Что такое номинальная частота вращения двигателя постоянного тока
Регулирование скорости двигателей постоянного тока
Из уравнения электромеханической характеристики двигателя постоянного тока независимого возбуждения следует, что возможны три способа регулирования его угловой скорости:
1) регулирование за счет изменения величины сопротивления реостата в цепи якоря,
2) регулирование за счет изменения потока возбуждения двигателя Ф,
3) регулирование за счет изменения подводимого к обмотке якоря двигателя напряжения U . Ток в цепи якоря I я и момент М, развиваемый двигателем, зависят только от величины нагрузки на его валу.
Рассмотрим первый способ регулирования скорости двигателя постоянного тока изменением сопротивления в цепи якоря . Схема включения двигателя для этого случая представлена на рис. 1 , а электромеханические и механические характеристики — на рис. 2 , а.
Рис. 1. Схема включения двигателя постоянного тока независимого возбуждения
Рис. 2. Механические характеристики двигателя постоянного тока при различных сопротивлениях цепи якоря (а) и напряжениях (б)
Изменяя сопротивление реостата в цепи якоря можно получить при номинальной нагрузке различные угловые скорости электродвигателя на искусственных характеристиках — ω1, ω2, ω3.
Проведем анализ данного способа регулирования угловой скорости двигателей постоянного тока с помощью основных технико-экономических показателей. Так как при данном способе регулирования изменяется жесткость характеристик в широких пределах, то при скоростях менее половины номинальной стабильность работы двигателя резко ухудшается. По этой причине диапазон регулирования скорости ограничен ( D = 2 — З).
Скорость при данном способе можно регулировать в сторону уменьшения от основной, о чем свидетельствуют электромеханические и механические характеристики. Высокую плавность регулирования трудно обеспечить, так как потребовалось бы значительное количество ступеней регулирования и соответственно большое число контакторов. Полное использование двигателя по току (нагреву) в этом случае достигается при регулировании с постоянным моментом нагрузки.
Недостатком рассматриваемого способа является наличие значительных потерь мощности при регулировании, которые пропорциональны относительному изменению угловой скорости. Достоинством рассмотренного способа регулирования угловой скорости являются простота и надежность схемы управления.
Учитывая большие потери в реостате при малых скоростях, данный способ регулирования скорости применяется для приводов с кратковременным и повторно-кратковременным режимами работы.
При втором способе регулирование угловой скорости двигателей постоянного тока независимого возбуждения осуществляется изменением величины магнитного потока за счет введения в цепь обмотки возбуждения дополнительного реостата. При ослаблении потока угловая скорость двигателя как при нагрузке, так и при холостом ходе возрастает, а при усилении потока — уменьшается. Практически возможно изменение скорости только в сторону увеличения ввиду насыщения двигателя.
При увеличении скорости ослаблением потока допустимый момент двигателя постоянного тока изменяется по закону гиперболы, а мощность остается постоянной. Диапазон регулирования скорости для данного способа D = 2 — 4 .
Механические характеристики для различных значений потока двигателя приведены на рис. 2 , а и 2 , б, из которых видно, что характеристики в пределах номинального тока имеют высокую степень жесткости.
Обмотки возбуждения двигателей постоянного тока независимого возбуждения обладают значительной индуктивностью. Поэтому при ступенчатом изменении сопротивления реостата в цепи обмотки возбуждения ток, а следовательно, и поток будут изменяться по экспоненциальному закону. В связи с этим регулирование угловой скорости будет осуществляться плавно.
Существенными преимуществами данного способа регулирования скорости являются его простота и высокая экономичность.
Данный способ регулирования используют в приводах в качестве вспомогательного, обеспечивающего повышение скорости при холостом ходе механизма.
Третий способ регулирования скорости заключается в изменении напряжения, подводимого к обмотке якоря двигателя. Угловая скорость двигателя постоянного тока независимо от нагрузки изменяется прямо пропорционально напряжению, подводимому к якорю. Поскольку все регулировочные характеристики являются жесткими, а степень их жесткости остается для всех характеристик неизменной, работа двигателя является стабильной на всех угловых скоростях и, следовательно, обеспечивается широкий диапазон регулирования скорости независимо от нагрузки. Этот диапазон равен 10 и может быть расширен за счет специальных схем управления.
При данном способе угловую скорость можно уменьшать и увеличивать относительно основной. Повышение скорости ограничено возможностями источника энергии с регулируемым напряжением и U ном двигателя.
Если источник энергии обеспечивает возможность непрерывного изменения подводимого к двигателю напряжения, то регулирование скорости двигателя будет плавным.
Данный способ регулирования является экономичным, так-так регулирование угловой скорости двигателя постоянного тока независимого возбуждения осуществляется без дополнительных потерь мощности в силовой цепи якоря. По всем перечисленным выше показателям данный способ регулирования по сравнению с первым и вторым наилучший.
Если Вам понравилась эта статья, поделитесь ссылкой на неё в социальных сетях. Это сильно поможет развитию нашего сайта!
Подписывайтесь на наш канал в Telegram!
Просто пройдите по ссылке и подключитесь к каналу.
Не пропустите обновления, подпишитесь на наши соцсети:
Машины постоянного тока. Электродвигатели и генераторы.
1. Особенности коллекторных машин постоянного тока
Коллекторные машины — это в основном машины постоянного тока. Они выпускаются мощностью от долей ватта до десятков тысяч киловатт. Коллекторные машины переменного тока находят применение в качестве приводных двигателей лишь для узкого круга специальных механизмов небольшой мощности, например как приводы некоторых бытовых приборов, электрифицированного ручного инструмента, медицинского оборудования, т. е. в тех случаях, когда для питания двигателей используется однофазный и реже трехфазный переменный ток, а характеристики асинхронных машин не удовлетворяют требованиям приводного механизма.
Коллекторные машины постоянного тока используются как двигатели и как генераторы. В промышленности более распространены двигатели, что объясняется все возрастающим применением различных статических выпрямителей, обеспечивающих промышленные установки энергией постоянного тока.
Широкое распространение электродвигателей постоянного тока несмотря на их более высокую стоимость и сложность эксплуатации по сравнению с асинхронными двигателями, объясняется в первую очередь простыми и надежными способами регулирования частоты вращения, большими пусковыми моментами и перегрузочной способностью, чем у двигателей переменного тока. Наибольшее распространение двигатели постоянного тока получили в приводах, требующих глубокого регулирования частоты вращения (металлургическая промышленность, транспорт и т. п.).
2. Основные элементы конструкции машин постоянного тока^
Рис. 1. Двигатель постоянного тока серии 2П:
1 — тахогенератор; 2 — траверса; 3 — коллектор; 4 — станина; 5 — якорь; 6 — главный полюс; 7 — добавочный полюс;
Основными конструктивными элементами машин постоянного тока (рис. 1) являются станина с закрепленными на ней главными и добавочными полюсами, вращающийся якорь с обмоткой и коллектором и щеточный аппарат. В машинах малой и средней мощностей станина одновременно служит и корпусом, к которому крепятся лапы для установки машины, и частью магнитопровода. По ней замыкается магнитный поток. В большинстве машин станина выполнена массивной, из стальных труб, либо сварной из листов конструкционной стали. В ряде машин станину выполняют шихтованной.
К внутренней поверхности станины крепят главные и добавочные полюсы. Сердечники главных полюсов массивные либо набраны из листов стали толщиной 1 — 2 мм. Сердечники добавочных полюсов, как правило, массивные. На главных полюсах располагаются обмотки возбуждения; их МДС создают рабочий поток машины. Обмотки добавочных полюсов, расположенных по поперечным осям машины, служат для обеспечения нормальной коммутации.
Магнитопровод якоря шихтуется из листов электротехнической стали. В машинах малой мощности сердечник якоря насаживается непосредственно на вал со шпонкой и фиксируется в осевом направлении буртиком вала и кольцевой шпонкой. С торцов якоря для предотвращения распушения листов во время работы установлены нажимные шайбы, совмещенные с обмоткодержателями.
Обмотки якорей двухслойные. В машинах мощностью до 15 — 20 кВт они выполнены из круглого провода и уложены в полузакрытые пазы. В пазовых частях обмотка крепится пазовыми клиньями, в лобовых — бандажами из стеклоленты или немагнитной стальной проволоки, которые прижимают их к обмоткодержателям. В машинах большой мощности катушки обмотки якоря наматывают из прямоугольного провода и укладывают в открытые пазы. Крепление обмотки либо такое же, как и в машинах малой мощности, т. е. клиньями в пазовой и бандажами в лобовой части, либо бандажами и в пазовой, и в лобовой части. Выводные концы каждой секции обмотки впаиваются в прорези коллекторных пластин.
Коллекторы в большинстве машин общего назначения цилиндрические. Торцевые коллекторы применяют лишь в некоторых машинах малой мощности специального назначения. Во всех цилиндрических коллекторах пластины имеют клиновидную форму с углом наклона, при котором пластины, собранные в кольцо, плотно прилегают друг к другу боковыми поверхностями и зажимают миканитовую изоляцию (рис. 2). Наибольшее распространение получили коллекторы, в которых пластины удерживаются в сжатом состоянии металлическими нажимными конусами (рис. 3) либо опрессовкой в пластмассу (рис. 4).
Рис. 2. Положение коллекторных пластин в цилиндрических коллекторах:
1 — пластины коллектора; 2 — изоляция между пластинами; Р — сила давления нажимных конусов; Р, — сила арочного распора
В коллекторах с нажимными конусами пластины закрепляются передвижением переднего нажимного конуса по втулке коллектора. При этом создается давление на нижнюю часть ласточкина хвоста пластин и возникает арочный распор (рис. 2). Такие коллекторы называют арочными. Пластины коллектора с расположенными между ними изоляционными прокладками образуют монолитное кольцо. Нажимные конусы изолируют от пластин миканитовыми фигурными прокладками — манжетами, имеющими большую механическую прочность.
Рис. 3. Коллектор с нажимными конусами:
1 — передний нажимной конус; 2 — пластины коллектора ; 3 — втулка коллектора; 4 — изоляционная манжета; 5 —задний нажимной конус
Коллекторы на пластмассе более просты в изготовлении, но в силу меньшей механической прочности и надежности не применяются в машинах большой мощности.
В некоторых быстроходных машинах, например в возбудителях турбогенераторов, из-за больших центробежных сил, действующих на пластины коллектора, прочность их крепления с помощью ласточкиных хвостов оказывается недостаточной и коллекторные пластины крепят на втулку с помощью внешних бандажных колец (рис. 5).
Рис. 5. Принципиальная конструкция коллектора с бандажными кольцами:
1 — изоляция под бандажными кольцами; 2 — бандажные кольца; 3 — пластины коллектора; 4 — втулка коллектора
Щетки коллекторных машин устанавливают в щеткодержатели, закрепленные на щеточных пальцах, причем на каждом щеточном пальце может быть установлено по нескольку щеткодержателей и щеток, соединенных между собой параллельно. Число щеток и их размеры определяются номинальным током машины. Число щеточных пальцев должно быть равно числу полюсов машины. Двигатели с волновой обмоткой на якоре при отсутствии места для установки полного комплекта щеточных пальцев допускают установку неполного числа щеточных пальцев, что используется в некоторых конструкциях тяговых двигателей. Щеточные пальцы укреплены на траверсе, которая допускает поворот на некоторый угол вокруг оси машины для регулирования положения щеток на коллекторе.
В последние годы получают распространение бесколлекторные двигатели постоянного тока, в которых механический преобразователь тока — коллектор со щеточным аппаратом — заменен вентильным коммутатором. Вентильные двигатели имеют широкий диапазон регулирования частоты вращения и не имеют недостатков, связанных с работой скользящих контактов коллектор—щетки, характерных для коллекторных машин постоянного тока.
3. Характеристики машин постоянного тока.
Машины постоянного тока по своим характеристикам определяются системой возбуждения: независимой, параллельной, последовательной или смешанной.
При независимой системе возбуждения обмотка возбуждения питается от постороннего источника постоянного тока и ток возбуждения не зависит от режима работы и нагрузки машины. Генераторы с независимой системой возбуждения допускают регулирование напряжения практически от нуля до номинального. Изменение напряжения при увеличении нагрузки определяется только размагничивающим действием реакции якоря и увеличением падения напряжения на сопротивлении якорной цепи.
Ток параллельной обмотки возбуждения генераторов с самовозбуждением меняется в зависимости от напряжения на выводах генератора и уменьшается с ростом нагрузки из-за размагничивающего действия реакции якоря, что в свою очередь приводит к добавочному увеличению падения напряжения. За счет этого номинальное падение напряжения генераторов с параллельным возбуждением больше, чем генераторов с независимым возбуждением.
В генераторах со смешанной системой возбуждения при согласном включении параллельной и последовательной обмоток поток стабилизируется, так как размагничивающее действие реакции якоря компенсируется изменением МДС последовательной обмотки, пропорциональным току нагрузки. Последовательную обмотку таких машин называют стабилизирующей. Номинальное падение напряжения генераторов со стабилизирующей обмоткой мало. Некоторые генераторы выполнены со стабилизирующей обмоткой, при которой обеспечивается равенство 7НОМ = (7Х|Х (где 1/Х]Х — напряжение холостого хода).
При встречном включении параллельной и последовательной обмоток возбуждения напряжение на выводах генератора резко падает с увеличением тока нагрузки. Такие системы возбуждения находят применение в сварочных генераторах постоянного тока.
В двигателях параллельного возбуждения размагничивающее действие реакции якоря может вызвать неустойчивую работу, так как уменьшение потока с ростом нагрузки из-за действия реакции якоря при малом суммарном сопротивлении якорной цепи приводит к увеличению частоты вращения двигателя. Поэтому в большинстве двигателей средней и во всех двигателях большой мощности помимо параллельной устанавливается последовательная обмотка возбуждения, стабилизирующая магнитный поток и придающая устойчивость механической характеристике (рис. 7, а).
Рис. 7. Механические характеристики двигателей постоянного тока:
а — смешанного возбуждения; б — последовательного возбуждения
Механические характеристики двигателей с последовательным возбуждением (рис. 7,б) имеют специфический «падающий» характер. Двигатели с последовательным возбуждением используются в приводах, требующих больших пусковых моментов и устойчивой работы при малых частотах вращения.
4. Регулирование частоты вращения машин постоянного тока.
Частота вращения двигателя при неизменной нагрузке может быть изменена регулированием питающего напряжения U, включением последовательно с якорем дополнительного регулировочного резистора и изменением магнитного потока машины (изменением тока возбуждения). В практике применяются все три способа регулирования.
Регулирование частоты вращения изменением подводимого напряжения встречает трудности, связанные со сложностью преобразования напряжения постоянного тока. Для этой цели либо применяют статические преобразователи напряжения, либо питают двигатель от отдельного генератора постоянного тока, допускающего плавное регулирование напряжения (система генератор — двигатель). Такие системы применяют лишь для отдельных специальных приводов, требующих регулирования частоты вращения по сложной программе, например для главных двигателей прокатных станов.
Регулирование частоты вращения потоком является наиболее экономичным способом, так как потери в регулировочных резисторах, включаемых для этой цели последовательно с обмоткой возбуждения, невелики из-за малого тока возбуждения.
Однако этот способ позволяет лишь увеличивать частоту вращения двигателей по сравнению с номинальной. Такой способ регулирования предусмотрен для всех серийных двигателей постоянного тока.
Включение добавочного резистора в цепь якоря дает возможность плавно регулировать частоту вращения, но сопряжено с большими потерями в регулировочном реостате, по которому проходит полный ток нагрузки. Этот способ используется, например, для регулирования частоты вращения тяговых двигателей.
В современных системах регулирования частоты вращения двигателей постоянного тока применяются тиристорные схемы, позволяющие осуществить регулирование частоты вращения в широких пределах по заданной программе. Датчиками частоты вращения для осуществления обратной связи при регулировании могут быть тахогенераторы, размещенные на валу якоря двигателя (рис. 1).
5. Коммутация машин постоянного тока
Коммутация машин постоянного тока, т. е. изменение направления тока в секциях обмотки якоря при переходе секций от одного полюсного деления к другому, происходит при кратковременном замыкании их щетками на пластинах коллектора. При коммутации в короткозамкнутых секциях возникают реактивная ЭДС и ЭДС вращения, наводимая потоком реакции якоря, магнитные силовые линии которого пронизывают замкнутые при коммутации секции. При движении коллектора в момент отхода пластины коллектора от замыкающей данную секцию щетки происходит разрыв цепи (замкнутой секции), имеющей индуктивное сопротивление, и возникает искрение между сбегающим краем щетки и коллекторной пластиной. При неудовлетворительной коммутации искрение может быть значительным и может привести к местному повреждению коллектора, что в свою очередь ухудшает переходный контакт щетка—коллектор и усиливает искрение. Качество коммутации машины постоянного тока оценивается по интенсивности искрения на коллекторе (табл. 1).
Для улучшения коммутации во всех машинах постоянного тока, кроме машин малой мощности, устанавливают добавочные полюсы, МДС которых компенсирует МДС реакции якоря по поперечной оси машины, т. е. в зоне расположения коммутируемых секций. Кроме того, поток, создаваемый обмоткой добавочных полюсов, наводит в замкнутых при коммутации секциях ЭДС, несколько превышающую реактивную ЭДС секций и направленную ей навстречу. Коммутация машины при этих условиях становится прямолинейной или даже ускоренной. Напряжение под сбегающим краем щеток уменьшается до весьма малых значений и искрение под щетками становится не опасным для работы машины.
В крупных машинах постоянного тока кроме добавочных полюсов в пазах на наконечниках главных полюсов располагают компенсационную обмотку . Компенсационная обмотка предназначена для компенсации воздействия реакции якоря на поток возбуждения по продольной оси. Уменьшение влияния реакции якоря позволяет выполнять машины с уменьшенным воздушным зазором и улучшить их коммутацию.
Таблица 1. Оценка степени искрения под сбегающим краем щеток по ГОСТ 183-74
Номинальный режим работы двигателя пост тока
В паспорте двигателя и справочной литературе на двигатели постоянного тока указаны следующие технические данные: номинальные напряжение Uи, мощность Pн, частота вращения nн, ток Iн, КПД.
Под номинальным Uн понимают напряжение, на которое рассчитаны обмотка якоря и коллектор, а также в большинстве случаев и параллельная обмотка возбуждения. С учетом номинального напряжения выбирают электроизоляционные материалы двигателя.
Номинальный ток Iн – максимально допустимый ток (потребляемый из сети), при котором двигатель нагревается до наибольшей допустимой температуры, работая в том режиме (длительном, повторно-кратковременном, кратковременном), на который рассчитан:
где Iян — ток якоря при номинальной нагрузке; Iвн – ток обмотки возбуждения при номинальном напряжении.
Следует отметить, что ток возбуждения Iвн двигателя параллельного возбуждения сравнительно мал, поэтому при номинальной нагрузке обычно принимают
Номинальная мощность Рн — это мощность, развиваемая двигателем на валу при работе с номинальной нагрузкой (моментом) и при номинальной частоте вращения nн.
Частота вращения nн, и КПД соответствуют работе двигателя с током Iн, напряжением Uн без дополнительных резисторов в цепях двигателя.
В общем случае мощность на валу P2, момент М и частота вращения n связаны соотношением:
Потребляемая двигателем из сети мощность Р1, величины P2, КПД, U, I связаны соотношениями:
где
Очевидно, что эти соотношения справедливы также и для номинального режима работы двигателя.
8.11. Двигатель с последовательным возбуждением.
У такого двигателя ток якоря является одновременно и током возбуждения, т.к. обмотка возбуждения включена последовательно с якорем. По этой причине магнитный поток двигателя изменяется с изменением нагрузки. Скорость двигателя :
n =[ U – Iя (Rя + Rв)] / c∙Φ, где
Rя – сопротивление якоря
Rв – сопротивление обмотки возбуждения.
Скоростная характеристика двигателя посл. возбуждения.
На этом графике представлена скоростная характеристика двигателя последовательного возбуждения.
Из этой характеристики видно, что скорость двигателя сильно зависит от нагрузки. При увеличении нагрузки увеличивается падение на сопротивлении обмоток при одновременном увеличении магнитного потока, что приводит к значительному уменьшению скорости вращения. Поэтому такие двигатели не следует пускать вхолостую или с малой нагрузкой. Двигатели с последовательным возбуждением применяют в тех случаях, когда необходим большой пусковой момент или способность выдерживать кратковременные перегрузки. Они используются в качестве тяговых двигателей в трамваях, троллейбусах, метро и электровозах, а также на подъёмных кранах и для пуска двигателей внутреннего сгорания (стартеры).
8.12. Двигатель постоянного тока со смешанным возбуждением
На каждом полюсе такого двигателя имеются две обмотки – параллельная и последовательная. Их можно включить так, чтобы магнитные потоки складывались (согласное включение) или вычитались (встречное включение). Формулы для скорости вращения и вращающего момента для такого двигателя:
n = (U – Iя ∙ Rя ) / c∙( Φпарал. +/- Φпосл.)
М = c ∙ Iя ∙ (Φпарал. +/- Φпосл.)
В зависимости от соотношения магнитных потоков двигатель со смешанным возбуждением по своим свойствам приближается либо к двигателю с последовательным возбуждением, либо к двигателю с параллельным возбуждением. Как правило, у таких двигателей последовательная обмотка является главной (рабочей), а параллельная – вспомогательной. Благодаря наличию магнитного потока параллельной обмотки, скорость такого двигателя не может сильно возрастать на малых нагрузках. Двигатели с согласным включением применяются, когда необходим большой пусковой момент и регулировка скорости при переменных нагрузках. Двигатели со встречным включением обмоток применяются в тех случаях, когда необходима постоянная скорость при изменяющейся нагрузке.
Для изменения направления вращения двигателя постоянного тока надо изменить направление тока либо в обмотке возбуждения, либо в обмотке якоря. Изменением полярности на клеммах машины можно поменять направление вращения только в двигателе с постоянным магнитом или независимым возбуждением. В других двигателях надо изменить направление тока либо в якорной обмотке, либо в обмотке возбуждения. Двигатель постоянного тока нельзя включать подсоединением полного напряжения. Пусковой ток машин постоянного тока где-то в 20 раз превышает номинальный ток (он тем больше, чем больше и быстрее мотор). В больших машинах пусковой ток может превышать номинальный ток в 50 раз.
Большой ток вызывает в коллекторе круговое искрение и разрушает коллектор. Для включения применяют плавное увеличение напряжения или пусковые реостаты. Прямое включение допускается при низких напряжениях в случае маленьких двигателей, у которых сопротивление обмотки якоря большое.
Реакция якоря.
При холостом ходе машины постоянного тока магнитное поле создается только обмотками полюсов. Появление тока в проводниках якоря при нагрузке сопровождается возникновением магнитного поля якоря. Поскольку направление токов в проводниках между щетками неизменно, поле вращающегося якоря оказывается неподвижным относительно щеток и полюсов возбуждения.
Oбмотка якоря становится аналогичной соленоиду, ось которого совпадает с линией щеток, поэтому, когда щетки установлены на геометрических нейтралях, поток якоря является поперечным по отношению к потоку возбуждения, а его влияние на последний называется поперечной реакцией якоря. Построив вектор результирующего потока, видим, что он теперь поворачивается относительно геометрической оси главных полюсов. Поле машины становится несимметричным, физические нейтрали поворачиваются относительно геометрических. В генераторе они смещаются в сторону вращения якоря, в двигателе — против направления вращения якоря.
Под физической нейтралью будем понимать линию, проходящую через центр якоря и проводника обмотки якоря, в которой индуктируемая результирующим магнитным потоком ЭДС равна нулю. Поперечная реакция якоря мало влияет на показатели работы машины, это влияние обычно не учитывают. Однако при смещении щеток с геометрической нейтрали в потоке якоря появляется продольная составляющая, ее влияние на поток полюсов называют продольной реакцией якоря. Она может носить как намагничивающий, так и размагничивающий характер. В общем случае реакция якоря приводит к искажению поля под полюсами и изменению потока полюсов. Первое может вызвать значительное усиление искрения под щетками (вплоть до появления кругового огня на коллекторе), а последнее в генераторе изменяет напряжение на зажимах, а в двигателе вращающий момент и частоту вращения якоря.
Для ослабления реакции якоря увеличивают воздушный зазор между статором и якорем, используют специальные короткозамкнутые витки в пазах полюсных наконечников. В машинах большой мощности для этих целей применяется специальная компенсационная обмотка. Она укладывается в пазы полюсных наконечников, а включается последовательно в цепь якоря, ее поток уравновешивает продольный поток якоря.
Способы регулирования частоты вращения двигателя постоянного тока.
Частоту вращения двигателей постоянного тока можно изменять тремя способами: изменением сопротивления rя цепи якоря, изменением магнитного потока Ф, изменением подводимого к двигателю напряжения U.
Первый способ применяют редко, так как он неэкономичен, дает возможность вести регулирование частоты вращения только под нагрузкой и вынуждает использовать механические характеристики, имеющие различный наклон. При регулировании по этому способу вращающий предельно допустимый момент остается постоянным. Магнитный поток не меняется, и если приближенно считать, что сила тока, определяемая длительно допустимым нагревом двигателя, одинакова на всех частотах вращения, то предельно допустимый момент также должен быть одинаков на всех скоростях.
Регулирование скорости двигателей постоянного тока с параллельным возбуждением изменением магнитного потока получило значительное распространение. Величину потока можно изменять реостатом. При увеличении сопротивления этого реостата уменьшается сила тока возбуждения и магнитный поток и увеличивается частота вращения. Каждому уменьшенному значению магнитного потока Ф соответствуют увеличенные значения n0 и b.
Таким образом, при ослаблении магнитного потока механические характеристики представляют собой прямые линии, расположенные выше естественной характеристики, непараллельные ей и имеющие тем больший наклон, чем меньшим потокам они соответствуют. Число их зависит от числа контактов на реостате и может быть достаточно большим. Таким образом, регулирование частоты вращения ослаблением потока может быть сделано практически бесступенчатым.
Если по-прежнему приближенно считать предельно допустимую силу тока на всех скоростях одинаковой, то P = const
Таким образом, при регулировании частоты вращения изменением магнитного потока предельно допустимая мощность двигателя остается постоянной при всех скоростях.Предельно допустимый момент изменяется обратно пропорционально частоте вращения. При повышении частоты вращения двигателя ослаблением поля увеличивается искрение под щетками вследствие роста реактивной э. д. с, наводимой в коммутируемых секциях двигателя.
При работе двигателя с ослабленным потоком уменьшается устойчивость работы, особенно когда нагрузка на валу двигателя является переменной. При малом значении потока заметно размагничивающее действие реакции якоря. Так как размагничивающее действие определяется величиной силы тока якоря электродвигателя, то при изменениях нагрузки частота вращения двигателя резко меняется. Для повышения устойчивости работы регулируемые двигатели с параллельным возбуждением обычно снабжают слабой последовательной обмоткой возбуждения, поток которой частично компенсирует размагничивающее действие реакции якоря.
Двигатели, предназначенные для работы с повышенными частотами вращения, должны обладать повышенной механической прочностью. При высоких скоростях усиливаются вибрации двигателя и шум при работе. Эти причины ограничивают наибольшую частоту вращения электродвигателя. Низшая частота вращения также имеет определенный практический предел.
Номинальный момент определяет размеры и стоимость двигателей постоянного тока (так же как и асинхронных двигателей). При понижении наименьшей, в данном случае номинальной, частоты вращения двигателя определенной мощности номинальный момент его возрастет. Размеры двигателя при этом увеличатся.
На промышленных предприятиях наиболее часто применяют двигатели с диапазонами регулирования
Для расширения диапазона регулирования частоты вращения изменением магнитного потока иногда употребляют особую схему возбуждения двигателя, позволяющую улучшить коммутацию и снизить влияние реакции якоря на высоких частотах вращения двигателя. Питание катушек двух пар полюсов разделяют, образуя две независимые цепи: цепь катушек одной пары полюсов и цепь другой пары.
Одну из цепей включают на постоянное напряжение, в другой изменяют величину и направление тока. При таком включении общий магнитный поток, взаимодействующий с якорем, можно изменять от суммы наибольших значений потоков катушек двух цепей до их разности.
Катушки включены так, что через одну пару полюсов всегда проходит полный магнитный поток. Поэтому реакция якоря сказывается в меньшей степени, чем при ослаблении магнитного потока всех полюсов. Так можно регулировать все многополюсные двигатели постоянного тока с волновой обмоткой якоря. При этом достигается устойчивая работа двигателя в значительном диапазоне скоростей.
Регулирование частоты вращения двигателей постоянного тока посредством изменения подводимого напряжения требует применения специальных схем.
Двигатели постоянного тока по сравнению с асинхронными значительно тяжелее и в несколько раз дороже. К. п. д. этих двигателей ниже, а эксплуатация их более сложна.
Промышленные предприятия получают энергию трехфазного тока, и для получения постоянного тока требуются специальные преобразователи. Это связано с добавочными потерями энергии. Основной причиной применения для привода металлорежущих станков двигателей постоянного тока с параллельным возбуждением является возможность практически бесступенчатого и экономичного регулирования их частоты вращения.
В станкостроении применяют комплектные приводы с выпрямителями и двигателем постоянного тока с параллельным возбуждением (рис. 1). Посредством реостата PC изменяют силу тока возбуждения электродвигателя, обеспечивая практически бесступенчатое регулирование его частоты вращения в диапазоне 2:1. В комплект привода входит пусковой реостат РП, а также аппаратура защиты, на рис. 1 не показанная.
Рис. 1. Схема электропривода постоянного тока с выпрямителем
Выпрямители (B1 — В6), погруженные в трансформаторное масло, и всю аппаратуру помещают в шкафу управления, а реостат PC устанавливают в месте, удобном для обслуживания.
Дата добавления: 2018-05-12 ; просмотров: 1198 ; Мы поможем в написании вашей работы!