Auto-park24.ru

Журнал "Автопарк"
1 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Что такое векторное и скалярное управление асинхронным двигателем

Особенности векторного управления электроприводами

Практически все электроприводы Unidrive от Control Techniques используют векторное управление двигателем, за счет которого расширяется диапазон частот, в которых может эффективно работать привод (номинальный крутящий момент развивается на частоте 1 Гц в разомкнутом контуре, 0 Гц — в замкнутом контуре). Привод Unidrive может устойчиво работать на скоростях вплоть до 0,001 об/мин, что эквивалентно одному обороту вала двигателя за 16 часов. Частота 0 Гц в замкнутом контуре фактически означает возможность привода удерживать вал двигателя в одном положении при меняющейся нагрузке.

Специфическая особенность привода Unidrive — возможность работы в режиме цифрового замка. Для этого информация об угловом положении вала двигателя одного привода (ведущего, оснащенного энкодером) передается в другой привод (ведомый). Вал ведомого двигателя начинает движение синхронно с движением вала ведущего двигателя (синхронизация может быть выполнена как по скорости, так и по положению).

При этом реализуется электронный вариант механической коробки передач. Передаточный коэффициент корректируется с точностью до 3 знаков после запятой, его можно менять динамически кнопками «больше/меньше» с помощью цифрового потенциометра. Число синхронизированных приводов не ограничено. Датчик положения (энкодер) можно ставить не только на вал двигателя, управляемого приводом Unidrive, но и на любую вращающуюся деталь, с которой нам нужно синхронизироваться. При этом отпадает необходимость в вариаторах и подобных им устройствах, которые требуют регулярного обслуживания. Для реализации режима цифрового замка Unidrive необходим модуль второго энкодера или модуль для включения в сеть CTNet. Описанные возможности применимы в робототехнике, металлообрабатывающих станках, машинах многоцветной печати и т.д.

Режим рекуперации энергии применяется в тех случаях, когда нагрузка двигателя имеет большую механическую инерцию и способна высвобождать накопленную кинетическую энергию при торможении. При этом будет происходить отдача электроэнергии приводом обратно в питающую сеть.

Использование данного режима приводит к значительному снижению потребления энергии. Может использоваться в устройствах, обладающих большой механической инерцией и способных отдавать накопленную кинетическую энергию при торможении. В данном режиме используются два привода Unidrive, связанных по шине постоянного тока, один в двигательном режиме, другой в режиме рекуперации. При торможении двигателя энергия начинает поступать на шину постоянного тока двигателя, работающего в двигательном режиме, и передается в двигатель, работающий в режиме рекуперации, который генерирует из него переменное напряжение 380 В и отдает его обратно в сеть. В результате мы получаем экономию электроэнергии. Данный режим включается изменением значения параметра, определяющего режим работы привода.

1. Разомкнутый контур со скалярным управлением

Обратная связь не требуется, двигатель – стандартный асинхронный двигатель переменного тока. Скалярное управление является традиционным способом управления двигателем (в противоположность более современному способу векторного регулирования). Минимальная скорость, на которой развивается номинальный крутящий момент — 15-20Гц.

2. Векторное управление в разомкнутом контуре

Обратная связь здесь также не требуется, двигатель – стандартный асинхронный двигатель переменного тока. Векторное управление предоставляет возможность проведения специальной процедуры – автонастройки, в процессе которой привод очень точно измеряет параметры подключенного к нему двигателя: сопротивления обмоток статора, их индуктивность, индуктивность рассеивания, ток намагничивания и т.д. Векторное управление включается специальным параметром в приводе. Точность поддержания скорости 1%, минимальная скорость, на которой развивается номинальный крутящий момент – 1 Гц.

3. Векторное управление в замкнутом контуре

Двигатель – асинхронный двигатель переменного тока. Требует наличия датчика обратной связи по скорости/положению вала двигателя (например, инкрементального энкодера). За счет введения обратной связи точность поддержания скорости возрастает на два порядка, плюс появляется возможность управления угловым положением вала двигателя. Становится возможной работа в режиме электрического вала, когда вал двигателя вращается строго синхронно с какой-либо другой координатой, которая механически соединена с датчиком обратной связи (энкодером), подключенным к Unidrive. Точность поддержания скорости 0,01%, минимальная скорость, на которой развивается номинальный крутящий момент — 0 Гц.

4. Серворежим

Требует серводвигателя (бесщеточного электродвигателя переменного тока с постоянными магнитами на роторе). В сочетании с таким двигателем система имеет отличные динамические характеристики (в среднем в 15-20 раз лучшие, чем в замкнутом контуре с векторным управлением). Точность поддержания скорости 0,01%, развитие номинального крутящего момента при нулевой скорости вращения. Данный режим применяется в наиболее ответственных задачах, требующих высоких динамических и точностных показателей регулирования. Режим цифрового замка (электрический вал)

Настройка всех приводов Control Techniques практически одинакова и отличается лишь в деталях, она может быть проведена как вручную (с панели управления привода), так и с помощью специального «софта», запущенного на персональном компьютере.

Удобная структура меню: Все параметры привода разбиты на функциональные группы, названные «меню». В каждом меню хранятся параметры, определяющие работу какого-либо функционального блока привода: меню 1- задание скорости, меню 2-величины ускорения/замедления и т.д. Наиболее часто используемые параметры вынесены в специальное меню – «Меню 0».

Гибкая, перестраиваемая структура привода: Большинство функций в приводе могут быть перепрограммированы пользователем в соответствии со своими потребностями. Например, сигнал, поданный на аналоговый вход, может управлять скоростью, крутящим моментом, быть прецизионным смещением, прибавляемым к заданному цифровому значению скорости, служить входным сигналом для ПИД регулятора, сравниваться компаратором с некоторым пороговым значением, по достижении которого привод меняет режим работы и т.д.

Имеется набор дополнительных модулей, расширяющих возможности приводов. Все модули относительно дешевы, не требуют дополнительного пространства для установки (устанавливаются прямо внутрь привода), не требуют подачи питания (питание поступает от привода).

Имеются следующие модули:

· Одноосевой сервоконтроллер, управляющий траекторией движения управляемого механизма. Программируется на специальном языке DPL (Drive Programming Language, основан на языке BASIC), обеспечивающем точное управление позицией вала двигателя в реальном масштабе времени.

· Модули для включения привода в промышленные сети Profibus, Interbus, Device Net, CTNet, Modbus +, SLM, CANopen, SERCOS, CAN, Ethernet

· Модули для подключения дополнительных входов/выходов

· Модули для подключения дополнительных внешних устройств (внешнего энкодера от ведущего привода) или альтернативного датчика обратной связи.

Встроенный ПИД регулятор: имеет входы для подачи заданного значения (уставки) и текущего значения контролируемого параметра. На эти входы могут быть поданы сигналы от любого источника: аналоговый вход (обычно сигнал от датчика), цифровое значение, выход от автоматического потенциометра, значение, переданное по сети и т.д.

Встроенные логические функции: две операции логического «и» с возможностью инвертирования всех входов и выходов позволяют реализовать любые логические функции: И, И-НЕ, ИЛИ, ИЛИ-НЕ, НЕ. На выходе функций встроена задержка переднего фронта полученного сигнала, позволяющая проверить наличие сигнала в течение некоторого времени (для исключения ложных срабатываний и т.д.). На входы функций можно подать любой цифровой сигнал, существующий внутри или снаружи привода.

Типичный пример использования такой функции: если скорость двигателя меньше 1 об/мин (сигнал сравнения поступает от компаратора), ток двигателя больше 130% от номинального (сигнал сравнения поступает со второго компаратора).

И если эта ситуация продолжается более трех секунд (включена задержка переднего фронта на три сек.), то необходимо остановить двигатель, так как такая ситуация характерна для механического заклинивания вала.

Встроенные входы/выходы: все приводы имеют несколько цифровых и аналоговых входов и выходов (в среднем по три каждого типа), режимы аналоговых входов(4-20 мА, 0-20 мА, +/-10 В) и цифровых (положительная или отрицательная логика управления, выход +24 В или выход с открытым коллектором), которые свободно программируются. Число входов/выходов в приводах Control Techniques больше, чем в приводах других производителей, причем некоторые клеммы могут быть запрограммированы на работу, как в качестве входа, так и выхода.

Читать еще:  Что сделать чтобы не сапунит двигатель ваз 2109

Кроме стандартных функций, которые обычно выполняют цифровые входы в приводах всех производителей (старт/стоп привода, выбор направления вращения, сброс ошибки привода), в приводах Control Techniques входы могут использоваться для:

· выбора номера используемой предустановленной скорости (всего до 8 предустановок)

· включения/выключения функциональных блоков: ПИД регулятор, компаратор, логические функции, аналоговые входы, автоматический потенциометр.

Что такое векторное и скалярное управление асинхронным двигателем

Современный частотно регулируемый электропривод состоит из асинхронного или синхронного электрического двигателя и преобразователя частоты.

Электрический двигатель преобразует электрическую энергию в механическую энергию и приводит в движение исполнительный орган технологического механизма.

Преобразователь частоты управляет электрическим двигателем и представляет собой электронное статическое устройство. На выходе преобразователя формируется электрическое напряжение с переменными амплитудой и частотой.

В наиболее распространенном частотно регулируемом приводе на основе асинхронных двигателей с короткозамкнутым ротором применяются скалярное (частотное) и векторное управление.

Типы управления двигателями

Скалярный тип управления .

При скалярном (частотном) управлении по определенному закону изменяют амплитуду и частоту приложенного к двигателю напряжения. Изменение частоты питающего напряжения приводит к отклонению от расчетных значений максимального и пускового моментов двигателя, к.п.д., коэффициента мощности. Поэтому для поддержания требуемых рабочих характеристик двигателя необходимо с изменением частоты одновременно соответственно изменять и амплитуду напряжения.

В существующих преобразователях частоты при скалярном управлении чаще всего поддерживается постоянным отношение максимального момента двигателя к моменту сопротивления на валу. То есть при изменении частоты амплитуда напряжения изменяется таким образом, что отношение максимального момента двигателя к текущему моменту нагрузки остается неизменным. Это отношение называется перегрузочная способность двигателя.

При постоянстве перегрузочной способности номинальные коэффициент мощности и к.п.д. двигателя на всем диапазоне регулирования частоты вращения практически не изменяются.

Важным достоинством скалярного метода является возможность одновременного управления группой электродвигателей.

Векторный тип управления .

Векторное управление позволяет существенно увеличить диапазон управления, точность регулирования, повысить быстродействие электропривода. Этот метод обеспечивает непосредственное управление вращающим моментом двигателя.

Вращающий момент определяется током статора, который создает возбуждающее магнитное поле. При непосредственном управлении моментом необходимо изменять кроме амплитуды и фазу статорного тока, то есть вектор тока. Этим и обусловлен термин «векторное управление».

Для управления вектором тока, а, следовательно, положением магнитного потока статора относительно вращающегося ротора требуется знать точное положение ротора в любой момент времени. Задача решается либо с помощью выносного датчика положения ротора, либо определением положения ротора путем вычислений по другим параметрам двигателя. В качестве этих параметров используются токи и напряжения статорных обмоток.

Менее дорогим является частотно регулируемый электропривод с векторным управлением без датчика обратной связи скорости, однако векторное управление при этом требует большого объема и высокой скорости вычислений от преобразователя частоты.

Кроме того, для непосредственного управления моментом при малых, близких к нулевым скоростям вращения работа частотно регулируемого электропривода без обратной связи по скорости невозможна.

Векторное управление с датчиком обратной связи скорости обеспечивает диапазон регулирования до 1:1000 и выше, точность регулирования по скорости – сотые доли процента, точность по моменту – единицы процентов.

В синхронном частотно регулируемом приводе применяются те же методы управления, что и в асинхронном.

Для синхронных электроприводов большой мощности применяется метод частотного управления с самосинхронизацией, который исключает выпадение двигателя из синхронизма. Особенность метода состоит в том, что управление преобразователем частоты осуществляется в строгом соответствии с положением ротора двигателя.

Классификация частотных преобразователей (смотрите изображение — invertors.gif , 26 кб )

1. Частотный метод применяется в случаях, когда зависимость момента нагрузки двигателя известна и нагрузка практически не меняется при одном и том же значении частоты, а так же нижняя граница регулирования частоты не ниже 5…10 Гц при независимом от частоты моменте. При работе на центробежный насос или вентилятор (это типичные нагрузки с моментом, зависящим от скорости вращения) диапазон регулирования частоты – от 5 до 50 Гц и выше. При работе с двумя и более двигателями.

2. Частотный с обратной связью по скорости — для прецизионного регулирования (необходимо использовать инкрементальный энкодер) с известной зависимостью момента от скорости вращения. Применим для «насосной» нагрузки.

3. Векторный – для случаев, когда в процессе эксплуатации нагрузка может меняться на одной и той же частоте, т.е. нет четкой зависимости между моментом нагрузки и скоростью вращения, а также в случаях, когда необходимо получить расширенный диапазон регулирования частоты при номинальных моментах, например, 0…50 Гц для момента 100% или даже кратковременно 150-200% от Мном.

4. Векторный с обратной связью по скорости – для прецизионного регулирования (необходимо использовать инкрементальный энкодер) скорости, когда в процессе эксплуатации нагрузка может меняться на одной и той же частоте, т.е. нет четкой зависимости между моментом нагрузки и скоростью вращения, а также в случаях, когда необходим максимальный диапазон регулирования частоты при моментах близких к номинальному.

Скачать руководство по выбору частотных преобразователей можно здесь

Векторное управление

Векторное управление является методом управления синхронными и асинхронными двигателями, не только формирующим гармонические токи (напряжения) фаз (скалярное управление), но и обеспечивающим управление магнитным потоком ротора. Первые реализации принципа векторного управления и алгоритмы повышенной точности нуждаются в применении датчиков положения (скорости) ротора.

В общем случае под «векторным управлением» понимается взаимодействие управляющего устройства с так называемым «пространственным вектором», который вращается с частотой поля двигателя.

Содержание

  • 1 Причины появления
  • 2 Математический аппарат векторного управления
  • 3 Варианты режимов работы векторного управления
    • 3.1 Точность математической модели электродвигателя
    • 3.2 Использование датчика скорости электродвигателя
  • 4 Терминологические нюансы
  • 5 Ссылки
  • 6 Литература
  • 7 См. также

Причины появления

Основной причиной появления векторного управления является то, что асинхронный двигатель с короткозамкнутым ротором (АДКЗ) — самый массовый и дешёвый в производстве двигатель, надёжный и наименее требовательный в эксплуатации (в конструкции нет механических коллекторов, контактных колец) плохо поддаётся регулированию скорости, поэтому он первоначально применялся для нерегулируемых приводов, либо для приводов с механической регулировкой (с помощью коробки передач); специальные многоскоростные АДКЗ позволяли только ступенчато изменять скорость (от двух до пяти ступеней), но их стоимость была гораздо выше, чем обычных, кроме того, требовалась станция управления для таких двигателей, которая дополнительно сильно удорожала систему управления, при этом было невозможно автоматически поддерживать скорость двигателя при изменении нагрузки. Позже были разработаны методы управления скоростью АДКЗ (скалярное управление), но в переходных процессах при скалярном регулировании потокосцепление ротора изменяется (при изменении токов статора и ротора), что приводит к снижению темпа изменения электромагнитного момента и ухудшению характеристик в динамике.

С другой стороны двигатель постоянного тока (ДПТ) при большей его стоимости и эксплуатационных затратах и меньшей надёжности (имеется механический коллектор) просто поддаётся управлению, при этом регулировка может осуществляться как изменением напряжения на якоре с постоянным номинальным потоком возбуждения (первая зона регулирования) так и изменением напряжения на обмотке возбуждения (ослабление потока возбуждения) с постоянным номинальным напряжением на якоре (вторая зона регулирования). При этом обычно регулирование ведётся сначала в первой зоне , а при необходимости дальнейшего регулирования во второй зоне (с постоянной мощностью).

Читать еще:  Акцент хендай ремонт какое масло заливать в двигатель

Идеей векторного управления было создание такой системы управления АДКЗ, в которой, подобно ДПТ можно раздельно управлять моментом и магнитным потоком, при этом поддерживается на постоянном уровне потокосцепление ротора и значит изменение электромагнитного момента будет максимальным.

Математический аппарат векторного управления

Для СД и АД принцип векторного управления можно сформулировать следующим образом: Первоначально система дифференциальных линейных уравнений трёхфазного двигателя преобразуется в систему уравнений обобщённой двухфазной машины, которая имеет две фазы (расположенные пространственно под 90° относительно друг друга) на статоре и две фазы на роторе, также взаимно расположенных. Затем все вектора, описываемые данной системой проецируются на произвольно вращающуюся ортогональную систему координат, с началом на оси ротора, при этом наибольшая простота уравнений получается при вращении системы координат со скоростью поля машины, кроме того при таком представлении уравнения вырождаются и становятся похожими на уравнения ДПТ, проецирование всех векторов на направление поля машины отражается в названии этого метода — «ориентирование по полю». Фактически вторым этапом формирования величин, ориентированных по полю — это замена обмоток двухфазной обобщённой машины (две на статоре и две на роторе) одной парой взаимно перпендикулярных обмоток, вращающихся синхронно с полем. Кроме характеристик, близких к характеристикам ДПТ, АДКЗ с ориентированием по полю имеет предельно допустимое быстродействие при управлении моментом в режиме поддержания постоянства потокосцепления.

Уравнения электромагнитых процессов, записанные относительно токов статора и потокосцеплений ротора в синхронной ортогональной системе координат, ориентированной по вектору потокосцепления ротора имеют вид:

< σ L s d I d d t = − R s I d + U d + σ L s ω ψ I q − L m L r d ψ r d t σ L s d I q d t = − R s I q + U d − σ L s ω ψ I d − L m L r ω ψ ψ r T r d ψ r d t = − ψ r + L m I d ω ψ = ω r e + ω c k = ω r e + L m T r I d ψ r M = 3 2 Z r L m L r ψ r I q sigma L_>

>=-R_I_+U_+sigma L_omega _I_>>>>

>\sigma L_>

>=-R_I_+U_-sigma L_omega _I_>>>omega _psi _\T_>

>=-psi _+L_I_\omega _=omega _e+omega _k=omega _e+>>>>>>\M=<2>>Z_>>>psi _I_end>right.>

При этом могут быть два варианта метода:

  • ориентирование по полю ротора
  • ориентирование по полю главного потокосцепления

При практической реализации первого метода необходимо определить направление и угловое положение вектора потокосцепления ротора двигателя. Ортогональные оси d, q (в отечественной литературе для асинхронных машин применяют оси x, y) направляют так, что ось d совпадает с направлением вектора потокосцепления ротора. Вектор напряжения статора двигателя регулируют в осях d, q. Составляющая напряжения по оси d регулирует величину тока статора по оси d.

Изменяя ток статора по оси d следует добиваться требуемого значения амплитуды вектора потокосцепления ротора. Ток статора по оси q, контролируемый напряжением по этой оси, определит момент развиваемый двигателем. В таком режиме работы характеристики СД и АД подобны двигателю постоянного тока, так по оси d формируется поле машины (обмотка возбуждения для двигателя постоянного тока, то есть индуктор), а ток по оси q задаёт момент (якорная обмотка двигателя постоянного тока). Управление двигателем по данному методу теоретически обеспечивает большую перегрузочную способность АДКЗ, но при этом невозможно напрямую определить вектор потокосцепления ротора.

Данный метод векторного управления был первоначально реализован в системе «Transvektor» фирмы «Сименс».

Устройства с управлением по вектору главного потокосцепления двигателя, на русском языке стали именоваться векторными системами. При использовании устройства управления по вектору главного потокосцепления и стабилизации модуля главного потокосцепления двигателя во всех режимах работы исключается чрезмерное насыщение магнитной системы, упрощается структура управления АД. Для составляющих вектора главного потокосцепления (по осям α, β статора) возможно прямое измерение, например, с помощью датчиков Холла, устанавливаемых в воздушном зазоре двигателя.

Питание АД и СД в режиме векторного управления осуществляется от инвертора, который может обеспечить в любой момент времени требуемые амплитуду и угловое положение вектора напряжения (или тока) статора. Измерение амплитуды и положение вектора потокосцепления ротора производится с помощью наблюдателя (математический аппарат позволяющий восстанавливать неизмеряемые параметры системы).

Варианты режимов работы векторного управления

Векторное управление подразумевает наличие в звене управления математической модели (далее — ММ) регулируемого электродвигателя. В зависимости от условий эксплуатации электропривода возможно управление электродвигателем как в режимах с обычной точностью, так и в режимах с повышенной точностью отработки задания на скорость или момент.

Точность математической модели электродвигателя

В связи с вышесказанным представляется возможным произвести классификационное разделение режимов управления по точности ММ электродвигателя, используемой в звене управления:

  • использование ММ без дополнительных уточняющих измерений устройством управления параметров электродвигателя (используются лишь типовые данные двигателя, введенные пользователем)
  • использование ММ с дополнительными уточняющими измерениями устройством управления параметров электродвигателя (то есть активных и реактивных сопротивлений статора/ротора, напряжения и токадвигателя)

Использование датчика скорости электродвигателя

В зависимости от наличия или отсутствия датчика обратной связи по скорости (датчика скорости) векторное управление можно разделить на:

  • управление двигателем без датчика скорости — при этом устройством управления используются данные ММ двигателя и значения, полученные при измерении токастатора и/или ротора
  • управление двигателем с датчиком скорости — при этом устройством используются не только значения, полученные при измерении токастатора и/или ротораэлектродвигателя (как в предыдущем случае), но и данные о скорости (положении) ротора от датчика, что в некоторых задачах управления позволяет повысить точности отработки электроприводом задания скорости (положения).

Терминологические нюансы

Поскольку принцип векторного управления был изобретен в ФРГ, то в русскоязычной литературе нередко встречается термин «векторное регулирование», являющийся калькой с немецкого «Vektorregelung». Такое определение нельзя считать ошибочным, однако по установившемся нормам русского технического языка более правильным будет использование именно термина «векторное управление». Кроме того часто данный метод называют также «принципом ориентирования по полю», что также является буквальным переводом с немецкого «Das Prinzip der Feldorientierung».

Исследование системы векторного управления частотно-регулируемым электроприводом переменного тока на виртуальной модели

Рубрика: Технические науки

Дата публикации: 06.01.2018 2018-01-06

Статья просмотрена: 609 раз

Библиографическое описание:

Хидолда, Еркин. Исследование системы векторного управления частотно-регулируемым электроприводом переменного тока на виртуальной модели / Еркин Хидолда, Асылбек Шауалиев, Ерлан Мектеп. — Текст : непосредственный // Молодой ученый. — 2018. — № 1 (187). — С. 25-30. — URL: https://moluch.ru/archive/187/47675/ (дата обращения: 25.09.2021).

В настоящее время частотно-регулируемый электропривод переменного тока становится главным типом регулируемого промышленного электропривода, серийно выпускаемого ведущими электротехническими компаниями.

Основным силовым преобразователем энергии такого электропривода являются полупроводниковые преобразователи частоты на полностью управляемых коммутируемых элементах типа силовых транзисторов (IGВT) и запираемых тиристоров (IGCT).

При разработке систем регулирования электроприводом различных производителей развиваются в одном направлении и, если на первом этапе развития (70-е годы прошлого века) использовались, преимущественно, законы частотного управления типа закона М. П. Костенко с коррекцией по напряжению в области низких частот, то на втором этапе (80-е годы) признание получили алгоритмы векторного управления [1].

Управление переходными процессами в машинах переменного тока основывается на необходимости организовать управление по переменным состояния: вектору тока статора is, вектору тока ротора ir, потокосцеплению статора s, потокосцеплению ротора r, главному потокосцеплению машины o = Lm (is + ir). Эти переменные состояния взаимосвязаны перекрестными связями.

Читать еще:  Установка контрактного двигателя на газель своими руками

Базовым элементом такой системы управления приводом является преобразователь координат (векторный преобразователь). При помощи преобразователя координат осуществляется преобразование сигналов, пропорциональных переменным состояния (is, ir, r, s, o), из системы координат, жестко связанной со статором ( — ) или с ротором (d — q), во вращающуюся систему координат (1–2).

В [2] приведены алгоритмы управления АД, структурные схемы САУ и характеристики частотно-управляемого электропривода с асинхронным двигателем при управлении по вектору главного потокосцепления, по вектору потокосцепления ротора двигателя и по вектору магнитного потокосцепления статора асинхронного двигателя.

В последнее время наблюдается тенденция перехода к бездатчиковым системам с вычислением значений потокосцеплений по модели двигателя в реальном масштабе времени на основе применения быстродействующих вычислительных управляющих устройств.

В этом случае реализация закона r = const имеет преимущественное значение [3].

Абсолютное скольжение, определяющее частоту тока ротора  = (1 — ).

В режиме r = const развиваемый электромагнитный момент не имеет максимума и растет неограниченно с ростом . Однако, при больших величинах скольжения поддержание неизменным r невозможно из-за роста потокосцепления в воздушном зазоре и неизбежного насыщения машины. При изменении скольжения в пределах 3ном увеличение о незначительно и реализация r = const вполне осуществима.

Имеется три основных способа реализации закона r = const: скалярный, полярный и векторный.

Алгоритм управления в векторной форме имеет следующий вид:

,

а в полярной форме — следующий вид:

,

 — угол между вектором потокосцепления r и током is:

.

В схеме, реализующей векторный способ управления по абсолютному скольжению, регулирование тока осуществляется по двум каналам, которые соответствуют проекциям вектора на оси вращающейся системы координат, совмещенной с вектором потокосцепления ротора r. При этом проекция на вещественную ось isх может поддерживаться постоянной или регулироваться в зависимости от скорости вращения для организации двухзонного регулирования АД. Проекция на мнимую ось isy изменяется пропорционально абсолютному скольжению .

В этом случае отсутствует электромагнитный переходный процесс по потокосцеплению ротора, который вызывает низкочастотные колебания в замкнутом по скорости электроприводе.

Таким образом, выбор закона управления электроприводом переменного тока с поддержанием r = const можно считать наиболее приемлемым, что использовано в наиболее распространенных системах.

При построении микропроцессорной системы управления асинхронным электроприводом с преобразователем частоты, построенном на модулях с транзисторами IGBT и с широтно-импульсной модуляцией выходного напряжения задание амплитуды Um и частоты ωо выходного напряжения предпочтительно осуществлять в виде цифрового сигнала, а не в виде тригонометрических функций.

В связи с этим при моделировании асинхронного электропривода с векторным управлением целесообразнее использовать систему координат, в которой амплитуда и частота напряжения, приложенного к статорным обмоткам, присутствуют в явном виде. Такой системой координат является система координат, вращающаяся с частотой поля статора двигателя о, то есть система координат (u — v) [4].

Если динамическая модель асинхронного двигателя выполнена в системе координат (u — v), вычисление модуля вектора потокосцепления ротора двигателя осуществляется по формуле:

после чего также определяются мгновенные значения косинуса и синуса угла γ для перевода переменных в систему координат (1–2):

Однако, поскольку обе системы координат и (u — v), и (1–2) вращается в пространстве с одинаковой частотой ωо, координатное преобразование здесь представляет собой поворот одной системы координат по отношению к другой на некоторый пространственный угол до совмещения оси v с вектором потокосцепления ротора.

Раз обе системы координат неподвижны относительно друг друга, cosγ и sinγ представляют собой числовые значения соответствующих тригонометрических функций. Перевод составляющих вектора тока статора из системы координат (u — v) в систему координат (1–2) осуществляется с помощью уравнений:

Далее строится двухканальная система регулирования, как и в предыдущем случае. Обратное преобразование координат также представляет собой поворот одной системы координат относительно другой на угол γ, но в противоположном направлении.

Канал регулирования потокосцепления ротора двигателя содержит внутренний контур регулирования составляющей тока статора is1 с ПИ-регулятором РТ1 и внешний контур регулирования модуля потокосцепления r m с П-регулятором Р. На входе Р действует единичное постоянное задание.

Канал регулирования электромагнитного момента асинхронного двигателя содержит контур регулирования составляющей тока статора is2 с ПИ-регулятором РТ2 и контур регулирования скорости  с П-регулятором РС, на входе которого включен задатчик интенсивности (на структурной схеме не показан).

Структурная схема такой динамической модели системы векторного управления представлена на рис.1.

Рис.1. Структурная схема модели системы векторного управления в осях (u — v)

Выходные сигналы регуляторов РТ1 и РТ2 пропорциональны составляющим вектора напряжения статора двигателя Us1 и Us2. Обратное преобразование координат для перехода из системы координат (1–2) в систему координат (u — v) имеет вид:

Напряжения Usu и Usv представляют собой амплитудные значения и не содержат гармонических составляющих. Значение амплитуды выходного напряжения преобразователя частоты определяется следующим образом:

Значение частоты вращения системы координат, то есть частоты выходного напряжения преобразователя частоты, определяется следующим образом:

Таким образом, при реализации системы векторного управления с представлением модели асинхронного двигателя в системе координат (u — v) на выходе системы регулирования амплитуда и частота напряжения преобразователя частоты присутствуют в явном виде. Оптимальным с точки зрения реализации описанных алгоритмов является использование цифровых сигнальных процессоров (ЦСП), архитектура которых адаптирована для выполнения рекуррентных полиномиальных вычислений.

Решение системы уравнений, описывающих работу частотно­регулируемого привода — весьма трудоемкая задача. Для решения задач подобного рода существуют различные компьютерные технологии, в основе которых лежат пакеты прикладных программ. Наиболее распространенным среди таковых является пакет MATLAB с различными дополнениями, из числа которых Toolbox Simulink, удобный при проведении анализа электромеханических процессов, протекающих в электроприводе.

Основным достоинством этого дополнения является наличие библиотечных моделей, имитирующих практически все элементы, входящие в состав ЭП, в том числе и исполнительные двигатели. Поэтому для решения системы уравнений, моделирующих частотно­регулируемый привод, был выбран программный пакет Matlab Simulink.

Диаграммы электромеханических процессов, протекающих в компьютерной модели частотно­регулируемого ЭП с алгоритмом векторного управления по вектору главного потокосцепления, приведена на рис.2.

На приведенных диаграммах показаны процессы изменения напряжения Us и тока Is статора, частоты вращения ω, электромагнитного момента и модуля вектора главного потокосцепления |Ψ|, протекающие при пуске и равноускоренном разгоне АД до номинальной частоты вращения (рад/c), набросе и сбросе статического момента нагрузки (Нм), а также при равнозамедленном снижении частоты вращения АД до полной остановки.

Рис.2. Диаграммы электромеханических процессов

На основе полученных характеристик частотного привода можно оценить его энергопотребление в различных режимах работы и сравнить с энергопотреблением классического ступенчато регулируемого привода.

  1. Современный частотно-регулируемый электропривод /Горбань Р. Н., Янукович А. Т. — под редакцией Гаврилова А. В. — С-Петербург, СПЭК. 2001.
  2. Дартау В. А., Рудаков В. В., Столяров И. М. Асинхронные электроприводы с векторным управлением -–Л.: Энергоатомиздат, Л.О., 1987.
  3. Денисов К., Ермилов А., Карпенко Д. Способы управления машинами переменного тока и их практическая реализация на базе компонентов фирмы Analog Devices / CHIP NEWS. № 7–8, 1997.
  4. Козярук А. Е., Рудаков В. В. Современное и перспективное алгоритмическое обеспечение частотно-регулируемых электроприводов. С.-Петербург, ГГИ(ТУ). -2002.
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector