреннего японского рынка;
  • для европейских рынков;

Отличаются такие агрегаты по конструкции самого мотора, по особенностям исполнения ТНВД и по устройству системы топливного впрыска. Версии для Японии имеют два основных режима впрыска топлива GDI:

  1. ultra lean combustion mode;
  2. superior output mode;

Первый режим предполагает работу мотора на сверхобедненной смеси, которая имеет соотношение 37:1-43:1. Такой режим работы поддерживается ЭБУ на умеренных скоростях до 110-120 км/ч. с учетом плавного разгона, то есть без резких нажатий на педаль газа. В указанном режиме двигатель GDI обеспечивает максимальный показатель крутящего момента. Форсунки впрыскивают горючее в тот момент, когда поршень находится на такте сжатия и не дошел до ВМТ. Подача топлива инжектором в этом случае происходит в виде однородной струи, после происходит завихрение потока по часовой стрелке для наилучшего смешивания с воздухом в цилиндре.

Во втором режиме предполагается стехиометрический состав смеси топлива и воздуха. Указанный режим работы активируется в том случае, если мотор находится под нагрузкой (движение на высокой скорости, буксирование прицепа, езда в гору и т.п.)

На такте впуска в этом режиме совершается первый впрыск, результатом которого становится максимально обедненная смесь в цилиндре с соотношением около 60:1. Данная смесь не рассчитана на воспламенение. Главной задачей является эффективное охлаждение камеры сгорания, так как в охлажденную камеру можно будет подать больший объем воздуха и топлива на такте сжатия. Другими словами, данное решение позволяет улучшить наполнение цилиндров. Затем на такте сжатия происходит второй впрыск, после которого состав смеси уже составляет 12:1, то есть рабочая смесь становится максимально обогащенной.

В результате цилиндры эффективно наполняются и двигатель отдает максимально доступную мощность. По сравнению с моторами, которые имеют распределенный впрыск, GDI оказывается на 10% мощнее. В итоге европейские версии GDI более эластичны и способны отдавать больше крутящего момента на «низах» при необходимости резко ускориться во время движения на скорости 30-60 км/ч.

В первом случае состав смеси регулируется на основе показаний кислородного датчика, во втором показания датчика не влияют на состав смеси топлива и воздуха. Данная особенность является отличием GDI от других моторов во время работы на холостом ходу. ЭБУ двигателем динамично меняет режимы compression on lean и stich F/B во время работы мотора на холостых оборотах, условно продувая цилиндры. Особенностью является повышение холостых оборотов двигателя до 900-950 об/мин. в момент перехода между указанными режимами. Указанная смена режимов работы GDI в норме должна происходить 1 раз в 4 мин. Все режимы переключаются под управлением ЭБУ. Если говорить о комфорте водителя, смена режимов и изменения в работе мотора практически не ощущаются.

Что касается токсичности GDI, японские инженеры разработали специальные катализаторы для моторов, которые работают на сильно обедненной смеси. В результате уровень окислов азота в выхлопе такого двигателя уложился в рамки Евро-3. Стоит отметить, что высокое содержание серы, которое отмечено в отечественном бензине, быстро выводит каталитические нейтрализаторы из строя.

Неисправности и проблемы моторов GDI

Главной проблемой моторов данного типа является повышенная чувствительность к качеству топлива, а также к любым факторам и поломкам, способным повлиять на качество смесеобразования.

На моторах GDI быстро чернеют и выходят из строя свечи зажигания. Топливная аппаратура таких двигателей намного более чувствительна к наличию воды и механических примесей в бензине. Образование нагара во впускном коллекторе и скопление сажи на клапанах способны изменить процесс смесеобразования, так как траектория движения потоков в цилиндре нарушается. В результате GDI теряет мощность и работает с заметными перебоями.

Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector