Что такое мощность двигателя и крутящий момент электродвигателя - Журнал "Автопарк"
Auto-park24.ru

Журнал "Автопарк"
5 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Что такое мощность двигателя и крутящий момент электродвигателя

Мощность и крутящий момент — на пальцах, без заумных слов.

За всё время пока «увлекаюсь машинами» — ни разу не встретил нормального объяснения понятий «мощность», «крутящий момент» и всего с ними связанного. Какие-то рассуждалки про силу, приложенную к рычагу помноженную на гравитацию, про «мощность это скорость с которой вы влетели в стену а момент — насколько сильно помялись» итд. В итоге, накопив чуток элементарных познаний, попробую объяснить «на пальцах» так, что понятно станет даже ежу.

Вот грубо говоря человек — тащит ящик. Или лошадь тащит сани. Попала в канаву — лошадь поднатужилась и вытащила сани из канавы. Т.е. наибольший крутящий момент у человека и лошади — на нуле «оборотов» (на человеческом языке будем говорить об «оборотах» как о перебирании ног — чем чаще, тем больше оборотов. Аналогия на самом деле довольно точная, дальше увидите сами). А если человек с разбегу будет врезаться в этот ящик — никуда он его не вытащит. На высоких оборотах (перебирание ногами) у человека меньше крутящий момент, чем на низких.

Соотв. мощность — это полезная работа — на сколько человек протащил в итоге ящик. То есть (вот то, что имеют ввиду объясняльщики в умних книжках). Равняется она, как видим, «силе шага»*кол-во шагов. То есть «крутящий момент * на обороты».

А у автомобильного двигателя наивысший крутящий момент — не на нуле оборотов, а на более высоких. На нуле крутящий момент максимальный вроде у электродвигателя и паровой машины. Тем не менее — на джипах и тракторах крутящий момент внизу — как раз чтобы «вытягивать из канавы телегу». А у спортивных двигателей крутящий момент начинается выше по оборотам и в итоге произведение дает большую мощность.

Еще одно сравнение. Идет пара. Девчушка семенит ножками, а амбал перебирает большими шагами медленно. У девчушки меньше момент но она быстрее перебирает ногами (выше обороты). Мощность в итоге одинакова, т.е. работу (сумочку нести например) они совершат одинаковую. У машины — это как Порше Кайен и форсированный двухлитровый Honda Civic Type-R — у первого адовый крутящий момент на низах, у второй момент маленький, но обороты выше, в итоге разгоняются примерно одинаково. Опять же чтоб стало понятнее -у хонды вспышек в двигателе больше, пф-пф-пф-пф, но они менее атомные, чем пыыых-пыыыых-пыыыых у большого мотора V8 Кайена. А у какой нибудь Феррари 430 тот же V8 примерно того же объема, но он настроен под высокие обороты, и там такие же атомные взрывы как у кайена — на вдвое более высоких оборотах, вдвое чаще — поэтому она и увалит от кайена как от стоячего.

Теперь назад к амбалу и девочке. Что вы делаете когда подходите к ледяной луже зимой? Начинаете семенить ногами быстрее и аккуратнее. Т.е. развиваете меньше крутящего момента, но выше обороты, за счет этого не меняется мощность, и вы не поскальзываетесь. Поэтому высокий крутящий момент срывает колеса в букс легче.

Как вам такое объяснение? Если я очевидно налажал — поправляйте. Следующим номером расскажу на таких же примерах про размеры турбин, производительность турбин, кто как валит итд. Надо?

Вращающий момент электродвигателя

В двигателях постоянного тока вращающий момент определяется выражением М ≡ ФIя, т.е. он пропорционален потоку и току якоря. В асинхронном двигателе момент создается вращающимся потоком Ф и током ротора I2. Он может быть выражен

Следовательно, момент пропорционален потоку и активной слагающей тока ротора I2 cos Ψ2, так как только активная слагающая тока определяет мощность, а значит и момент.

На рис. 10-20 представлена схема включения короткозамкнутого двигателя. Если пустить двигатель, включив рубильник 1, то в первый момент пуска, когда п2 = 0, a s = 1, наведенная в роторе 2 э. д. с. Е2 и пусковой ток I2п максимальны. Однако, пусковой момент Мп не будет максимальным, а в 2—2,5 раза меньше максимального. Векторная диаграмма для цепи ротора (рис. 10-21), построенная подобно изображенной на рис. 9-9, показывает причину этого.

Рис 10-20. Схема включения короткозамкнутого асинхронного двигателя.

Обычно в роторе х2 во много раз больше r2 и угол Ψ2, на который ток I2п отстает от э. д. с. Е2 велик. Поэтому активная слагающая тока I2п cos Ψ2, а значит и пусковой момент Мп малы. В современных асинхронных двигателях Мп/Мп = 1 — 1,5, хотя I2п/ Iн≈ 4,5—6,5.

Это же явление по другому объясняется на рис. 10-19 и 10-22.

Рис. 10-21. Векторная диаграмма в цепи ротора.

При описании принципа работы двигателя (рис. 10-19) было предположено, что ток I2 совпадает по фазе с э. д. с. Е2, т. е. что он активный ( Ψ2 = 0). На рис. 10-22 представлен момент пуска, когда направление э. д. с. в проводах ротора соответствует обозначенному на рис. 10-19, а ток показан отстающим от э. д. с. на угол Ψ2. Тогда шесть проводов ротора (три под полюсом N и три под полюсом S) создают усилия, действующие в направлении вращения потока, а два провода вызывают противодействующие усилия. В результате этого вращающий момент будет тем меньше, чем больше сдвиг фаз между током I2 и э. д. с. E2.

Читать еще:  Датчик аварийного давления масла в двигателе замена

Рис. 10-22. Ток в роторе двигателя в момент пуска.

По мере увеличения скорости вращения ротора реактивное сопротивление обмотки ротора x2s = x2s уменьшается, а вместе с этим уменьшается угол Ψ2, так как сопротивление r2 ≈ const. Наступает такое положение (рис 10-21), когда при некотором скольжении sм ≈ 0,1—0,15 реактивное сопротивление x2s становится равным активному r2, угол Ψ — 45° и э. д. с. E2s уравновешивает два равных падения напряжения I 2r2 и I2x2s.В это время активная слагающая тока I2 cos Ψ2 и вращающий момент М м становятся максимальными, несмотря на некоторое уменьшение тока I2.

Обычно Мм/Мм = 1,8—2,5 и называется способностью к перегрузкe.

При дальнейшем разгоне ротора x2s становится значительно меньшим, чем r2, им можно пренебречь и считать ток ротора активным (I2I2 cos Ψ 2). Так как E2s = E2s тоже продолжает уменьшаться, то вместе с током I2 уменьшается и вращающий момент.

Максимальная скоростьn вращения будет при холостом ходе двигателя и тогда n 2n 1 , a s ≈ 0. Зависимость вращающего момента от скольжения М = f (s) представлена на рис. 10-23.

Рис. 10-23. Зависимость вращающего момента двигателя от скольжения.

Нормальная работа двигателя возможна только на участке кривой при скольжениях s от нуля до sм, так как в этом случае при увеличении тормозного момента и значит s вращающий момент возрастает. На участке от s = sм до s = 1 работа двигателя неустойчива. Номинальный момент Мн соответствует обычно номинальному скольжению sн = 1—6%.

Поток Ф пропорционален напряжению U1, подводимому к трансформатору. Сказанное остается в силе и для асинхронного двигателя. Так как М ≡ ФI2 cos Ψ 2, то можно написать, что

Отсюда можно сделать очень важный для асинхронных двигателей вывод

т. е. вращающий момент пропорционален квадрату подведенного к статору напряжения. Таким образом, падение напряжения в сети, например до 0,9 U, вызовет уменьшение момента до 0,9 • 0,9 Мн = 0,81 Мн и нагруженный двига тель может остановиться. Указанным обстоятельством и объясняется, частично, нормирование падения напряжения в распределительных сетях, питающих асинхронные двигатели.

В практике потребителя часто интересует механическая характеристика двигателя

п2 = f (М) при U1 = const и f1 = const. Для удобства пользования по осям откладывают (n2/n1)100% и (М/Мн)100%.

Рис. 10-24. Механическая характеристика двигателя.

Эта характеристика получается простым перестроением рис, 10-23 и показана на рис. 10-24, где рабочая часть обозначена сплошной линией. Кривая 1 для двига телей нормального исполнения показывает, что асинхронный двигатель обладает жесткой характеристикой скорости, подобно двигателю постоянного тока параллельного возбуждения. Асинхронный двигатель с фазным ротором для регулирования скорости вращения, например для крановых и подъемных устройств, имеет более мягкую характеристику (кривая 2).

РАБОЧИЙ ПРОЦЕСС АСИНХРОННОГО ДВИГАТЕЛЯ

Трехфазный ток I1протекая в трехфазной обмотке статора, создает н. F1, вращающуюся со скоростью п1 = (f1 •60)/p (рис. 10-4, 10-5). Трехфазный ток ротора I2 создает в трехфазной обмотке ротора н. с. F2 вращающуюся вокруг ротора со скоростью п3 = (f1 •60)/p . Сам ротор вращается в сто-

рону н. с. со скоростью n2. Тогда скорость вращения н. с F2 относительно статора равна:

Таким образом, обе н. с. F1 и F2 вращаются с одной скоростью n1, друг относительно друга неподвижны и создают сообща вращающийся магнитный поток Ф. Следовательно, все приведенное на рис. 9-8 и 9-9 справедливо и для асинхронного двигателя.

Следует отметить, что благодаря воздушному зазору между ротором и статором ток холостого хода (рис. 9-7) двигателя очень велик (20—40)% I. Поэтому для улучшения cos φ1 сети двигатель необходимо нагружать полностью.

Статья на тему Вращающий момент электродвигателя

Крутящий момент двигателя: что это такое

Даже тем людям, которые не очень интересуются автомобилями, у которых их никогда не было и которые не намереваются становиться их владельцами, отлично известно, что одной из основных характеристик этих транспортных средств является мощность двигателя. Ее принято измерять в лошадиных силах (несколько реже используют более «правильную» с технической точки зрения величину — киловатт), причем вполне справедливо считается, что чем выше значение этого показателя — тем лучше.

С другой стороны такая важная характеристика как крутящий момент двигателя часто остается неизвестной даже некоторым автолюбителям. И это при том, что она является, на самом деле, ничуть не менее значимой характеристикой двигателя, чем его мощность и обороты, с которыми, кстати, находится в весьма тесной и даже неразрывной взаимосвязи.

В данной статье мы попробуем объяснить, что такое крутящий момент двигателя, чем он отличается от мощности, от чего зависит и на что влияет.

Что такое крутящий момент двигателя автомобиля простыми словами

Крутящий момент и мощность двигателей ВАЗ. Как видно из графиков, максимальная мощность достигается только на максимальных оборотах, тогда как пик крутящего момента находится между 3000 и 4500 оборотов.

Чтобы ответить на этот вопрос простыми словами нужно сначала выяснить, что подразумевается под терминами «мощность», «крутящий момент», а также число оборотов. С первой из этих характеристик дело обстоит несколько проще, поскольку всем тем, кто хорошо учился в средней школе, известно, что мощность — это работа, производимая в единицу времени.

Двигатель внутреннего сгорания, потребляя топливо, преобразовывает тепловую энергию его сгорания в кинетическую, совершая при этом работу. Она заключается во вращении коленчатого вала, и этот показатель измеряется в количестве оборотов в минуту. Соответственно, от частоты, с которой в цилиндрах ДВС происходит сгорание топливной смеси, напрямую зависит и работа, которую производит двигатель, и его мощность. Зависимость эта — прямо пропорциональная.

Читать еще:  Что за цепь в двигателе на ауди а4

Что же касается крутящего момента, то с ним отнюдь не все так очевидно, как с мощностью и количеством оборотов. Он является, по сути дела, величиной, производной от них и представляет собой произведение силы на плечо рычага. Поскольку сила (в данном случае та, которая возникает при сгорании топлива и воздействует на поршень) измеряется в физике в ньютонах, а длина (в данном случае — длина плеча кривошипа коленчатого вала) — в метрах, то единицей измерения крутящего момента, является Нм.

Таким образом, получается, что крутящий момент представляет собой усилие, которое развивает двигатель. Именно его значение определяет силу тяги, обеспечивающую разгон автомобиля и его движение. Следовательно, чем больше крутящий момент, тем автомобиль «резвее», что есть тем лучше его динамика. Поскольку сила, воздействующая на поршень при сгорании топлива, растет с увеличением рабочего объема двигателя, то чем он больше, тем выше крутящий момент.

Следует заметить, что в характеристиках двигателей внутреннего сгорания всегда указывается максимальная мощность, которую они способны развить. Крутящий момент определяет, как быстро она достигается, и поэтому он указывается для конкретного числа оборотов. Иными словами, он определяет, как быстро силовой агрегат «выбирает» тот потенциал мощности, который в нем заложен конструкторами. Именно поэтому, к примеру, при достаточно спокойной езде на невысоких оборотах (до 2500 об/мин) для быстрого ускорения самым предпочтительным двигателем является тот, который имеет максимальный крутящий момент именно на них.

От чего зависит величина крутящего момента двигателя

Крутящий момент двигателя зависит от целого ряда показателей, среди которых основными являются следующие:

  • Рабочий объем двигателя;
  • Рабочее давление, создаваемое в цилиндрах;
  • Площадь поршня;
  • Радиус кривошипа коленчатого вала.

С таким показателем, как рабочий объем двигателя, его крутящий момент, как уже было отмечено выше, при прочих равных связан прямо пропорциональной зависимостью. Это объясняется чисто математически: с ростом рабочего объема растет сила, воздействующая на поршень, и, соответственно, значение крутящего момента.

Такая же зависимость наблюдается и относительно такого фактора, как радиус кривошипа коленчатого вала. Правда, конструктивно современные двигатели внутреннего сгорания устроены таким образом, что значение этой величины можно варьировать только в весьма ограниченных пределах, так что возможности для увеличения крутящего момента за счет этого показателя у разработчиков ДВС относительно невелики.

В прямо пропорциональной зависимости величина крутящего момента двигателя находится и по отношению к рабочему давлению, создаваемому в камере сгорания. Это тоже вполне логично, поскольку чем оно больше, тем больше сила, которая давит на поршень. От его площади же величина крутящего момента зависит обратно пропорционально, поскольку с ее ростом удельное давление падает и сила, соответственно, уменьшается.

Читайте также: Роторный двигатель : принцип работы и устройство.

На что влияет крутящий момент двигателя

Если производить аналогию с человеческим организмом, то можно условно определить, что крутящий момент — это аналог силы, а мощность — это аналог выносливости. Именно от мощности двигателя внутреннего сгорания в конечном итоге зависит то, какую максимальную скорость может развить автомобиль, а от крутящего момента — то, как быстро сможет он это сделать. Именно поэтому далеко не все мощные автомобили имеют хорошую динамику разгона, и далеко не все, у которых она находится на высоком уровне, располагают очень мощными моторами.

Опытные автомобилисты отлично знают, что лучше всего выбирать для себя автомобиль с таким двигателем, показатель крутящего момента которого при работе на тех оборотах, на которых он обычно функционирует, является наилучшим. Дело в том, что это позволяет им использовать потенциал мощности ДВС в максимальной степени.

Следует заметить, что производители двигателей внутреннего сгорания всячески стремятся увеличить их крутящие моменты, причем во всем диапазоне работы моторов. Чаще всего пытаются достичь этого (и, кстати говоря, достаточно успешно) с помощью турбонаддува, управляемых фаз газораспределения (это оптимизирует процесс сгорания топливной смеси), повышения степени сжатия, использованием особых конструкций впускного коллектора и целым рядом других способов.

Читайте также: Чем отличается задний привод от переднего.

Крутящий момент мотор-колеса электровелосипеда

Опубликовано в Тех. характеристики Просмотров: 14983

При характеристике как двигателей внутреннего сгорания, так и электродвигателей транспортных средств, применяется такой термин, как крутящий момент, который в целом является критерием оценки тяговых возможностей двигателя. Как оказалось, выражение «крутячий момент» понятно не всем. Людей, изучающих технические характеристики того или иного электродвигателя в первую очередь интересует мощность, энергозатратность и максимальная скорость. О крутящем моменте мало кто спрашивает, и зря. Мы расскажем вам о нем подробно, поскольку не думаем, что вы правильно сможете оценить петенциал электродвигателя, располагая лишь скупыми техническими

параметрами его работоспособности. Для того, чтобы в должной степени оценить покупку, а также не пожалеть о сделанном выборе в пользу определенной мощности мотор-колеса, предлагаем вам ознакомится с нижеизложенным.

Сначала попробуем разобраться с определениями, поэтому вернемся к школьному курсу физики. Крутящий момент — это произведение силы на плечо рычага, к которому она приложена: Мкр = F х L. При этом Сила измеряется в ньютонах, рычаг – в метрах. 1 Нм – крутящий момент, который создает сила в 1 Н, приложенная к концу рычага длиной в 1 м. Единица измерения крутящего момента — Ньютон-метр. Получить больший крутящий момент можно двумя путями – увеличив длину рычага или вес груза.

Читать еще:  Возможные неисправности двигателей их причины и методы устранения

Издавна для путешествия людей и транспортировки грузов использовались всевозможные механизмы. Сначала, роль колеса сводилась лишь к уменьшению сопротивления и переводу силы трения в движение (качение). Существенное изменение механизма применения колеса произошло благодаря появлению такого гениального изобретения, как двигатель. Кроме пассивной трансформации трения из одного вида в другой, колесо стало создавать тяговую (движущую) силу.

Мощность, развиваемая мотор-колесом – это его способность вращаться как можно быстрее, одновременно создавая на оси колеса крутящий момент. При контакте колеса с дорожным покрытием крутящий момент мотор-колеса электровелосипеда становится тяговой силой.

Существуют такие параметры мотор-колеса, как число оборотов электродвигателя при максимальной мощности и максимальном крутящем моменте, а также величина этой мощности и крутящего момента. Эти показатели измеряются в оборотах в минуту, киловаттах (кВт), ньютометрах (Нм).

Существует прямая зависимость показателя крутящего момента мотор колеса от силы тока и числа его оборотов, поэтому крутящий момент – величина не постоянная. Производители мотор-колес ведут борьбу за то, чтобы максимальный крутящий момент электродвигателя развивался в как можно более широком диапазоне оборотов.

При вращательном движении мотор-колеса его мощность определяется как производящее крутящего момента на угловую скорость вращения. Мощность показывает, сколько раз на единицу времени электродвигатель создает крутящий момент, то есть мощность прямо зависит от количества оборотов мотор-колеса. Мощность электродвигателя указывается в Вт, кВт.

Номинальный крутящий момент электродвигателя велосипеда вычисляют за формулой:
Mном=Pном / nном, где Pном – номинальная мощность мотор-колеса (кВт) , а nном – номинальная частота вращения (об/мин).Данная формула наглядно демонстрирует взаимосвязь мощности и крутящего момента мотор-колеса электровелосипеда.

Максимальный крутящий момент мотор-колеса электровелосипеда – это наибольший момент вращения, развиваемый электродвигателем в установленном режиме при номинальном напряжении и частоте, соединении обмоток, соответствующем номинальным условиям работы, номинальному току возбуждения.

На практике высокий крутящий момент мотор-колеса особенно заметен при разгонах и при передвижении по бездорожью. От крутящего момента зависит время достижение электродвигателем максимальной мощности, а значит и динамика разгона при старте.

Минимальный вращающий момент электродвигателя — наименьший момент вращения, развиваемый двигателем в процессе разгона с неподвижного состояния до частоты вращения, соответствующей максимальному моменту при номинальных напряжении и частоте, при соединении обмоток, соответствующем номинальным условиям работы электродвигателя.

Крутящий момент мотор-колеса электрического велосипеда отвечает за способность ускорятся и преодолевать препятствия. Каждому значению частоты оборотов мотор-колеса соответствует свое значение мощности и крутящего момента.

Не стоит путать понятия «вращающий момент» и «крутячий момент», поскольку они совершенно не тождественны. В технике «вращающий момент» ассоциируется со внешним усилием, прилагаемым к объекту, а понятие «крутячий момент» подразумевает внутреннее усилие, возникающее в обьекте под влиянием приложенных нагрузок.

Если вы желаете получить более высокую скорость и вместе с тем хорошую тягу, тогда вам стоит остановить свой выбор на мотор-колесах минимум в 500 W. Сочетание отличного показателя крутящего момента и большой скорости делают электровелосипеды с 500 W мотор-колесами одним из лучших предложений на мировом рынке при хорошем соотношении: приемлемая цена — качество — технические характеристики. Использование мотор-колес мощностью больше, чем в 500 Вт, оправдано в тех случаях, если велосипедисту приходится преодолевать крутые подъемы, или если он желает увеличить грузоподъемность своего электровелосипеда. Стоит учитывать, что вместе с мощностью электровелосипеда будет возрастать и его вес, поскольку в таком случае необходимо будет комплектовать свой электрический велосипед ещё и более мощными и, соответственно, более тяжелыми аккумуляторами. Существенное увеличение веса может чрезмерно перегрузить раму.

Чем больше мощность электродвигателя, тем большим является его крутящий момент. Соответственно, увеличивается опасность и того, что дропауты велосипедной вилки, где установлено переднеприводное мотор-колесо, могут разогнуться, и колесо просто выпадет при эксплуатации электровелосипеда. В случае покупки велосипедного электродвигателя большой мощности, не забудьте побеспокоится о приобретении велосипедного крепежа для надежной фиксации переднеприводного мотор-колеса в велосипедной вилке. Если вы используете 250 W или 350 W электродвигатель, то, думаю, что у вас, скорое всего, никогда и не возникнет подобных проблем, чего не скажешь о 500W или, скажем, 1000W мотор-колесах. При комплектации электровелосипеда электрическим двигателем, нужно брать во внимание эксплуатационное состояние и сплав велосипедной вилки, поскольку большинство из тех, что поставляются на рынок страны, не рассчитаны на дополнительные тяговые нагрузки мотор-колеса, и попросту могут сломаться в случае установки на них мощного мотор-колеса. К примеру, алюминиевая велосипедная вилка не совсем подходит для комплектиования электровелосипеда, хотя по иронии судьбы велосипеды алюминиевой конструкции обычно дороже своих стальных аналогов из-за преимущества в весе. Для электрического велосипеда больше подойдет качественная стальная вилка, поскольку при установке мотор-колеса показатель прочности велосипедной вилки более важен, нежели весовой. Чтобы проверить, является ли ваша вилка стальной, посмотрите, притягивается ли к ней магнит.

© Сергей Вольтер 2013
Любое копирование, перепечатка и распространение материалов статей без разрешения правообладателя запрещены и преследуются по закону. Нарушение авторских прав будет рассматриваться согласно статьи 52 Закона Украины «О авторском праве и смежных правах», статьи 176 Криминального Кодекса Украины, статьи 432 Гражданского кодекса Украины, статьи 51-2 Кодекса Украины об административных правонарушениях.

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector