Что такое угол впрыска топлива на дизельном двигателе
Как на дизеле правильно выставить угол впрыска топлива?
После замены ремня ГРМ или топливного насоса высокого давления (ТНВД) на дизельном двигателе часто возникает проблема с поиском меток, по которым необходимо выставить шкив ТНВД. Его неверное положение приводит к несвоевременной подаче топлива и неправильной работе двигателя. Чтобы избежать этого, следует действовать проверенным способом.
Спонсор размещения P&G Статьи по теме «Как выставить момент впрыска на дизеле» Как сделать подогрев для двигателя своими руками Как удалить воздух из системы охлаждения Калины Как проверить дмрв на ваз 2110
Прежде всего открутите от форсунки первого цилиндра двигателя трубку высокого давления. Наденьте на нее прозрачную пластиковую трубку так, чтобы она была направлена вверх, и было хорошо видно уровень топлива, заполняющего ее. Трубка должна хорошо держаться на форсунке. Чтобы ее закрепить, используйте винтовой хомут. Топливо не должно протекать!
Снимите ремень газораспределительного механизма.
Здесь я приведу два оригинальных текста и мои пояснения. К сожалению писал на форум, поэтому комменты не в 3 лице.
Последовательность проверки угла (момента) начала подачи топлива: • очистить от грязи и пыли корпус горловины для заливки масла и счетчик моточасов, а также место присоединения трубки высокого давления первого цилиндра к топливному насосу;
• установить поршень первого цилиндра в положение соответствующее окончанию такта сжатия (для этого включают декомпрессионный механизм и, вращая коленчатый вал, совмещают метки на крышке распределительных шестерен и ведущем шкиве привода вентилятора: при применении насоса УТН с пятой от ВМТ риской метки “Т”, при применении насоса НД-21/4 со второй, при применении насоса НД-21/2 с первой);
• снять корпус маслозаливной горловины вместе с мотосчетчиком и отъединить шлицевой фланец от шестерни топливного.
лучше поищи толковых мастеров!
а для подтвержения моих слов. вот тебе совет:
Динамический угол измеряется специальным профессиональным стробоскопом во время работы двигателя на ХХ ( 740 об/мин). Регулируется, естественно, на остановленном и проверяется снова на запущенном.Если надо, то регулировка повторяется, пока не получен нужный результат. Профессиональные стробоскопы мало у кого имеются, так что ничего удивительного, что у Ваших мастеров его нет. Его нет и у нас — слишком дорогая штука. Поэтому и существует метод настройки опережения в статике, т.е. на неподвижном моторе. В статике опережение на Вашем моторе должно быть 24 градуса до ВМТ. Существует две технологии настройки опережения в статике.
1 — капельный метод. Из ТНВД изымается нагнетательный клапан 1 цилиндра. Штуцер нагнетательного клапана возвращается на свое место и на него одевается кусок трубки высокого.
О том, что опережение впрыска топлива для дизельных двигателей очень важно, объяснять никому не надо. Естественно, для каждой частоты вращения двигателя оптимальным будет какое-то определенное значение угла опережения, например, для холостого хода 800 об/мин – это 3°, 1000 об/мин — 4°, 1500 об/мин — 5° и т.д. Для достижения такой зависимости, которая, кстати, не является линейной, в корпусе ТНВД есть специальный механизм. Впрочем, это просто поршень (иногда в литературе его именуют таймером), который перемещается внутри ТНВД давлением топлива и через специальный поводок на тот или иной угол разворачивает специальную шайбу с волновым профилем. Будет поршень задвинут дальше – волна шайбы чуть раньше набежит на плунжер, тот начнет движение и раньше начнет подавать топливо к форсунке. Другими словами, угол опережения впрыска зависит от давления топлива внутри корпуса ТНВД и от степени износа волнового профиля шайбы. С давлением топлива, как правило, никаких проблем не бывает. Ну, разве.
Марка: Jeep Cherokee, г.в. 1993, 4L, AW4 30-40LE, NP242J, и бусик Hyundai Grace H-100,1995 г.,D4BX, диз.
Все правильно для механического ТНВД «Бош» или его клону «Зиксель Кики», разве что трубки высокого давления надо ослаблять до предела, а лучше снять. В противном случае с силой приходится вращать насос в ту или иную сторону, а из-за этого трубки потом находятся в однобоком напряжении, а с учетом того, что трубки испытывают вибрацию сами по себе при импульсах движения топлива под давлением 127 кг/см, то это чревато в дальнейшем возникновению на них микротрещин, которые заварить не всегда удачно удается, я пробовал, знаю. Размер подъема плунжера ТНВД Бош как правило на всех одинаковый и зависит от объема двигателя, например для 1,6 л. турбо он равен 0,75.
Бывает, что после замены ремня газораспределительного механизма (ГРМ) или топливного насоса (ТНВД) на дизеле, трудно найти метки, по которым нужно выставить шкив ТНВД для обеспечения своевременной подачи топлива. Как быть?
Можно, конечно, попытаться «поймать» необходимое положение шкива топливного насоса методом «научного тыка», т.е. поставить в одно положение и попробовать завести двигатель.
Не завёлся — провернуть шкив ТНВД на 3-5 зубьев относительно зубчатого ремня в любую сторону и попробовать вновь.
Завёлся, но сильно стучит — ранний впрыск, значит необходимо провернуть шкив на 1-2 зуба против направления вращения и снова запустить двигатель.
Завёлся, но дымит и работает очень мягко — поздний впрыск, надо провернуть шкив насоса на 1 зуб по направлению его вращения.
После того, как перестановкой ремня уже нельзя добиться точной регулировки надо ослабить гайки крепления ТНВД и поворотами.
Соединительные метки на деталях привода поставлены для нового насоса и двигателя. В процессе работы плунжерные пары и шестерни изнашиваются и угол опережения впрыска изменяется. Следовательно, после соединения по меткам у насоса надо обязательно проверить фактический угол, опережения впрыска и, если потребуется, подкорректировать его при помощи регулировочного устройства в механизме привода. Номинальные значения углов опережения впрыска приведены в таблице 9. Углы опережения непосредственно замерить сложно. Поэтому для каждого двигателя даются вспомогательные величины (например, длина дуги окружности приводного шкива вентилятора), доступные для измерения.
По аналогии с регулировкой насоса на стенде угол опережения впрыска топлива на дизеле определяют по моменту начала подачи и по моменту начала впрыска топлива.
У большинства дизелей при проверке угла оперен;е-ния по моменту начала подачи.
Существуют уже устоявшееся показатели, так, например, для 800 оборотов в минуту, а это холостой ход, угол опережения будет равен 3 градусам, для 1000 оборотов он увеличивается до 4 градусов, при 1500 становится уже 5 градусов.
Вопреки расхожему мнению данная зависимость не является линейной, что можно проследить на показанном выше примере. Для выставления самого оптимального угла для данного крутящего момента в ТНДВ устанавливается механизм, хотя если быть точными, то это самый простой поршень, который иногда зовут таймером. Его.
1 Система зажигания двигателя – отличие «дизеля» от бензинового мотора
Из-за указанных различий в самом процессе воспламенения бензинового и дизельного топлива в двигателе, можно отметить разницу и в строении зажигания. Очевидно хотя бы то, что такой системы, как в бензиновом авто, состоящей из прерывателя-распределителя, коммутатора или же датчиков импульсов, в дизельной машине нет. Однако зимой иногда с трудом удается завести дизельный движок, из-за того, что воздух слишком холодный, поэтому устанавливают специальную систему предварительного подогрева, чтобы увеличивать температуру воздуха в камере сгорания.
Можно сказать, что установка зажигания на дизельном двигателе – это не что иное, как выбор угла опережения впрыска горючего. А достигается это регулированием положения поршня, в момент впрыскивания «дизеля» в цилиндр. Это очень важно, так как при неправильном выборе угла впрыскивание будет несвоевременным, и, как следствие, топливо не будет сгорать до конца.
Любой форкамерный дизель, для устойчивого запуска оснащён свечами накала. Главная их задача прогреть воздух и форкамеру перед запуском двигателя. После того как дизель запустился, свечи в работе дизельного двигателя не участвуют. В некоторых европейских и японских дизелях свечи всё таки работают постоянно или прерывисто до прогрева двигателя и на горячую но это нужно не для устойчивой работы, а для уменьшения вредных выбросов. Если Ваш форкамерный дизель не запускается, то в 90 случаев из 100 виноваты свечи или реле накала. Самый простой способ проверки свечей – отсоединить от вывода свечи провода от реле и коснуться этого вывода проводом от плюса аккумулятора. Главное правило – касаться надо кратковременно так как напряжение аккумулятора 12 – 13 вольт, а напряжение подаваемое на свечи иногда не превышает шести вольт. При наличии .
Большая Энциклопедия Нефти и Газа
Опережение — впрыск — топливо
Опережение впрыска топлива в дизельном двигателе, как и опережение зажигания в карбюраторном, примерно одинаково влияет на ход рабочего процесса, с той лишь разницей, что дизельные двигатели ( особенно предкамерные и вихрекамерные) менее чувствительны к изменению угла опережения впрыска в зависимости от изменения числа оборотов коленчатого вала. [1]
Опережение впрыска топлива в дизеле, как и опережение зажигания в карбюраторном двигателе, примерно одинаково влияет на развитие рабочего процесса с той лишь разницей, что дизели ( особенно предкамерные и вихрекамерные) менее чувствительны к изменению угла опережения впрыска в зависимости от изменения числа оборотов коленчатого вала и нагрузки двигателя. [2]
Угок опережения впрыска топлива , равный 13 до в. Включив лампочку индикатора впрыска, устанавливают такой зазор между контактами индикатора, при котором на ободе маховика появляется светящаяся красная полоса со срезанным концом. Затем, вращая микрометрический винт насоса, связанный с механизмом изменения угла опережения впрыска, добиваются такого положения, чтобы срезанный конец светящейся красной полосы на маховике совпал с визирной нитью в смотровой трубе. [4]
Угол опережения впрыска топлива , равный 13 до в. Включив лампочку индикатора впрыска, устанавливают такой зазор между контактами индикатора, при котором на ободе маховика появляется светящаяся красная полоса со срезанным концом. [6]
Угол опережения впрыска топлива устанавливают по положению меток на корпусе топливного насоса и на корпусе муфты. При этом ослабляют два болта ведомой полумуфты привода и корпус муфты поворачивают относительно направления ее вращения. Для проверки совмещения меток используют фиксатор маховика на картере сцепления. В момент совмещения меток фиксатор входит в углубление на маховике. [7]
Угол опережения впрыска топлива 18 1 0 до верхней мертвой точки в такте сжатия проверяют и устанавливают по градусной сетке маховика. [8]
Угол опережения впрыска топлива 13 до ВМТ устанавливают сочетанием регулировки зазора между контактами индикатора впрыска и микрометрического винта топливного насоса, изменяющего угол опережения впрыска. Включив лампочку индикатора впрыска, устанавливают такой зазор между контактами индикатора, при котором на ободе маховика появляется светящаяся красная полоса со срезанным концом. [9]
Угол опережения впрыска топлива устанавливают на работающем двигателе. [10]
Автоматическая муфта опережения впрыска топлива служит для изменения момента начала впрыска топлива в зависимости от частоты вращения коленчатого вала, благодаря чему улучшаются пуск двигателя и его экономичность. [12]
Автоматическая муфта опережения впрыска топлива предназначена для изменения угла опережения впрыска топлива в зависимости от частоты вращения коленчатого вала двигателя. [13]
Наивыгоднейший угол опережения впрыска топлива зависит от степени сжатия, сорта топлива, давления и температуры при впуске и выпуске, характеристики подачи топлива, способа смесеобразования частоты вращения коленчатого вала и находится опытным путем. [14]
Проверяют угол опережения впрыска топлива . Провертывают коленчатый вал двигателя до появления топлива в стеклянной трубке. Это будет указывать на то, что поршень первого цилиндра находится в конце такта сжатия. Медленно прокручивают коленчатый вал по направлению вращения до установочного болта-шпилькк в отверстии маховика ( двигатель Д-24 С) и наносят риску на цилиндрическую поверхность шкива водяного насоса против предварительно закрепленной стрелки-указателя. Удаляют установочный болт-шпильку из отверстия маховика и медленно проворачивают коленчатый вал до момента начала подъема топлива в трубке моментоскопа, наносят вторую риску против стрелки-указателя. Измеряют расстояние между рисками, по которому определяют момент начала подачи топлива. Если уровень топлива в трубке моментоскопа не начинает подниматься до утопания болта-шпильки в отверстии маховика, то это указывает на запаздывание подачи топлива. [15]
Дизель начинается со смесеобразования
На дизелях ММЗ Д-260.1, Д-260.2, Д-260.4 и дизелях Д-260.7С и Д-262.2S2 применяются неразделенные камеры сгорания.
Смесеобразование в них протекает подобно, НО ФОРМЫ КАМЕР СГОРАНИЯ В ПОРШНЯХ – РАЗЛИЧНЫ (см. фото). Для осуществления качественного смесеобразования и полного сгорания топлива ОТВЕРСТИЯ РАСПЫЛИТЕЛЕЙ У НИХ ВЫПОЛНЕНЫ ПО-РАЗНОМУ.
Дизели ММЗ Д-260.1 (комбайн «Нива»), Д-260.2 (трактор МТЗ), а также Д-260.4 (трактор переоборудован «Автодвором»), изготовлены в соответствии с требованиями Stage-0 (Евро-0). В их поршнях выполнена неразделенная закрытая камера сгорания типа ЦНИДИ.
ДЛЯ ОБЕСПЕЧЕНИЯ КАЧЕСТВЕННОГО СМЕСЕОБРАЗОВАНИЯ НА УКАЗАННЫЕ ДВИГАТЕЛИ Д-260.1, Д-260.2, Д-260.4 УСТАНАВЛИВАЕТСЯ ФОРСУНКА С РАСПЫЛИТЕЛЕМ 174.1112110-01.
На дизелях ММЗ Д-260.7С, изготовленном в соответствии с требованиями Stage-1 (Евро-1), Д-260.4С2, Д-262.2S2, изготовленных в соответствии с требованиями Stage-2 (Евро-2) используется неразделенная открытая камера сгорания.
Поршни Д-260.1, Д-260.2, Д-260.4
Поршни Д-260.4C2, Д-260.7C, Д-262.2S2
Изменение формы камеры сгорания (она выполнена меньшей глубины и с большей горловиной) потребовало применения других распылителей, отличающихся от предыдущего расположением отверстий и, соответственно, другим углом их распыла.
НА ДАННЫХ ДИЗЕЛЯХ МОЩНОСТЬЮ ДО 210 л.с. – Д-260.4С2 И НА ДИЗЕЛЯХ МОЩНОСТЬЮ 250 л.с. – Д-260.7С И Д-262.2S2 ПРИМЕНЯЕТСЯ РАСПЫЛИТЕЛЬ 172.1112110-02.
УКАЗАННЫЕ РАСПЫЛИТЕЛИ ИМЕЮТ СУЩЕСТВЕННЫЕ ОТЛИЧИЯ И НЕ ВЗАИМОЗАМЕНЯЕМЫ.
ПРИ ОШИБОЧНОЙ УСТАНОВКЕ распылителя 172.1112110-02, вместо необходимого 174.1112110-01, на дизель ММЗ Д-260.4 (трактор переоборудован «Автодвором»), не обеспечится оптимальное смесеобразование и полное сгорание топлива, вследствие чего:
— мощность его существенно снизится;
— будет наблюдаться дымный выхлоп (черный дым);
— будет происходить интенсивное нагарообразование;
— расход топлива при этом возрастет на 15-20% и более;
— двигатель будет перегреваться.
Будьте внимательны при обслуживании и ремонте, и минский двигатель ответит Вам надежной экономичной работой на протяжении длительного периода эксплуатации. А если возникнут неисправности, специалисты СЕРВИСНОГО ЦЕНТРА «АВТОДВОРА» окажут квалифицированную консультацию и при необходимости произведут качественный ремонт дизеля.
Подробнее о процессе смесеобразования в дизельных двигателях
Сгорание топлива и преобразование выделившейся тепловой энергии в механическую являются основной частью рабочего процесса двигателя, от которой в значительной степени зависят показатели ого работы. Именно в этих процессах осуществляется превращение химической энергии топлива сначала в тепловую энергию, а затем в механическую работу. Чтобы добиться наибольшей мощности и экономичности двигателя, необходимо обеспечить полное, достаточно быстрое и своевременное сгорание топлива.
Условия смесеобразования в дизельных двигателях чрезвычайно сложны, так как этот процесс протекает очень короткое время – 0,003-0,005 секунды (25-30°поворота коленчатого вала). За это время топливо, впрыскиваемое в цилиндр, должно равномерно смешаться с воздухом в камере сгорания, испариться, пройти необходимые подготовительные реакции для воспламенения, воспламениться и полностью сгореть. В дизеле процессы смесеобразования и сгорания совпадают по времени. От качества смесеобразования зависит протекание процесса горения, а, следовательно, экономичность и срок службы дизельного двигателя.
Поэтому вопросам смесеобразования и сгорания уделяется особое место, как при постройке дизелей, так и в период их эксплуатации.
Совершенство смесеобразования в дизельном двигателе определяется устройством камеры сгорания, характером движения воздуха при впуске и качеством подачи топлива в цилиндры двигателя. Протекание процесса сгорания зависит главным образом от того, как подготовлена горючая смесь. Смесеобразование, которое у дизельных двигателей происходит внутри цилиндра, заключается в механическом распыливании струи топлива на капельки диаметром от 0,005 до 0,1 мм и в распределении этих капелек в массе сжатого воздуха. При этом не допускается образование слишком мелких или крупных капель, так как струя должна быть однородной.
Сгорание может произойти полно и достаточно быстро только в том случае, если горючая смесь имеет требуемый состав и частицы топлива достаточно мелко распылены и равномерно перемешаны с воздухом.
От начала впрыска топлива до начала самовоспламенения проходит некоторый промежуток времени (0,001-0,002 секунды), который называется периодом задержки воспламенения. Если задержка воспламенения является продолжительной, то в камере сгорания скапливается много топлива, что вызывает резкое нарастание давления при вспышке. Детали кривошипно-шатунного механизма подвергаются при этом ударной нагрузке, и двигатель стучит. Такая работа называется жесткой.
Однако задержка воспламенения не должна быть слишком короткой, так как при этом необходимо будет начинать впрыск топлива при положении поршня, более близком к ВМТ. В результате большое количество топлива будет сгорать после ВМТ при возрастающем объеме, а это увеличит потери тепла через стенки камеры в охлаждающую жидкость. Двигатель будет перегреваться а его экономичность ухудшится.
Способ смесеобразования определяет устройство камеры сгорания дизельного двигателя. В зависимости от устройства камеры сгорания существует несколько типов быстроходных дизельных двигателей, которые делятся на двигатели с неразделенными камерами сгорания, получившими название двигателей с непосредственным впрыском топлива, и двигатели с разделенными камерами предкамерного и вихревого типов.
Наибольшее распространение получили дизели с неразделенными камерами сгорания как у минских двигателей. Для повышения качества смесеобразования в таких двигателях воздух в цилиндры подводится через впускные каналы, имеющие тангенциальное расположение относительно камер сгорания.
Схема неразделённой камеры сгорания дизелей ММЗ Д-260.1, Д-260.4, Д-260.7С, Д-262.2S2
Этим достигается дополнительное завихрение воздуха в процессе впуска. Оно сохраняется также и при сжатии воздуха, благодаря чему после впрыска топлива происходит его быстрое перемешивание с воздухом.
Качество внутреннего смесеобразования достигается как формой камеры сгорания, так и формой факела распыляемого топлива при соответствующем законе подачи топлива.
У двигателей с непосредственным впрыском топлива весь объем камеры сгорания сосредоточен в надпоршневом пространстве, причем камеру сгорания часто располагают в днище поршня. В этом случае конфигурация камеры сгорания способствует лучшему смесеобразованию. Основной объем камеры сгорания находится в выемке, расположенной в средней части днища поршня. При движении поршня вверх воздух из надпоршневого пространства вытесняется в камеру, расположенную в поршне. Это создает устойчивые вихри внутри камеры. Для наиболее равномерного распределения топлива по всему объему камеры сгорания применяют многодырчатые форсунки, создающие не одну, а несколько струй топлива: эти струи образуют общий факел распыла.
Число и диаметр отверстий распылителя подбирают из соображений наиболее полного использования воздушного заряда в цилиндре двигателя. Основная масса впрыскиваемого форсункой топлива попадает на стенки камеры и покрывает их тонкой пленкой. Вследствие высокой температуры стенок и вихревого движения горячего воздуха топливо испаряется и проходит все реакции, подготавливающие его к воспламенению. Остальная часть топлива, распыливаемая в камере сгорания, воспламеняется в среде воздуха, имеющего высокую температуру, и поджигает горючую смесь, образующуюся над пленкой. Такой способ смесеобразования, называемый объемно-пленочным позволяет получить высокую экономичность дизеля при пониженной жесткости сгорания, делает процесс сгорания менее чувствительным к качеству топлива, тонкости распыливания и к скоростному режиму работы двигателя.
Впрыск топлива осуществляется непосредственно в камеру сгорания, это улучшает пусковые свойства двигателя и повышает его топливную экономичность. Небольшие объемы неразделенных камер сгорания позволяют также повысить степень сжатия двигателя и ускорить протекание рабочих процессов, что влияет на его быстроходность.
С ростом быстроходности дизельных двигателей повышается их литровая мощность, поэтому неразделенные камеры сгорания получили широкое применение в современных двигателях. Развитие процесса сгорания в дизельном двигателе зависит от характеристики впрыска топлива, длительности периода задержки его воспламенения и интенсивности движения воздуха в камере сгорания.
Интервал времени между началом впрыска и воспламенением топлива составляет период задержки воспламенения. Он влияет на характер работы двигателя и зависит главным образом от свойств самого топлива, температуры в камере сгорания и угла опережения впрыска. При стандартном качестве топлива, если температура в камере сгорания возрастает, период задержки воспламенения уменьшается. Это снижает жесткость работы двигателя.
Для каждого двигателя в соответствии с условиями смесеобразования находят оптимальный период задержки, обеспечивающий сравнительно мягкую работу при достаточно высокой экономичности. Продолжительность периода задержки воспламенения зависит от нескольких факторов. От степени сжатия двигателя. Чем выше степень сжатия, тем выше температура сжатого воздуха и меньше время прогрева топлива. От формы камеры сгорания. Чем лучше она обеспечивает завихрение смеси и перемешивание топлива с воздухом, тем скорее завершается прогрев.От числа оборотов коленчатого вала. Увеличение числа оборотов до определенных пределов способствует сокращению задержки воспламенения, так как улучшаются условия смесеобразования: повышается температура сжатого воздуха, усиливается его завихрение. Однако по мере возрастания оборотов сокращается продолжительность впрыска, вследствие чего в камеру одновременно попадает много холодных частиц топлива, что замедляет их прогрев.
У быстроходных дизелей период задержки воспламенения по времени приближается к периоду впрыска, и топливо сгорает почти одновременно с резким нарастанием давления. Это является одной из причин, ограничивающих увеличение числа оборотов у дизельных двигателей. Продолжительность периода задержки зависит также и от эксплуатационных условий.
Топливо будет дольше прогреваться, если оно плохо распылено, если форсунка раньше времени впрыскивает топливо и оно попадает в недостаточно прогретый воздух, если топливо имеет высокую температуру самовоспламенения, если двигатель работает с малой нагрузкой, на холостом ходу и недостаточно прогрет.
На характер протекания процесса сгорания в значительной степени влияет момент впрыска топлива в цилиндр. Положение коленчатого вала, при котором должен начинаться впрыск, характеризуется величиной угла опережения впрыска. Последний зависит от степени сжатия двигателя, сорта применяемого топлива, формы камеры сгорания и некоторых других факторов. Для каждого типа двигателя наивыгоднейший угол опережения впрыска находится при испытании в лабораторных условиях.
При раннем впрыске, когда угол опережения больше наивыгоднейшего, работа становится жесткой. Кроме того, топливо может воспламениться преждевременно, и в этом случае сила давления газов будет действовать некоторое время на- встречу движущемуся поршню, мощность двигателя снизится. Частицы топлива, не успевая загореться в непрогретом воздухе, будут ударяться о стенки камеры, образуя жидкостную пленку, которая полностью не сгорит. Вследствие этого выхлоп получится дымный.
При позднем впрыске, когда угол опережения меньше наивыгоднейшего, горение будет протекать при значительно увеличивающемся объеме, снизится давление газов, увеличится теплоотдача стенкам цилиндра, а следовательно, снизятся мощность и экономичность двигателя.
Чтобы обеспечить нормальное протекание процессов смесеобразования и сгорания топлива в дизельном двигателе, необходимо: периодически проверять и регулировать форсунки и топливный насос, более полно загружать двигатель, избегая работы на холостом ходу, и применять только тот сорт топлива, который предусмотрен для данного двигателя. Качество распыливания топлива особенно важно для двигателей с неразделенными камерами сгорания. Оно зависит от конструкции топливоподающей аппаратуры, частоты вращения коленчатого вала двигателя и количества топлива, подаваемого за один цикл (цикловой подачи).
При повышении частоты вращения коленчатого вала и цикловой подачи возрастают давление впрыска и тонкость распыливания.
Заметное влияние на скорость истечения начальных и конечных порций топлива оказывает степень упругости пружины запорной иглы форсунки. При увеличении сжатия пружины размеры капель топлива в начале и в конце подачи уменьшаются. Это вызывает среднее увеличение давления, развиваемого в системе питания, что ухудшает работу двигателя при малой частоте вращения коленчатого вала и малой цикловой подаче. Уменьшение сжатия пружины форсунки оказывает отрицательное влияние на процессы сгорания и выражается в увеличении расхода топлива и повышении дымления. Оптимальное усилие сжатия пружины форсунки рекомендуется заводом-изготовителем и регулируется в процессе эксплуатации на стендах.
Процессы впрыска топлива в значительной степени определяются также техническим состоянием распылителя: диаметром его отверстий и герметичностью запорной иглы. Увеличение диаметра сопловых отверстий снижает давление впрыска и изменяет строение факела распыливания топлива. Образование факела и его дальнобойность зависят от давления впрыска, диаметра соплового отверстия, плотности и подвижности воздуха. Чем больше давление впрыска и диаметр соплового отверстия, тем сильнее проникает факел вглубь камеры сгорания. Потоки воздуха в камере сгорания отклоняют факел впрыскиваемого топлива по направлению своего движения.
При эксплуатации форсунок следует учитывать, что установка распылителей с иным расположением отверстий, засорение или закоксование хотя бы одного отверстия у многосоплового распылителя приводит к нарушению факелов распыливания топлива, а в итоге — к нарушению смесеобразования и процессов сгорания. Если же распылители зависают и форсунка «льет» то возможно появление стуков, подобных стуку вкладышей коленчатого вала.
Условием нормального протекания рабочего цикла двигателя является умеренная скорость подачи топлива в начале впрыска, чтобы за период задержки воспламенения не накапливалось слишком много топлива в цилиндре. Тогда нарастание давления при воспламенении происходит плавно, а двигатель работает мягко.
Слишком большое опережение впрыска ведет к увеличению периода задержки воспламенения и жесткой работе двигателя, так как начало впрыска происходит в этом случае при сравнительно низких температурах в цилиндре. Малый угол опережения впрыска способствует развитию сгорания топлива в процессе расширения, что ухудшает температурный режим двигателя, вызывая его перегрев. Поэтому для получения лучших показателей работы двигателя завод-изготовитель устанавливает оптимальный угол опережения впрыска, который не допускается изменять при эксплуатации.
Влияние процесса топливоподачи на рабочий процесс дизеля
Основными параметрами топливоподачи, которые оказывают наибольшее существенное влияние на рабочий процесс дизеля, являются: качество распыливания топлива, характеристика впрыскивания, способ смесеобразования и т. д. Однако для организации рабочего процесса крайне важными являются не только количественные и качественные показатели процесса топливоподачи, но и привязка процесса топливоподачи к положению поршня в рабочем цилиндре двигателя на такте сжатия. Существенное влияние на весь процесс сгорания топлива в рабочем цилиндре оказывает начальный этап поступления топлива в камеру сгорания до его воспламенения и сгорания. Этот период получил название периода задержки самовоспламенения топлива τ.
Диаграмма топливоподачи дизеля
На развернутой индикаторной диаграмме рабочего процесса дизеля (рис. 5.22) продолжительность этого периода определяется как угловой промежуток от момента поступления первых порций топлива в рабочий цилиндр (точка 1) и до момента отрыва линии сгорания от линии сжатия (точка 2). Под линией сжатия подразумевается кривая изменения давления в рабочем цилиндре при отсутствии подачи топлива, под линией сгорания кривая изменения давления при сгорании топлива.
На протяжении периода задержки самовоспламенения протекает ряд последовательно-параллельных физико-химических процессов, получивших название предпламенных.
При попадании в рабочий цилиндр первых порций топлива часть теплоты заряда расходуется на их прогрев и испарение. В результате температура и давление в цилиндре несколько снижаются, кривая сгорания идет ниже кривой сжатия (позиция А на рис. 5.22).
По мере испарения топлива начинаются химические реакции образования первичных комплексов, получивших название предпламенных реакций. Эти реакции могут носить как экзо-, так и эндотермический характер. Только после накопления в камере сгорания продуктов первичных реакций начинается их взаимодействие с кислородом воздуха, носящее, как правило, цепной характер и сопровождающиеся выделением большого количества тепла. Повышение температуры заряда приводит к повышению давления, в результате чего кривая сгорания пересекает кривую сжатия, что и соответствует моменту окончания периода задержки самовоспламенения.
Продолжительность периода задержки самовоспламенения в основном определяется температурой заряда на момент впрыска топлива, свойствами самого топлива, качеством его распыливания. Последнее в значительной степени зависит от показателей работы топливной аппаратуры.
Для получения заданного характера изменения давления в рабочем цилиндре нужно учитывать время, необходимое на предпламенные процессы. Для этого момент начала подачи топлива устанавливают раньше теоретически определенного момента начала тепловыделения на величину задержки самовоспламенения. На практике влияние периода задержки самовоспламенения на рабочий процесс учитывается путем установки угла опережения подачи φоп.
С увеличением φоп топливо в цилиндр впрыскивается раньше (точка 1` на рис. 5.22), что приводит к его более раннему воспламенению. В результате большее количество теплоты выделяется еще до прихода поршня в ВМТ, что приводит к более резкому возрастанию давления и росту его максимального значения. Рабочий процесс становится более динамичным и более жестким. С дальнейшим увеличением угла опережения такая тенденция будет ослабевать, так как топливо будет впрыскиваться в среду с более низкой температурой и давлением, а это приведет к увеличению периода задержки самовоспламенения.
С увеличением φоп экономичность дизеля сначала возрастает, так как некоторое увеличение работы сжатия до ВМТ с избытком компенсируется повышением термического КПД цикла вследствие подвода теплоты к рабочему телу при более высокой температуре. При больших значениях угла φоп работа сжатия существенно возрастает и становится больше, чем выигрыш в термическом КПД, поэтому экономичность дизеля падает.
С уменьшением угла φоп, особенно до значений, соответствующих началу сгорания топлива после ВМТ (точка 1` на рис. 5.22), происходит снижение механической напряженности двигателя, но одновременно снижается и его экономичность. Сгорание основной порции топлива смещается на линию расширения, что повышает температуру отработавших газов и теплонапряженность деталей цилиндропоршневой группы.
Очевидно, что угол опережения впрыска должен увеличиваться с повышением оборотов двигателя, чтобы обеспечить необходимый временной промежуток на протекание предпламенных процессов. Кроме того, изменение нагрузки на двигатель, давление наддува, внешних условий, сорта топлива могут потребовать корректировки угла опережения подачи топлива.
Угол опережения является важным параметром воздействия на показатели рабочего процесса, экономичность двигателя, его экологические показатели. В этой связи основная масса топливных систем современных судовых дизелей оборудуются устройствами для автоматического изменения данного параметра в зависимости от режима работы двигателя. Устройство таких систем нами было рассмотрено в предыдущих разделах. Следует отметить, что наиболее полно реализовать принцип выбора оптимального угла опережения удается только в системах с электронным управлением топливоподачей.
В ряде современных высоко- и среднеоборотных дизелей предусмотрено изменение характера протекания рабочего процесса в зависимости от нагрузочно-скоростного режима. В частности, переход с классического цикла со смешанным подводом теплоты на режимах малых и средних нагрузок на цикл Миллера на режимах нагрузок, близких к максимальным.
Такой переход сопровождается одновременным изменением фаз газораспределения и топливоподачи. На рисунке 5.23 представлен вариант технического решения, позволяющего осуществлять такой переход, который разработан фирмой MaK и реализован в двигателях серий M 20–M 43.
Принцип работы устройства основан на изменении положения ролика рычажного толкателя относительно кулачковой шайбы распределительного вала. Для этого ось рычага закреплена эксцентрично на валу, который имеет возможность проворачиваться на угол, близкий к 180°. В результате толкатель совершает поступательное движение, изменяя угол опережения подачи топлива и углы начала открытия и закрытия впускного клапана.
Привод эксцентричных валов роликовых толкателей осуществляется от пневматического серводвигателя через систему шестерен. Предусмотрен также и ручной перевод двигателя с одного режима на другой.
Изменение угла опережения в данной конструкции позволяет не только обеспечить оптимальный закон тепловыделения на режиме максимальной мощности, но и улучшить условия распыливания топлива при снижении нагрузки за счет смещения начала впрыска на более скоростной участок подъема плунжера.
На рисунке 5.24 показано устройство для изменения угла опережения подачи, используемое фирмой MAN в своих среднеоборотных двигателях. В данном устройстве вал привода насосов соединяется с шестерней привода через наклонное шлицевое соединение. Ступица шестерни при осевом перемещении скользит вдоль шлицов и проворачивает распределительный вал относительно коленчатого на некоторый угол, величина которого определяется углом наклона шлицов к оси вала и величиной осевого перемещения. Для осевого перемещения шестерни вместе со ступицей используется гидравлический сервопривод, располагаемый в торце вала на остове двигателя.
На высокооборотных двигателях, которые работают на разных скоростных режимах, находят применение автоматические муфты опережения впрыска центробежного типа. Они предназначены для автоматического изменения угла опережения впрыска топлива при изменении числа оборотов коленчатого вала двигателя. Схематически работа такой муфты показана на рисунке 5.25. В корпусе муфты, через который осуществляется ее привод, смонтирована полумуфта, через которую приводится вал ТНВД блочного типа. Полумуфта имеет выступы, которые с одной стороны нагружены пружинам, а с другой упираются в эксцентрики, выполненные на неуравновешенных грузах. Таким образом, полумуфта занимает определенное положение относительно корпуса. При увеличении частоты вращения на неуравновешенную часть грузов начинает действовать центробежная сила. Под действием этой силы грузы, преодолевая усилие пружин, раздвигаются и через эксцентрики, проворачивая полумуфту на угол γ против направления вращения корпуса, изменяют тем самым угол опережения подачи.
Продолжительность впрыскивания (угол φппф) также оказывает большое влияние на рабочий процесс. Для повышения экономичности и снижения температуры отработавших газов необходимо обеспечить сравнительно небольшое значение угла φппф на номинальном режиме. Этот угол можно уменьшить путем увеличения максимального давления впрыска или увеличения эффективного проходного сечения распылителя. В первом случае возрастут механические нагрузки на детали топливной аппаратуры, а во втором — на режимах малых нагрузок будет низкое давление впрыскивания, что приведет к ухудшению распыливания топлива.