Что такое система возбуждения двигателя от постоянных магнитов - Журнал "Автопарк"
Auto-park24.ru

Журнал "Автопарк"
1 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Что такое система возбуждения двигателя от постоянных магнитов

Исполнительные двигатели с обычным якорем и возбуждением от постоянных магнитов

Эти двигатели отличаются от рассмотренных двигателей обычного использования только тем, что основной их магнитный поток создается не обмоткой возбуждения, а постоянными магнитами, которые располагаются на статоре и заменяют обычные полюсы с обмоткой возбуждения.

Преимущества двигателей с постоянными магнитами по сравнению с двигателями постоянного тока, имеющими обмотки возбуждения, можно сформулировать следующим образом:

— отсутствие потерь мощности на возбуждение, что обусловливает более высокий КПД, достигающий даже у двигателей малых мощностей (в несколько ватт) 60. 70%;

— отсутствие источника питания для обмотки возбуждения;

— практически полная независимость основного магнитного потока машины от изменений температуры и колебаний напряжения сети.

Эти преимущества двигателей с постоянными магнитами способствуют все более возрастающему их применению как в следящих системах, так и автоматизированных приводах. В последнее время в технике получают широкое применение не только двигатели с постоянными магнитами малых мощностей, но и двигатели средних и больших мощностей.

Отсутствие потерь мощности на возбуждение позволяет увеличить ток якоря и потери в его обмотке без увеличения температуры нагрева (а значит, без увеличения габаритных параметров якоря), что приводит к увеличению вращающего момента ≈ФIя), развиваемого двигателем, а следовательно, и отдаваемой им мощности P = Мn. Именно поэтому такие двигатели иногда называют высокомоментными.

С целью уменьшения искрения под щетками — получения удовлетворительной коммутации при увеличенных токах якоря, что имеет место в переходных режимах (при пуске, остановке, реверсе), в которых, как правило, большую часть времени работают исполнительные и высокомоментные двигатели автоматических систем, обмотки якорей выполняют с большим числом Nc секций, а коллекторы — с большим числом NK коллекторных пластин (Nc = NK). Это позволяет уменьшить число витков в каждой из секций, а следовательно, и значения ЭДС (ек) коммутируемых секций, наводимых в них в процессе коммутации (ЭДС вращения eвр, ЭДС самоиндукции eL, ЭДС взаимоиндукции ет и ЭДС трансформации етр).

Стоимость двигателей с постоянными магнитами, несмотря на кажущуюся их простоту, часто не ниже, а даже выше стоимости двигателей с обмоткой возбуждения. Объясняется это высокой стоимостью и дефицитностью целого ряда материалов, идущих на изготовление постоянных магнитов (например, самария, кобальта), а также трудностью их механической обработки, поэтому длительное время двигатели с постоянными магнитами выпускались на небольшие мощности.

В последнее время получили широкое распространение недорогие ферритобариевые и другие магниты, обладающие высокой удельной энергией за счет большой коэрцитивной силы материалов. Это позволило проектировать и выпускать двигатели с постоянными магнитами большой номинальной мощности (на десятки киловатт). Двигатели некоторых серий большой мощности имеют встроенные тахогенераторы.

На рис. 10.2 представлена конструкция микродвигателя постоянного тока с постоянным магнитом серии ДПМ, получившего широкое распространение. Его недостатками являются нетехнологичность и сравнительно дорогой кольцевой постоянный магнит из сплава типа ЮНДК.

Рисунок 10.2. Конструкция исполнительного двигателя с постоянным магнитом:

1-концевые части из цинкового сплава; 2- постоянный магнит; 3- якорь с коллектором

В последние годы была разработана целая серия ДП микродвигателей постоянного тока исполнения Р09 с дешевыми феррито-бариевыми постоянными магнитами. По своим характеристикам такие двигатели весьма близки к двигателям серии ДПМ.

studopedia.org — Студопедия.Орг — 2014-2021 год. Студопедия не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования (0.002 с) .

Стартеры с постоянными магнитами

Стартеры с постоянными магнитами начали появляться на транспортных средствах с конца 80-х. Два главных преимущества этих двигателей по сравнению с обычными типами — меньший вес и меньший размер. Это делает стартер с постоянными магнитами популярным выбором для изготовителей транспортного средства, так как из-за компактности современных автомобилей меньше места остается для электрических систем двигателя. Сокращение веса вносит вклад и в сокращение потребления топлива.

Доступные в настоящее время стандартные стартеры с постоянными магнитами подходят для использования на двигателях внутреннего сгорания с рабочим объемом примерно до 2 литров. Они имеют номинальную мощность порядка 1 кВт. Типичный пример — стартер компании Lucas модели M78R/M80R, показанный на рисунке.

Рис. Стартер M78R/M80R (Lucas): 1 — соленоид; 2 — узел щеткодержателя; 3 — набор сменных щеток; 4 — якорь; 5 — стопорное кольцо; 6 — ярмо и резиновая прокладка; 7 — вал привода и набор крепления подшипника; 8 — узел приводного механизма; 9 — набор втулок; 10 — узел мотора и набор деталей планетарного механизма

Принцип действия данного стартера похож на обычный для мотора стартера с предустановкой зацепления. Главное же различие состоит в замене обмоток возбуждения и полюсных башмаков высококачественными постоянными магнитами. Сокращение веса составляет до 15%, и диаметр корпуса может быть настолько же уменьшен.

Постоянные магниты обеспечивают постоянное возбуждение, и было бы логичным ожидать, что скорость и крутящий момент будут постоянными.

Однако из-за падения напряжения батареи под нагрузкой и низкого сопротивления отмоток якоря характеристики стартера сопоставимы с электродвигателями сериесного типа. В некоторых случаях между главными магнитами устанавливают концентраторы магнитного потока. Из-за эффекта деформирования магнитного поля характеристика стартера подобна мотору сериесного типа.

Читать еще:  Ваз 2107 2007 года двигатель технические характеристики

Разработки некоторых изготовителей коснулись и конструкции щеток. Используется обычная смесь меди и графита, но щетки делаются из двух половинок, имеющих более высокое содержание меди в зоне передачи мощности и более высокое содержание графита в зоне коммутации.

Это увеличивает срок службы и снижает падение напряжения, увеличивая мощность стартера.

Для более мощных применений были разработаны стартеры с постоянными магнитами, имеющие промежуточную передачу. Это позволяет якорю вращаться с более высокой скоростью (что увеличивает эффективность), а крутящий момент обеспечивается за счет редуктора. Существуют стартеры с постоянными магнитами и промежуточной передачей мощностью около 1,7 кВт, подходящие для двигателей внутреннего сгорания с объемом цилиндров до 3 литров или дизельных двигателей до 1,6 литра. Этот тип стартера с постоянными магнитами может дать экономию веса до 40%. Принцип действия такого стартера подобен обычному стартеру с предварительной установкой зацепления. Промежуточная передача выполняется планетарной.

Ведущая шестерня планетарного механизма находится на валу якоря, а поводок, связывающей шестерни-сателлиты, является приводом стартера. Кольцевое зубчатое колесо остается неподвижным и, кроме того, действует как промежуточная опора якоря. Такое устройство шестерен дает отношение редукции приблизительно 5:1. Оно может быть рассчитано по формуле:

отношение редукции = A/S,
где А — число зубцов на кольцевом венце, S — число зубцов на ведущей шестерне.

Кольцевое зубчатое колесо в некоторых типах стартеров изготавливается из полиамидного компаунда с минеральными добавками, чтобы повысить его прочность и износостойкость. Шестерни якоря и сателлиты — из обычной стали. Такая комбинация материалов обеспечивает тихую и эффективную работу редуктора.

Возбуждение в двигателях постоянного тока

Доброго времени суток, дорогие читатели! В этой статье я расскажу о том, что такое возбуждение в двигателях постоянного тока и «с чем его едят».

Наверное, каждый из нас в детстве имел игрушки с электроприводом. Те же, кто в те годы отличался любопытностью, не упустили возможность разобрать эти игрушки, дабы посмотреть, а что там внутри.

Заглянув внутрь такой игрушки, нами был найден маленький электромоторчик постоянного тока. Естественно, тогда мы и не задумывались над тем, почему он работает. Некоторые из нас, найдя в игрушке моторчик, решались разобрать и его. Вот эти-то любопытные товарищи, разобрав моторчик, находили там постоянный магнит (иногда не один), щетки и якорь с коллектором.

Так вот, как раз постоянный магнит и является простейшей системой возбуждения для моторов постоянного тока. Ведь якорь моторчика вращается только тогда, когда вокруг него присутствует постоянное магнитное поле, которое и создается при помощи постоянного магнита.

Двигатели постоянного тока промышленных масштабов, в качестве возбудителей, используют специальные обмотки, именуемые обмотками возбуждения.

Подключение же этих обмоток может быть самым различным. Они могут включаться параллельно якорю, последовательно с ним, смешано и, даже, независимо от них.

Кстати, моторчики, имеющие в качестве возбудителя постоянный магнит, считаются устройствами с независимым возбуждением.

Возбуждающая обмотка состоит из значительно большего числа витков, нежели якорная. В связи с этим, ток якорной обмотки в десятки раз превосходит ток возбуждающей. Скорость вращения такого движка может меняться в зависимости от нагрузки и магнитного потока. Благодаря свойствам подключения, движки параллельного включения довольно мало подвержены перемене частоты вращения.

Теперь рассмотрим вариант раздельного подключения рабочей и возбуждающей обмоток. Такой движок именуется мотором с независимым возбуждением. Скорость такого движка может регулироваться при помощи смены сопротивления якорной цепи или магнитного потока.

Тут есть небольшой нюансик: не стоит слишком уменьшать ток возбуждения при таком включении двигателя, поскольку это чревато очень большим подъемом якорного тока. Тем же самым опасен и обрыв цепи возбуждения этих двигателей. Кроме того, если нагрузка мотора с таким включением мала, либо при его включении на холостой ход может произойти такой сильный его разгон, что возникнет опасность для движка.

Как я уже говорил, разновидностью ДПТ независимого возбуждения считаются устройства, имеющие в качестве возбудителя постоянные магниты. Скажу несколько слов и о них.

Поскольку ДПТ и машины синхронного типа могут использовать вместо возбудителей постоянные магниты, то подобный вариант считается достаточно привлекательным. И вот почему:

  • у такого устройства снижено потребления тока за счет уменьшения числа обмоток, в результате чего такие показатели подобных машин, как КПД, оказываются выше;
  • с использованием вместо возбудителя постоянных магнитов упрощается конструкция возбуждающих цепей движка, что повышает его надежность, ведь постоянный магнит не требует питания, следовательно, у такого мотора нет токосъемного узла на роторе.

Теперь о последовательном включении обмоток (двигатели с последовательным возбуждением).

В этом варианте подключения, якорный ток будет являться и возбуждающим. Это становится причиной изменения магнитного потока в сильной зависимости от нагрузки. Это является причиной большой нежелательности пуска их на холостом ходу и при маленькой нагрузке.

Применение же такое включение нашло там, где требуется значительный момент пуска, либо возможность выдерживания кратковременных перегрузок. В связи с этим, их применяют, как средства тяги для трамваев, троллейбусов, электровозов, метро и подъемных кранов. Кроме того, их применяют, как средство запуска для ДВС (в качестве стартеров).

Читать еще:  Что может быть с глушителем двигателя на ваз

Последним вариантом включения движков постоянного тока считается их смешанное включение. Каждый из полюсов этих моторов оснащен парой обмоток, одна из которых параллельная, а другая – последовательная. Подключать их возможно двумя способами:

  • согласный метод (в этом случае токи складываются);
  • встречный вариант (вычитание токов).

Соответственно, в зависимости от варианта подключения (от чего меняется и соотношение магнитных потоков), такой мотор может оказаться приближен либо к устройству, имеющему последовательное возбуждение, либо к движку с параллельным возбудом.

В большинстве случаев, основной обмоткой у них считают последовательную обмотку, а параллельную – вспомогательной. За счет параллельной обмотки у таких моторов скорость при небольших нагрузках практически не растет.

Если требуется получение значительного момента при пуске и возможность регулирования скорости на переменных нагрузках, используется подключение согласного типа. Встречное же подключение используется при необходимости получения постоянной скорости при изменяющейся нагрузке.

Если возникает необходимость реверсирования ДПТ (смены направления его вращения), то меняют направление тока в одной из его рабочих обмоток.

Методом смены полярности подключения клемм двигателя возможно поменять направление только тех моторов, которые включены по независимой схеме, либо движков с постоянным магнитом в качестве возбудителя. Во всех иных устройствах необходима смена направления тока в одной из рабочих обмоток.

Кроме того, движки постоянного тока нельзя включать методом подключения полного напряжения. Это связано с тем, что величина их пускового тока примерно в 2 десятка раз выше номинального (это зависит от размеров и скорости двигателя). Токи пуска движков больших размеров могут и в полсотни раз превосходить их номинальный рабочий ток.

Токи больших величин способны вызвать эффект кругового искрения коллектора, в результате чего коллектор разрушается.

Чтобы выполнить включение ДПТ, используется методика плавного включения, либо применение пусковых реостатов. Включение прямого типа возможно лишь на небольших напряжениях и для маленьких движков, имеющих большое сопротивление якорной обмотки.

Пишите комментарии, дополнения к статье, может я что-то пропустил. Загляните на карту сайта, буду рад, если вы найдете на моем сайте еще что-нибудь полезное. Всего доброго.

Что такое система возбуждения двигателя от постоянных магнитов

Характерной особенностью синхронных микродвигателей (СМД)является постоянство частоты вращения при неизменной частоте питающейсети и колебаниях момента нагрузки на валу и напряжения сети вопределенных пределах, поскольку

Статор СМД по конструкции очень похож на статор обычной машины переменного тока, т.е. состоит из сердечника и трех- или двухфазной обмотки, создающей вращающееся магнитное поле. Однако в отличие от машин средней и большой мощности СМД практически никогда не выполняются с обмоткой возбуждения на роторе. В зависимости от конструкции ротора они бывают: с постоянными магнитами, реактивные, гистерезисные.

§ 3.1. Синхронные микродвигатели с постоянными магнитами

По способу пуска эти двигатели делятся: 1) на самозапускающиеся двигатели; 2) двигатели с асинхронным пуском.

Самозапускающиеся двигатели выполняются на небольшие мощности (обычно доли ватта) и низкие частоты вращения (не более 400 об/мин). Они рассчитываются на работу от однофазной сети переменного тока. Их магнитное поле либо пульсирует, либо имеет резко выраженный эллиптический характер. Пуск этих двигателей происходит за полпериода изменения тока за счет всегда существующего в синхронных двигателях пульсирующего момента. Нагрузка должна быть малоинерционной. В противном случае они пускаются в холостую а затем нагружаются. Для пуска используются различные устройства, обеспечивающие вращение двигателя в заданном направлении.

Обычно они выполняются плоскими – имеющими сравнительно большой диаметр и малую длину. Их обмотка возбуждения имеет вид кольца, а магнитная цепь статора — клювообразные полюса. КПД таких двигателей невелик – 3÷5 % и менее.

Синхронные микродвигатели с асинхронным пуском имеют на роторе короткозамкнутую обмотку типа «беличьей клетки», которая выполняется в полюсных наконечниках. Эта обмотка во время пуска участвует в создании асинхронного момента и разгоняет двигатель до скорости, близкой к синхронной. В синхронном режиме она демпфирует колебания ротора при резких изменениях нагрузки.

СМД с постоянными магнитами и асинхронным пуском изготавливаются в двух исполнениях: с радиальным расположением постоянных магнитов (рис. 3.1,а); с аксиальным расположением постоянных магнитов (рис. 3.1,б).

В электромагнитном отношении более совершенны двигатели первого исполнения. Второе применяется в тех случаях, когда есть ограничения по внешнему диаметру.

Уравнение ЭДС и момент двигателя в синхронном режиме. Из общего курса электрических машин известно несколько форм уравнения напряжения синхронного двигателя с явновыраженными возбужденными полюсами, например такая:

(3.1)

Рис. 3.1. Синхронные микродвигатели с постоянными магнитами на роторе с радиальным (а) и аксиальным (б) расположением магнитов. 1 – постоянный магнит; 2 – сердечник из электротехнической стали; 3 – стержни пусковой обмотки; 4 – короткозамыкающие кольца.

где: — ЭДС, индуцированная в статоре полем ротора; d , q — ток статора по осям d и q; xd, xq — синхронные индуктивные сопротивления статора по продольной и поперечной осям; r1 — активное сопротивление статора.

Читать еще:  Двигатель d4dd не набирает обороты больше 3000

Уравнению (3.1) соответствует векторная диаграмма нарис. 3.2. Из диаграммы можно вывести выражения токов Idи Iq

Рис. 3.2. Векторная диаграмма СМД.

где — степень возбужденности ротора.

Полный ток статора

Если пренебречь активным сопротивлением статора (r1 = 0), формула момента

(3.2)

Вращающий момент двигателя является суммой двух моментов: электромагнитного М1, обусловленного взаимодействием полей статора и ротора и реактивного момента М2 , обусловленного неодинаковой проводимостью по продольной и поперечной осям.

Не учет активного сопротивления статора в микромашинах приводит к значительным количественным ошибкам. Вместе с тем его учет сильно усложняет математический анализ процессов, происходящих в машине /см. [1], формула(4.24)/. Однако и в этом случае формула момента похожа на (3.2)

(3.2′)

где: AЭ — амплитуда электромагнитного момента с учетом r1; Adq — амплитуда реактивного момента с учетом r1; αЭ, αdq — углы сдвига первой и второй составляющих момента; MТ — тормозной момент.

Рассматривая выражение (3.2′), приходим к выводу, что вращающий момент синхронного микродвигателя с учетом r1 , так же как и без учета r1, является суммой двух синусоид, только смещенных влево на углы αЭ и αdq и вниз на величину тормозного момента МТ.

Смещение синусоид влево (в сторону меньших углов) можно пояснить с помощью векторной диаграммы рис. 3.2, на которой пунктиром показан вектор напряжения, замыкающий диаграмму, и угол q при r1 = 0. Из диаграммы видно, что учет активного сопротивления приводит к уменьшению угла между векторами ЭДС и напряжения сети. Это дает основание утверждать, что момент наступает при меньшем угле. Смещение синусоид вниз объясняется потерями в обмотке статора, которые бы не учитывались при r1 = 0, следовательно, меньшей полезной мощностью, а значит и меньшим моментом двигателя.

Двигатели с радиальным расположением магнитов. Роль обмотки возбуждения здесь выполняет блок постоянных магнитов типа звездочки, на который напрессован кольцевой пакет из электротехнической стали. В пазах кольца располагается пусковая короткозамкнутая обмотка и имеются прорези, размеры которых выбираются из условия хорошего пуска и максимального использования энергии постоянных магнитов в синхронном режиме.

Свойства двигателя во многом зависят от того, насколько удачно выбраны размеры этих прорезей. В целях предохранения магнитов от размагничивания и увеличения асинхронного пускового момента прорези должны быть минимальными. Однако не следует забывать о том, что это приводит к росту потоков рассеяния и ухудшению свойств двигателя в синхронном режиме.

Особенностью двигателей радиальной конструкции является большое магнитное сопротивление по продольной оси по сравнению с сопротивлением по поперечной оси. Объясняется это низкой проводимостью постоянного магнита, по которому проходит поток продольной реакции якоря (проводимость магнита лишь раз в 10 больше проводимости воздуха, тогда как проводимость электротехнической стали в тысячи раз превышает ее).

Поток поперечной реакции якоря проходит по полюсным наконечникам из электротехнической стали и, естественно, встречает малое магнитное сопротивление. Поэтому в данных двигателях ld xq (б).

Положительными свойствами синхронных двигателей с постоянными магнитами являются: высокая стабильность скорости вращения в синхронном режиме, сравнительно высокие энергетические показатели (КПД и cosj), повышенная перегрузочная способность, большая удельная мощность (мощность на единицу массы), хорошая синфазность вращения, что часто требуется в групповых приводах. Недостатки – более высокая стоимость, меньший пусковой момент и больший пусковой ток по сравнению с аналогичными реактивными двигателями.

§ 3.2. Особенности пуска двигателей с постоянными магнитами

Подавляющее большинство синхронных микродвигателей пускается как асинхронные, для чего они снабжаются пусковой обмоткой. Однако в отличие от двигателей с электромагнитным возбуждением постоянные магниты на время пуска невозможно «отключить». Поэтому в процессе разгона поток постоянных магнитов индуцирует в обмотке статора ЭДС, под действием которой по обмотке через источник протекает ток (рис. 3.4). Этот ток, взаимодействуя с полем постоянного магнита, создает момент по своей природе аналогичный асинхронному моменту, развиваемому пусковой обмоткой. Однако этот момент является не движущим, а тормозящим.

Частота тока в пусковой обмотке пропорциональна скольжению (f2 = f1s), поэтому максимум асинхронного момента лежит в области малыхскольжений. Частота тока в обмотке статора от поля постоянных магнитов пропорциональна скорости ротора [n2 = n1(1-s)], поэтому максимум тормозного момента лежит в области малых значений n ,т.е. больших скольжений.

Тормозной момент образует провал в пусковой характеристике двигателя, тем самым создает опасность застревания его на малой скорости вращения (рис. 3.5). Понятно, что с этой точки зрения надо бы иметь небольшой поток постоянного магнита, т.е. небольшую ЭДС Е, хотя винтересах работы в синхронном режиме должно быть наоборот. Оптимальноеотношение Е/U для двигателей мощностью 10 -120 Вт при f = 50 Гц,p = 2лежит в пределах 0,5 — 0,8.

Задача 3.1. Построить угловую характеристику синхронного микродвигателя радиальной конструкции при r1 = 0, m = 2, U=220 В, Е = 185 В, n = 3000 об/мин, xd = 35 Ом, xq = 46 Ом и аксиальной конструкции при r1 = 0, тех же значениях m, U, E, n1 , но xd = xq = 37 Ом.

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector