Auto-park24.ru

Журнал "Автопарк"
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Что такое номинальный ток холостого хода асинхронного двигателя

Что такое номинальный ток холостого хода асинхронного двигателя

Приветствую вас, дорогие читатели.

Прежде, чем разбираться с методиками подключения и характеристиками токов моторов асинхронного типа, нелишним будет вспомнить о том, что это такое.

Так вот, движком асинхронного типа зовут асинхронную машину особого вида, которая преобразует энергию электричества механическую. Главным рабочим принципом такого устройства считают вот какие свойства. Проходя по статорным обмоткам, переменный ток, состоящий из трех фаз, создает условия для появления вращающегося магнитного поля. Это поле и заставляет ротор вращаться.

Естественно, что при подключении двигателя надо учитывать все эти факторы, ведь вращение ротора будет производиться в ту сторону, в которую вращается магнитное поле. Частота вращения ротора, однако, ниже частоты вращения возбуждающего поля. По конструкции же эти машины бывают самыми различными (то есть предназначенными для работы в разных условиях).

Подключение и токи асинхронных электродвигателей

Как рабочие, так и пусковые характеристики таких устройств на много превосходят такие же показатели моторов однофазного типа.

Любой из таких моторов имеет две основные части – подвижную (роторную) и неподвижную (статорную). На обеих частях имеются обмотки. Разница между ними может быть лишь в типе обмотки ротора: она может иметь роторные кольца, либо быть короткозамкнутой. Подключение движков, имеющих короткозамкнутый ротор и мощность до двух сотен киловатт, производится напрямую к сети. Моторы же большей мощности необходимо подключать, сперва, к пониженному напряжению и, лишь потом, переключать на номинал (с целью снижения в несколько раз пускового тока).

Теперь я расскажу о том, как подключаются асинхронные движки.

Статорная обмотка практически любого такого устройства имеет шесть выводов (из них три – начала и три – концы). В зависимости от того, какова питающая сеть мотора, эти выводы соединяют либо в «звезду», либо в «треугольник». С этой целью корпус каждого мотора имеет коробку, в которой выведены начальные и конечные провода обмоток (они обозначаются, соответственно, С1, С2, С3 и С4, С5, С6).

Сперва разберем тип соединения в звезду.

Подключение асинхронных электродвигателей

Так называют метод соединения обмоток, при котором все три обмотки имеют одну общую точку (нейтраль). Линейное напряжение такого соединения выше фазного в 1,73 раза. Положительным качеством этого вида соединений считают малые токи пуска, хотя мощностные потери при этом довольно значительны.

Метод соединения в треугольник отличается тем, что при этом методе соединение выполняется таким образом, что конец одной обмотки становится началом следующей.

Подключение асинхронных электродвигателей

При этом соединении фазное и линейное напряжения одинаковы, следовательно, при линейном напряжении в 220 вольт, правильным соединением обмоток будет именно треугольник. Положительной стороной этого соединения является большая мощность, тогда, как отрицательной – большие токи пуска.

Для выполнения реверса (смены направления вращения) трехфазного движка асинхронного типа достаточно поменять местами выводы двух его фаз. На производстве это делается при помощи пары магнитных пускателей с зависимым включением.

Значительные величины токов пуска у асинхронных моторов являются весьма нежелательным явлением, потому, как они могут привести к эффекту нехватки напряжения для других видов оборудования, подключенного к той же сети. Это стало причиной того, что подключая и налаживая двигателя этого типа, появляется задача минимизации токов пуска и повышения плавности запуска моторов методом использования специализированного оборудования. Наиболее эффективым типом таких приспособлений считаются софтстартеры и частотные преобразователи. Одним из наиболее ценных их качеств считают то, что они способны поддержать ток запуска мотора довольно долгое время (обычно больше минуты).

Помимо стандартного способа включения моторов асинхронного типа, существуют и методы включения их в питающую сеть, имеющую лишь одну фазу.

Для этого, в основном, применяют конденсаторный способ включения. Конденсатор может устанавливаться как один, так и пара (один пусковой, а второй рабочий). Пара кондеров ставится тогда, когда есть надобность в процессе пуска-работы менять емкость, что делают при помощи подключения-отключения одного из кондеров (пускового). Для этого, как правило, применяются емкости бумажного исполнения, поскольку они не имеют полярности, а при работе на переменном токе это очень важно.

Для расчета рабочего конденсатора существует следующая формула:

Пусковой же конденсатор должен иметь емкость в пару-тройку раз большую емкости рабочего и рабочее напряжение в полтора раза превышающее напряжение питания.

Пусковой и рабочий конденсаторы соединяют параллельно, причем так, что параллельно пусковому включено шунтирующее сопротивление и одним концом пусковой кондер включается через ключ. При пуске двигателя ключ замыкают, поднимая ток запуска, затем, размыкают.

Однако, не нужно забывать, что к однофазной сети можно подключить далеко не каждый движок. Кроме того, мощность мотора в таком подключении будет составлять лишь 0.5-0.6 мощности трехфазного включения.

Читать еще:  405 двигатель как проверить датчик температуры двигателя

Основные нагрузочные свойства асинхронных электродвигателей

Асинхронные двигатели в процессе эксплуатации работают с нагрузками на валу от холостого хода до номинальной. Напряжение и частота сети могут сохранять номинальные значения или длительно изменяться в зависимости от режима работы энергосистемы. Под нагрузочными свойствами асинхронного двигателя при отклонениях напряжения и частоты подразумеваются изменения основных параметров, характеризующих его установившийся режим, -ЭДС магнитного потока, вращающего момента, скольжения и частоты ротора, модуля и фазы тока ротора, намагничивающего тока, модуля и фазы тока статора.

Встречается необходимость использования двигателя для работы в сети с напряжением и частотой, отличающимися от его номинальных значений, в случаях:
а) применения двигателей, рассчитанных на частоту 60 Гц, в сети с частотой 50 Гц;
б) работы двигателя с нормальным соединением обмотки статора в звезду, в сети другого номинального напряжения — при соединении обмотки статора в треугольник;
в) переключения обмотки статора на звезду вместо нормального соединения треугольником для уменьшения потерь активной мощности и потребления реактивной мощности незагруженных двигателей.

Рассмотрим сначала в общих чертax явления, происходящие в двигателе при отклонении от номинальных значений нагрузки на валу (момента сопротивления приводимого двигателем механизма), напряжения и частоты питающей сети. По основным параметрам режима определяются такие важные факторы, как нагрев активных частей двигателя, изменение потерь и КПД, потребление из сети активной и реактивной мощностей, изменение начального вращающего момента при неподвижном роторе (для оценки возможности пуска двигателя при отклонениях напряжения и частоты).

Определим общий характер изменения перечисленных выше величин, исходя из основных соотношений, принимая для упрощения момент сопротивления механизма не зависящим от угловой скорости ротора. Изменение нагрузки на валу двигателя при номинальных напряжении и частоте питающей сети. Рассмотрим влияние увеличения нагрузки на валу на основные параметры установившегося режима. Вследствие увеличения нагрузки угловая скорость ротора несколько снижается, а следовательно, скольжение увеличивается до такого значения, при котором вращающий момент двигателя уравновешивает повышенный момент сопротивления. Поскольку при скольжениях меньше критического сопротивление статора составляет незначительную долю общего сопротивления двигателя, то ЭДС, магнитный поток и намагничивающий ток практически не изменяются при изменении нагрузки.

Увеличение вращающего момента двигателя сопровождается соответствующим увеличением тока ротора. С увеличением скольжения возрастает фазный угол приведенного тока ротора, что приводит к увеличению реактивного тока двигателя, практически равного сумме индуктивного намагничивающего тока и реактивной составляющей приведенного тока ротора. В связи с ростом активной и реактивной составляющих тока статора последний также возрастает при увеличении нагрузки на валу. Увеличение токов ротора и статора обусловливает возрастание потерь в меди обмоток.

У двигателей нормального исполнения с короткозамкиутым и с фазным роторами при нормальной работе с закороченным реостатом угловая скорость ротора при изменении нагрузки в пределах номинальной изменяется незначительно и поэтому мощность на валу увеличивается практически пропорционально моменту сопротивления. В связи с увеличением реактивного тока двигателя при увеличении нагрузки увеличивается реактивная мощность, потребляемая из сети. При уменьшении нагрузки на валу скольжение, ток ротора и его фаза, а также ток статора уменьшаются, что приводит к снижению потребления двигателем из сети активной и реактивной мощностей.

При определении полезной мощности на валу двигателей с повышенным скольжением, а также двигателей с фазным ротором, работающих нормально с регулировочным реостатом, следует учитывать изменение угловой скорости ротора. Изменение напряжения при номинальной частоте. Предположим, что напряжение, подводимое к обмотке статора двигателя, работающего с постоянным моментом сопротивления, уменьшилось. Вследствие уменьшения напряжения уменьшаются ЭДС двигателя и магнитный поток. Вращающий момент двигателя, пропорциональный квадрату напряжения, окажется при прежнем скольжении меньше, чем момент сопротивления, и скольжение двигателя увеличится до такого значения, при котором вновь наступит равенство между указанными моментами.

Увеличение скольжения вызовет возрастание тока ротора и увеличение угла сдвига между приведенным током ротора и напряжением сети. При уменьшении напряжения намагничивающий ток уменьшается, а ток статора, равный геометрической сумме приведенного тока ротора и тока холостого хода, в зависимости от загрузки и соотношения между намагничивающим током и током ротора может увеличиться или уменьшиться. При увеличении напряжения увеличатся ЭДС и магнитный поток, а скольжение и ток ротора уменьшатся. Намагничивающий ток увеличится, а ток статора может увеличиться или уменьшиться в зависимости от загрузки двигателя и указанного выше.

Таким образом, понижение напряжения всегда вызывает увеличение тока ротора, а увеличение напряжения — уменьшение тока ротора. Работа с напряжением, пониженным более чем на 5 % номинального, допустима согласно ГОСТ 183-74 только при условии, что нагрузка двигателя меньше номинальной. При несоблюдении этого обстоятельства возможен перегрев обмотки ротора и, как следствие, ее преждевременный износ. Мощность, развиваемая двигателем, останется практически без изменения, так как угловая скорость ротора изменится незначительно.

Читать еще:  Горит чек на шевроле круз двигатель работает нормально

Изменение частоты при номинальном напряжении

Рассмотрим случай, когда двигатель с постоянным моментом сопротивления на валу питается при номинальном напряжении от сети с частотой меньше номинальной. Уменьшение частоты вызовет увеличение магнитного потока и увеличение вращающего момента. Поскольку момент сопротивления остается постоянным, скольжение уменьшится так, чтобы сохранилось равновесие между вращающим моментом двигателя при пониженной частоте и моментом сопротивления. Вследствие увеличения потока уменьшится ток ротора, а ток холостого хода увеличится. Ток статора может увеличиться или уменьшиться, так же как для случая повышения напряжения. Таким образом, понижение частоты практически равнозначно увеличению напряжения.

Следовательно, если при понижении частоты соответственно уменьшить напряжение, то магнитный поток, а следовательно, и токи холостого хода, ротора и статора останутся такими же, как и при нормальной работе. При этом будет иметь место некоторое изменение потерь в стали, а следовательно, и активной составляющей тока холостого хода. Эти изменения практически не скажутся на токе статора. Однако существенным отличием от рассмотренных выше двух режимов будет значительное изменение угловой скорости ротора, практически пропорциональной частоте статора.

Во всех случаях, когда имеет место изменение угловой скорости ротора двигателя, происходит изменение полезной мощности на валу и производительности механизма. Полезная мощность на валу изменяется пропорционально произведению момента сопротивления на угловую скорость. Поэтому для рассмотрения режима работы двигателей при любых значениях нагрузки на валу, напряжения и частоты питающей сети необходимо знать характеристики моментов сопротивления механизмов

Большая Энциклопедия Нефти и Газа

Ток — холостой ход — асинхронный двигатель

Ток холостого хода асинхронных двигателей достигает 20 — 40 % от номинального тока статора ( / 0 0 2 — 0 4 / IH), между тем как у трансформаторов ток / 0 составляет всего 2 5 — 10 % от / IH. Повышенное значение тока холостого хода асинхронной машины обуслоь-лено наличием воздушного зазора между статором и ротором. [1]

Ток холостого хода асинхронных двигателей достигает 20 — 40 % от номинального тока статора ( / 0 2 — 0 4 / IH), между тем как у трансформаторов ток / 0 составляет всего 2 5 — 10 % от / IH. Повышенное значение тока холостого хода асинхронной машины обусловлено наличием воздушного зазора между статором и ротором. [2]

Почему ток холостого хода асинхронного двигателя составляет 25 — 50 %, а у трансформатора 3 — 10 % от номинального тока. [3]

Почему ток холостого хода асинхронного двигателя составляет 25 — 50 %, а трансформатора — 3 — 10 % от номинального тока. [4]

Для определения активной составляющей тока холостого хода асинхронного двигателя необходимо предварительно вычислить: вес активной стали статора и магнитные потери в нем-для трехфазного асинхронного двигателя; вес стали статора и ротора и потери в них — для однофазного двигателя с беличьей клеткой и малоинерционного асинхронного двигателя с немагнитным полым ротором. [5]

Для определения активной составляющей тока холостого хода асинхронного двигателя необходимо предварительно вычислить: массу активной стали статора и магнитные потери в нем — для трехфазного асинхронного двигателя; массу стали статора и ротора и потери в них — для однофазного двигателя с беличьей клеткой и малоинерционного асинхронного двигателя с немагнитным полым ротором. [6]

Из-за большого магнитного сопротивления цепи с двумя воздушными зазорами ток холостого хода асинхронного двигателя значителен и является в основном реактивным током. [7]

Сопротивления Rm и Хт намагничивающего контура значительно меньше соответствующих значений для схемы замещения трансформатора, так как ток холостого хода асинхронного двигателя гораздо больше, чем у трансформатора. Если при рассмотрении работы трансформатора часто можно пренебречь намагничивающим контуром, то при рассмотрении работы асинхронного двигателя этого сделать нельзя, так как ошибка может получиться значительной. [8]

При повышении частоты и номинальном напряжении ток холостого хода и магнитный поток уменьшаются, а следовательно, снижается и вращающий момент. На рисунке 249 приведен график зависимости тока холостого хода асинхронного двигателя от частоты, который показывает, что уменьшение частоты влечет за собой резкое увеличение тока холостого хода. [10]

Ток холостого хода двигателя и потребляемая им реактивная мощность значительно возрастают в случае работы от сети с напряжением выше номинального. Поэтому во время эксплуатации необходимо следить за напряжением цеховых сетей и не допускать отклонения его от номинального. Величина тока холостого хода асинхронного двигателя возрастает также вследствие низкого качества ремонтных работ: неправильное соединение секций обмоток, изменение при перемотке обмоточных данных по сравнению с паспортными и увеличение величины воздушного зазора. [11]

Как определить мощность, частоту вращения, начало и конец обмоток двигателя без бирки.

Что делать, если вы купили или достали каким-то образом эл.двигатель, на котором отсутствует бирка или шильдик с обозначением его мощности, частоты вращения и т.п.?

Читать еще:  Чем отличаются двигателя змз 417 и змз 402

Либо на старом движке эти данные стерлись и стали нечитабельны.

При этом паспорта или какой-то другой технической документации у вас под рукой нет. Можно ли в этом случае узнать параметры двигателя самостоятельно?

Конечно же да, причем несколькими способами. Давайте рассмотрим самые популярные из них.

Первоначально для точного определения мощности потребуется выяснить синхронную частоту вращения вала, а перед этим узнать, где у нас начало каждой обмотки, а где ее конец.

По ГОСТ 26772-85 обмотки трехфазных асинхронных двигателей должны маркироваться буквами:

По старому госту обозначение было несколько иным:

Еще раньше можно было встретить надписи Н1-К1 (начало-конец обмотки №1), Н2-К2, Н3-К3.

На некоторых движках для облегчения распознавания концов обмоток их выводят из разных отверстий на одну или другую сторону. Как например на фото снизу.

Но не всегда можно доверять таким выводам. Поэтому проверить все вручную никогда не помешает.

Если никаких обозначений и букв на барно нет, и вы не знаете, где у вас начало, а где конец обмотки, читайте инструкцию под спойлером.

В помощники берете мультиметр и устанавливаете его в режим замера сопротивления.

Одним щупом дотрагиваетесь до любого из шести выводов, а другим поочередно прикасаетесь к остальным пяти проводам, тем самым, ища соответствующую пару.

При ее нахождении на табло мультиметра должна высветиться цифра, показывающее некое сопротивление в Омах.


В остальных случаях с другими проводами сопротивление будет равняться бесконечности (обрыв).


Отмечаете данную обмотку бирками и переходите к оставшимся проводам. Таким нехитрым способом буквально за одну минуту можно «вызвонить» концы всех обмоток.

Однако это еще не все. Главная проблема заключается в том, что вы пока не знаете, какой из двух выводов является началом обмотки, а какой ее концом.

Для того, чтобы это выяснить, соединяете между собой по два вывода от разных обмоток. То есть, условное начало V1 первой обмотки, соединяем с условным концом второй обмотки — U2.

При этом у вас пока нет точной информации начало это или конец. Вы их сами так промаркировали для себя, чтобы сделать последующие замеры.

На другие концы этих двух обмоток (U1 и V2) подаете переменное напряжение 220В или меньше. Зависит это от того, на какое напряжение рассчитан ваш движок.

Смысл всего этого действия – замерить какое напряжение появится на концах третьей обмотки W1-W2. Это так называемый метод трансформации.

Если между W1-W2 будет какое-то значение (10-15В или больше), значит первые две обмотки у вас включены согласовано, то есть правильно. Все подписанные концы V1-V2, U1-U2 вы угадали верно.


Бирки на них менять не нужно.

Если же напряжение между W1-W2 будет очень маленьким или его вообще не будет, то получается, что первые две обмотки вы включили по встречной схеме (неправильно). Бирки на одной из обмоток придется поменять местами.


Разобравшись с двумя фазами переходим к третьей. Здесь процедура та же самая. Соединяете между собой условные начало и конец W1 и U2, а на U1 и W2 подаете 220V.

Замеры делаете между выводами V1 и V2. Если угадали, то двигатель может даже запуститься на двух фазах, ну или по крайней мере между V1 и V2 будет несколько вольт.


Если нет, то просто поменяйте местами бирки W1 и W2.

Второй метод определения начала и конца обмоток еще более простой.

Сперва находите три разные обмотки, как было указано выше. Соединяете их последовательно (условный конец первой с началом второй U2-V1, а конец второй с началом третье V2-W1).

На два оставшихся вывода U1-W2 подаете напряжение 220В. После этого поочередно подносите лампочку к концам каждой из обмоток (U1-U2, V1-V2, W1-W2).

Если она горит везде с одинаковой яркостью, то вы угадали со всеми выводами.

Если яркость будет отличаться, это говорит о том, что данная обмотка перевернута по отношению к двум другим.

На ней бирки нужно поменять местами. Вообще-то по ТБ с лампочкой в качестве контрольки уже давно запрещено работать, поэтому вместо нее лучше используйте мультиметр с функцией замера напряжения.

Для определения частоты по первому способу вам потребуется обычный китайский стрелочный мультиметр (аналоговый, не электронный!).

Определять частоту нужно при положении переключателя мультиметра в режиме измерения тока (100мА). Далее подключаете измерительные щупы в соответствующие разъемы:

Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector