Auto-park24.ru

Журнал "Автопарк"
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Что такое квантовые двигатели и как они работают

«Стелс», я тебя вижу. Как работают квантовые радары?

Пока в КНР испытывают экспериментальный квантовый радар с дальностью до 100 километров, в России полным ходом идут испытания предсерийного изделия, применение которого в буквальном смысле изменит ход истории.

Коллаж © L!FE. Фото © Shutterstock Inc

Помимо квантовых компьютеров и сетей передачи данных, разработка и внедрение которых позволит избавить человечество от возможности перехвата данных, одним из наиболее перспективных направлений остаются квантовые радиолокационные системы (квантовые радары). Эта технология станет основополагающей в ближайшие несколько лет — истребители шестого поколения, уникальные подводные лодки и системы предупреждения о ракетном нападении смогут работать в тысячи раз быстрее, а в гонку за готовым изделием уже включились Китай, Россия и США.

Для всех систем этого типа учёные пытаются использовать одно и то же явление — квантовую запутанность. Если не углубляться в дебри физики и квантовой механики, то принцип квантовой запутанности состоит в том, что передача двух взаимозависимых частиц (например, фотонов) через специальные оптические станции высокой мощности возможна не просто на огромном, а на гигантском расстоянии. Не влезая в принцип передачи частиц с информацией в другую часть Солнечной системы и даже другую галактику, стоит заметить, что на фотонах и специальных приёмно-передающих устройствах можно построить армию, победить которую будет практически невозможно.

При этом первые прототипы «стреляющей светом» РОФАР — радиооптической фазированной антенной решётки — были собраны и протестированы в России ещё 15 лет назад. В создание аналогичной системы включился и Китай, однако дальше изготовления макета дело не дошло. Помимо «железок» потребовался уникальный софт. Источники Лайфа в ОПК отмечают, что долгое время специалисты из КНР под разными предлогами пытались купить и программное обеспечение, и специалистов, предлагая совершенно безумные деньги. Диалога не сложилось, а не вполне законные попытки узнать секрет русского квантового радара пресекались спецслужбами.

Фото © Shutterstock Inc

Квантовые линии связи, развёртывание которых вместе с квантовыми компьютерами учёные ожидают на рубеже 2021–2023-х годов, позволят на какое-то время обеспечить полную конфиденциальность любых передаваемых по такой сети данных. Математические методы расшифровки алгоритмов шифрования перестанут работать — кубиты, несущие данные в состоянии суперпозиции, будут иметь такое количество информации, на перебор вариантов которой у современных суперкомпьютеров уйдёт миллион лет. Первая, защищённая и полностью рабочая линия квантовой передачи данных уже работает. Физики из Российского квантового центра ещё в 2017 году запустили между двумя московскими отделениями Сбербанка первую линию квантовой связи, по которой передали реальные финансовые данные. Однако дальше случилось то, чего учёные боялись больше всего, — квантовыми технологиями всерьёз заинтересовались военные.

Первыми свой интерес к фотонным (квантовым) радарам, действующим по тому же принципу квантовой запутанности, официально признали американцы. Ещё в 2016 году в США был оформлен патент на «подводную арктическую квантовую навигацию», которая работает в миллионы раз быстрее обычных гидролокаторов и позволяет обнаруживать не только предметы, но и способна составлять карту геологических особенностей той или иной местности. Пока достоверных сведений о работе этой системы нет. Однако эксперименты с квантовым радаром проводятся не только на воде и под водой, но и в воздухе.

В 2017 году к тестированию аналогичных технологий приступили в Китае. Специалисты 14-го института оборонной компании CETC провели эксперимент по обстрелу целей фотонами на дальности в 100 километров. Практически одновременно с китайскими специалистами свою разработку показали и российские учёные. Российский Концерн радиоэлектронных технологий (КРЭТ) создал экспериментальный образец фотонного радара для истребителя шестого поколения. Источник Лайфа в ОПК подтвердил, что РЛС такого типа в России создаётся не в качестве экспериментальной установки, а как полноценное изделие, которое через несколько лет можно будет устанавливать на истребители.

Принцип работы «фотонного локатора»

Помимо огромной скорости передачи данных и чудовищно быстрого обнаружения целей даже по сравнению с перспективными РЛС с активной фазированной антенной решёткой (АФАР) у квантовых радаров есть и другое преимущество — облучение воздушных целей светом сводит на нет любую технологию малозаметности. Последние новости о решениях в этой области говорят о том, что у российских учёных в квантовой гонке есть огромное преимущество. Ещё в 2002 году физики из Российского квантового центра под руководством Александра Львовского разработали метод восстановления квантовой запутанности. В переводе с научного на обычный русский язык это значит, что учёные смогли сделать шаг в направлении квантовой криптографии, пока недоступной для специалистов из-за рубежа.

Фото © European Business Press SA

Несмотря на то что американская компания Lockheed Martin запатентовала квантовый радар ещё в 2007 году, полноценная система обнаружения, создать которую можно сразу для нескольких типов носителей (на суше, море и в воздухе), первой появилась именно в России. Ключевой проблемой в этом отношении является невысокая дальность действия. «Благодарить» за это стоит структуру квантовой системы связи. Говоря простым языком, чем мощнее обстрел фотонами и система в целом, тем она уязвимее. Однако заявления о начале тестирования системы этого типа в России говорит о том, что скоро российские военные получат систему, для которой понятия «малозаметный истребитель» или «стелс-подлодка» не существуют в принципе.

Изделие, по словам источников Лайфа в ОПК, через некоторое время будет готово для установки на истребители Су-35, которые относят к поколению 4++. Эта технология, по данным экспертов, стала причиной повышенного внимания к российским истребителям. РОФАР, тестирование которой на действующем истребителе может начаться уже до 2021 года, позволит истребителям поколения 4++ обнаруживать и «заранее» сбивать любые стелс-машины, включая малозаметные американские истребители F-22, F-35 и бомбардировщики B-2.

Квантовый двигатель: принцип действия и устройство. Квантовый двигатель Леонова

Тематика покорения космоса в наше время уже не такая популярная, как во времена СССР. На это влияет огромное количество факторов, но основным можно назвать именно отсутствие эволюции в техническом сегменте. Однако русский ученый Владимир Семенович Леонов работает над созданием квантового двигателя.

Биография

Хочется начать с истории великого человека – Владимира Семеновича Леонова, но, к сожалению, информации, о нем не так уж и много. Однозначно можно сказать, что данная выдающаяся личность является физиком-теоретиком и непосредственно экспериментатором. Также Леонов становился лауреатом премии Правительства России в номинации техники и науки. Занимает место в первой сотне лидеров промышленности и науки Содружества. Он признавался директором года в СНГ в 2007 году. Является главным конструктором, а также руководителем ЗАО «НПО Квантон». Леонов выступает автором научных открытий квантона (кванта пространства-времени). Именно Леонов создал теорию Суперобъединения. Данная теория была признана теорией века, а ее направление было новым дыханием в энергетике (как наземной, так и космической).

Также в 2007 году Леонов построил собственную лабораторию, которая так и была названа — «Лаборатория Леонова». После, через непродолжительное время, он начал ставить эксперименты с гравитацией, суть которых заключалась в управлении. Точнее сказать, он работал над созданием такого двигателя, который создавал бы тягу без вызволения реактивной массы. В итоге ученный отчасти добился этого, сейчас его творения величают как «квантовый двигатель Леонова», многие утверждают, что это и есть двигатель будущего.

Вот так буквально в нескольких словах можно рассказать о данной персоне. Как можно заметить, личность Леонова непубличная и известна лишь в малых кругах, однако его открытия получили большую огласку. Вот именно на них и хочется остановиться подробнее.

Теория Суперобъединения

В первую очередь необходимо начать с того, что послужило предпосылкой создания двигателя Леонова. А это непосредственно теория, которая получила название Суперобъединения. Названа она так, потому что призвана объединить четыре взаимодействия. Но на данный момент наука признает существование всего лишь трех, недостает четвертого элемента — гравитационной силы. Сама теория взяла свое начало из теории струн и суперсимметрии Альберта Эйнштейна. Дабы не вдаваться в подробности по этой теме, стоит сказать лишь, что именно теория Суперобъединения способна вывести такую науку, как энергетика, абсолютно на новый уровень.

И все же заключается она в том, что предполагает повсеместное наличие различных элементов, которых, к сожалению, нынешняя наука совсем не учитывает. Однако эти элементы поддавались огласке, и не кем-нибудь, а самим создателем Периодической таблицы элементов — Менделеевым. Даже больше, первоначальный вид таблицы включал в себя два нулевых элемента. Но увы, после ее переработали и убрали «ненужные» частицы. Важен для теории Суперобъединения элемент под названием Ньютоний, он являлся элементом эфира. Сам Менделеев возлагал на Ньютоний огромные надежды, а назвал он его так в честь великого ученого-физика Ньютона.

Общая информация

Рассказывая о достижениях ученого, в первую очередь упоминают о его величайшем агрегате, получившем название квантовый двигатель Леонова. При создании его автор как раз и обращался к такому элементу, как Ньютоний. Однако сам Леонов его так не называл, он величал его кантоном, говоря, что только лишь на взаимодействии с этим элементом можно будет создать силовую установку совершенно нового поколения.

Читать еще:  Чем промыть двигатель при замене масла народные средства

Исходя из этого, можно с уверенностью заявить, что теория Суперобъединения имеет право на существование, что многие ученые пытаются опровергнуть. Однако Леонов нашел в себе смелость вернуться в прошлое и вспомнить о забытом элементе, да не просто вспомнить, а использовать его как отправную точку в своих исследованиях.

Далее в статье пойдет речь непосредственно о самом двигателе.

Об изобретении Леонова

В первую же очередь, говоря об агрегате под названием квантовый двигатель, стоит забыть о таком явлении, как фотонный двигатель. Это говорит сам автор, так как второй двигатель имеет абсолютно иную схему и не схож с квантовым. Сейчас для ясности картины стоит осветить их главные отличия. Суть в том, что фотонный двигатель работает за счет аннигиляции антивещества и вещества, то есть создает реактивную тягу, которая и толкает объект. Квантовый двигатель работает совсем по-иному. Для движения он использует энергию гравитационных волн и упругость самого пространства. Данный вариант ученые сразу же отвергли, назвав его работу лженаукой, а сейчас лишь стараются модернизировать то, что давно уже было создано и попросту исчерпало свой потенциал. И это, грубо говоря, не нужно доказывать, всего-навсего необходимо взять характеристики первой полноценной ракеты Вернера фон Брауна и современной. Дело в том, что современный двигатель ракеты всего лишь в два раза превышает показатели первой. Из этого следует вывод, что достигнут абсолютный предел, и дальнейшие работы в этом направлении будут или безуспешными, или же попросту бессмысленными.

Например, ядерный ракетный двигатель очень опасен, а электродвигатель не способен показать большую тягу, то есть он непригоден для запуска ракет в космос. А если взглянуть на двигатель Леонова, то он кажется невероятно перспективным. Нельзя даже представить, какие последуют перемены, если его успешно реализуют. Однозначно, что в корне преобразуются технологии и, в частности, техника. Дабы хоть чуть-чуть понять его потенциал, достаточно сказать, что теоретически с помощью него до Луны можно добраться за четыре часа, а до Марса — всего лишь за двое суток.

Опыты с двигателем

На веку Леонова Владимира Семеновича было невероятное количество опытов и различных экспериментов. Однако когда у него спрашивают об этом, он сразу же начинает говорить о самом выдающемся, который произошел в 2009 году. Сам экспериментатор утверждает, что тогда он смог создать квантовый гравитационный двигатель, который придавал ускорение объекту, не используя в этом деле реактивную силу. Это стало точкой отсчета, ведь с того времени Леонов смог вертикально поднимать объект по направляющим рельсам, не задействуя при этом привод на колеса. Это явление, по словам самого создателя, подтверждает ту теорию, о которой говорилось выше.

После ошеломительного успеха настал час затишья, и спустя пять лет, только в 2014 году, были проведены стендовые испытания, где был представлен двигатель будущего. Результаты он продемонстрировал невероятные: при том, что его вес составлял пятьдесят четыре килограмма, импульс тяги достигал невообразимых семьсот килограмм-сил, в то время как ускорение было 10 джоулей. Интересно также то, что сам двигатель требует лишь электроэнергии и может работать без тела. Также исходя из этого опыта было установлено, что затраты электроэнергии составляют всего лишь один киловатт. Эти характеристики ошеломительные, ведь самый современный реактивный двигатель ракеты, который существует сейчас, генерирует лишь одну десятую килограмм-силы, растрачивая тот же один киловатт электроэнергии.

Теперь остается лишь только представлять, что случится, если квантовый двигатель будет создан. Тогда полезный груз ракеты достигнет девяноста процентов. И это притом, что он сейчас составляет лишь мизерные пять процентов.

Скептицизм ученых

Несмотря на проведенные опыты, большинство ученых в этой области к двигателю Леонова относятся скептически, говоря о том, что его творение в условиях вакуума работать не будет.

Сам же Владимир Семенович отвечает тем же, выступая против РАН и комиссии по борьбе со лженаукой, в частности. В 2012 году он заявил, что деятельность ее можно назвать попросту преступной, а разговор о том, что его проект безнадежный – дезинформацией. Также у Леонова бытует мнение, что комиссия – это зарубежный спецпроект, который призван пресечь технический прогресс его страны.

Также нельзя не заметить, что разработки в этом направлении ведутся не только на территории России, но и за рубежом, в частности, на западе. Однако квантовые ракетные двигатели США, Россия и Китай делают по-разному, точнее будет сказать, их схемы попросту различаются, ведь никто не хочет открывать своих тайн. Но успех у наших коллег за рубежом незначителен, в отличие от отечественного прорыва.

Нельзя не отметить бодрый энтузиазм Леонова и его патриотизм, он попросту не взирает на заявления РАН и уверен, что модернизация и экономический рост придут всего лишь через два-три года. Это, кстати, сопоставимо с обещаниями президента Российской Федерации Владимира Путина.

Леонов также критикует и открытие Бозона Хиггса. Еще в 2012 году он выступал против этой идеи, говоря, что проблема решена была еще в 1996 году, когда был обнаружен нулевой элемент в Периодической таблице Менделеева – тот самый квантон.

Достоинства квантового двигателя

Выше по тексту было перечислено множество преимуществ квантового двигателя по сравнению с реактивным или фотонным. Но все же стоит собрать все в одном месте и объединить все в список для удобства. Итак, двигатель Леонова имеет следующие достоинства:

  1. Девяносто тонн полезной нагрузки. Другими словами, девятьсот процентов, в то время как авиационные реактивные двигатели достигают лишь пяти процентов.
  2. Максимальная скорость. Ракета с данным двигателем способна развивать скорость в тысячу километров в секунду, в то время как РД развивает восемнадцать километров в секунду.
  3. Возможность движения с ускорением. Аппарату присущ длительный импульс тяги.
  4. Полет до Луны с этим двигателем будет длиться всего три с половиной часа, в то время как до Марса — всего двое суток.
  5. Универсальность. Двигатель Леонова может применяться не только лишь в космической отрасли, он отлично справится в таких условиях, как под водой, в воздухе и на земле.
  6. Этот двигатель сможет увеличить максимальную высоту полета самолетов, таким образом, они смогут достигнуть отметки в сто километров.
  7. Малый расход топлива. Двигателю необходимо очень мало энергии, обусловлено это тем фактом, что аппараты будут летать по инерции.
  8. Самолет будет способен пролететь целый год без дополнительной дозаправки.
  9. Если на машине будет установлен квантовый двигатель, и, в свою очередь, он будет заправлен топливом холодного ядерного синтеза, то автомобиль будет способен проехать десять миллионов километров, не останавливаясь на заправках.
  10. Данный двигатель питается электрической энергией.

Конечно же, это неполный перечень положительных качеств двигателя, ведь все это существует только в теории. И только после реализации станет на сто процентов понятно, на что он способен.

Применение

Стоит теперь упомянуть, где же все-таки этот двигатель может быть применен. Конечно же, основной средой для него является космос. Он для этого и будет создан, но все же есть и другие области применения. Помимо ракет, квантовым двигателем можно будет обустроить машины, морской транспорт, железнодорожный, самолеты и подводные аппараты. Также он отлично впишется для электроснабжения обычных жилых помещений. Еще он подойдет для проведения спекания строительных материалов током.

Таким образом, данное открытие позволит обеспечить огромные сегменты, что в несколько раз облегчит и улучшит жизнь миллионов людей.

Источники энергии

Конечно же, нельзя забывать и о том, как подпитывать квантовый двигатель, ведь каким бы он идеальным ни был, ему требуется сырье для работы. И источник этот должен быть невероятно мощным. Для обеспечения отлично подойдет реактор холодного ядерного синтеза, который, в свою очередь, работает на никеле.

Этот реактор намного лучше уже существующих, ведь всего один килограмм никеля в режиме холодного ядерного синтеза способен выделить столько энергии, как один миллион килограмм бензина.

Сравнительная характеристика

Все вышесказанное, конечно же, передает все технические аспекты и преимущества двигателя, но, как говорится, все познается в сравнении. Что будет, если провести параллели между современными ракетными двигателями и квантовым двигателем Владимира Семеновича Леонова?

Итак, современные космические двигатели на один киловатт мощности способны добиться тяги, равной одному ньютону, это равносильно одной десятой килограмм-силы. Квантовый же двигатель превосходит ракетный в несколько раз. На тот же один киловатт тяга составляет у него пять тысяч ньютонов, что равносильно пятистам килограмм-силы. Как видно разработка Леонова способна многократно увеличить КПД, что, в свою очередь, подарит человечеству новую технологическую эру.

Читать еще:  Что делать если перелил масло в двигатель опель

Как работает квантовый компьютер: простыми словами о будущем

статьи | Oct 30, 2020 | Технологии и Безопасность | 520

Пару лет назад, во время пресс-конференции в канадском Институте теоретической физики в Ватерлоо, один из журналистов решил подшутить над канадским премьер-министром Джастином Трюдо, спросив его о квантовых компьютерах.

Трюдо, нимало не смутившись, в двух словах объяснил принцип работы этих устройств, что сделало его в глазах прогрессивной общественности настоящей звездой. Почему именно этот вопрос журналист посчитал наиболее каверзным? Действительно ли можно разобраться в том, что такое квантовые вычисления и квантовая механика, не будучи специалистом? Не будем утверждать, что это легкая задача, но давайте попробуем. Итак, квантовый компьютер для чайников.

История создания квантового компьютера

У истоков самой идеи квантового программирования стоит человек, известный каждому, кто хоть немного интересуется физикой. Знаменитый американский ученый и популяризатор науки Ричард Фейнман, лауреат Нобелевской премии по физике, предположил возможность существования квантового компьютера еще в 1981 году. Произошло это на совместной конференции, которую организовали корпорация IBM и MIT (Массачусетский технологический институт). В то время никто еще не задумывался всерьез о реализации этой идеи на практике. Даже в теории она казалась весьма непростой. Квантовая механика, в отличие от классической, которую все мы изучали в школе, описывает явления не на уровне тел, а на уровне атомов, электронов, фотонов и прочих элементарных частиц. И квантовые эффекты, которые предполагалось использовать, создавая первый квантовый компьютер, проявляются в микроскопических масштабах.

Переместиться на микроуровень в поисках новых возможностей ученых заставили физические основы, на которых базируется традиционная вычислительная техника. Схема ее работы основана на транзисторах, в каждом современном компьютере их миллионы или даже миллиарды. Каждый из них может в определенный момент времени находиться в «открытом» или «закрытом» состоянии — как электрический переключатель. Эти два состояния и представляют собой те самые нули и единицы, с помощью которых человек общается с компьютером (и наоборот). По мере развития технологий производители размещают на процессорах компьютеров все большее и большее количество транзисторов. Это увеличивает скорость работы и вычислительные возможности техники. Но всему есть физический предел, и мы вплотную к нему приблизились. Если раньше вычислительная мощность производимых процессоров удваивалась примерно каждые два года, то сегодня этот темп падает на глазах. В то же время потребности человечества в вычислениях постоянно растут, опережая развитие электроники.

Но вернемся к Ричарду Фейнману и его теории. Основное отличие квантового компьютера от обычного заключается в представлении информации в его процессоре. Единица информации в обычном компьютере — бит, представляющий собой ноль или единицу. Третьего не дано. Единица хранения информации для квантового компьютера — квантовый бит, или, сокращенно, кубит. Это квантовый объект — вещь, которую гораздо проще описать, чем представить.

Что такое кубиты для квантовых компьютеров

Итак, если бит — это одна из двух условных точек (1 или 0), то кубит можно представить себе в виде сферы с полюсами в этих же точках — 1 и 0. Кубит также может принимать значение 1 или 0. Но кроме них он может находиться в состоянии суперпозиции, то есть иметь любое из возможных значений, лежащих на поверхности сферы. И все это — одновременно.

Но что именно расположено на поверхности сферы? Может быть, кубит имеет переменное (плавающее) значение? В некотором смысле это так, но трудность в том, что невозможно узнать это значение для конкретного момента времени, как это делается для обычных переменных. Если выразиться максимально простым языком, кубит похож на магический шар. Если этому шару задать вопрос, то ответом может быть единица или ноль. Но выпадут они с разной вероятностью. Именно вероятности выпадения значений «хранятся» в суперпозиции.

Рука об руку с принципом суперпозиции работает эффект квантовой зацепленности. Две взаимосвязанные квантовые частицы синхронно изменяют свое состояние, даже если между ними миллионы световых лет. Зацепленность дает возможность собирать кубиты в «наборы». Если в наборе из двух бит можно хранить одну определенную последовательность из двух значений (нулей или единиц), то набор из двух кубитов содержит суперпозицию всех возможных вариантов последовательностей из двух этих значений. А это намного больший объем информации.

Как устроен квантовый компьютер: принцип работы

После появления понятия квантового компьютера десятки ученых всего мира пытались создать его физическое воплощение. Главный вопрос: что может использоваться в качестве кубита? В 1994 году европейские физики Петер Цоллер и Хуан Игнасио Сирак описали схему использования специальной ионной ловушки как основы для квантового компьютера. Именно в этот момент стало ясно, что научная теория и практика встретились лицом к лицу.

Физические «воплощения» кубитов — это не только ионы. В этих целях ученые пытались и пытаются использовать электроны, ядра атомов, фотоны, сверхпроводящие материалы и даже искусственные наноалмазы. Совсем недавно был разработан оптический квантовый микрочип, на основе которого теоретически может быть создан оптический компьютер, использующий манипуляцию с квантовыми состояниями света. Две основные проблемы, которые пытаются решить конкурирующие исследовательские группы: срок жизни кубитов и их количество в системе.

Вывести квантовую систему из состояния суперпозиции очень легко. Это под силу даже единственному фотону, столкнувшемуся с кубитом. Именно поэтому вопрос, можно ли назвать мозг квантовым компьютером, редко поднимался учеными — сложно вообразить себе квантовые вычисления в биологической среде. Кубиты, даже находящиеся в специально созданных условиях (вакуум, охлаждение до сверхнизких температур), разрушаются за доли секунды. Присутствие рядом других кубитов дополнительно сокращает этот срок. А теперь представьте, что вам необходима работающая структура из десятков, а то и сотен таких капризных частиц. Нетривиальная задача, не правда ли?

Отдельная тема — программирование на квантовом компьютере. Программист в данном случае имеет дело с гибридным устройством. Квантовый компьютер состоит из элементов обычного и квантового типа — чтобы была возможность вводить данные и интерпретировать результаты. В итоге в одной программе комбинируются квантовый и классический коды. Существуют разные языки программирования для квантовых систем (например QCL, Quantum computing language), но в настоящее время они выполняют не практическую, а скорее исследовательскую задачу. С их помощью исследователям проще понимать работу квантовых вычислений.


Модель гипотетического квантового компьютера от IBM (CeBIT 2018. Ганновер, Германия)

Применение квантовых компьютеров

В том же 1994 году американский ученый Питер Шор разработал первый (из многих) квантовый алгоритм для разложения целого числа на простые множители. Удивительно, но даже для самых мощных современных компьютеров разложить длинное (в несколько сотен цифр) число на два простых множителя — невероятная по затратам времени задача. Именно на этом строятся самые современные системы шифрования и защиты информации. Шор же доказал, что квантовый компьютер, содержащий 1000 и более кубитов, взломает любой код буквально за секунды.

Вся хитрость в том, что квантовый компьютер проверяет возможные варианты не последовательно, как это делает обычный процессор, а одновременно. Скорость обработки информации при таком способе возрастает просто колоссально. Работа Шора показала лишь одну из сфер практического применения квантового компьютера. Возможности квантового взлома систем шифрования (в том числе в военной сфере) сразу привлекли в эту область разработок немалые ресурсы. Например, Китай планирует потратить более 11 миллиардов долларов на строительство нового квантового центра. Не отстают от КНР также ЕС и США, собственные средства в квантовые разработки вкладывают и частные компании — такие как Google и IBM. Свой вклад в создание квантового компьютера вносит и Россия.

Квантовый компьютер в России: перспективы

Один из самых мощных квантовых компьютеров в мире (51 кубит) создала в 2017 году научная группа Михаила Лукина, профессора Гарвардского университета и сооснователя Российского квантового центра. Ученые работают с «холодными атомами» — частицами, охлажденными почти до абсолютного нуля. Пока эти эксперименты проводятся в лабораториях Гарварда, но уже в 2018 году Газпромбанк инвестировал 1,5 миллиона долларов в Российский квантовый центр для разработки проекта по квантовому машинному обучению. Разработки ведутся по трем основным направлениям:

  • использование искусственного интеллекта в описании сложных квантовых систем;
  • применение аналоговых устройств на квантовых принципах для обучения нейронных сетей;
  • разработка программного обеспечения для квантовых вычислений.

В то же время Российский квантовый центр, Институт физики твердого тела РАН, МИСиС, ВНИИА им. Н.Л. Духова и МГТУ им. Н.Э. Баумана продолжают исследования для разработки российского квантового «железа». Планируемая мощность квантового компьютера российского производства пока составляет несколько кубитов. Это, безусловно, отставание в количестве, но не в качестве и значении разрабатываемых технологий.

Прогноз развития квантовых компьютеров

Теоретически самый мощный квантовый компьютер, который уже создан, — устройство D-Wave 2000Q, детище канадской компании D-Wave Systems. Цена новинки — каких-то 15 миллионов долларов. В нем установлен квантовый чип, содержащий 2000 кубитов. Проблема в том, что по сути это вовсе не квантовый суперкомпьютер, а так называемое устройство квантового отжига. Эта система работает на решение очень узкоспециализированной задачи, и до ее реального практического применения еще довольно далеко.

Читать еще:  Что делать если в инжекторном двигателе закончился бензин

Тем временем в марте 2018 года состоялась презентация 72-кубитного квантового компьютера. О его создании заявила компания Google. Он отличается большей производительностью при низком уровне ошибок — но все эти достоинства опять-таки пока реализованы лишь в теоретической плоскости.

Но каковы же возможности такого использования квантовых компьютеров, кроме упомянутого взлома шифров? На сегодняшний день их очень и очень много. То, чего нельзя сделать при помощи самых мощных современных ЭВМ, квантовым системам будет вполне под силу. Если допустить, что уже в скором времени появится реально работающее квантовое «железо», преимущества его перед нынешними вычислительными системами сложно переоценить. Поиск в огромных базах данных, разработка новых лекарственных средств, расшифровка генома, оптимизация транспортных маршрутов, исследования космических пространств, метеорология, исследования в области ядерной энергетики требуют перебора невероятного количества вариантов решений. Подобные задачи — основные сферы применения квантовых компьютеров в будущем.

Существует ли квантовый компьютер сейчас? Да, безусловно. Применяется ли он для решения конкретных практических задач? Пока нет. Но активность поисков в этой области внушает некоторый, хоть и очень осторожный, оптимизм. Вспомните: ведь еще совсем недавно самый обычный смартфон показался бы нам чудом технологий! Так почему бы и квантовому компьютеру не обернуться в ближайшие десятилетия приятной повседневностью, открывающей перед нами новые захватывающие горизонты?

QD-телевизор — или почему квантовые точки так важны для телевизора

Квантовые точки – новый уровень качества картинки или уловка маркетинга?

QD-телевизор — или почему квантовые точки так важны для телевизора

Квантовые точки – новый уровень качества картинки или уловка маркетинга?

LED, QLED, OLED, microLED – в многообразии технологий формирования изображения в телевизорах сегодня очень просто запутаться. Этому способствуют и производители – аббревиатуры OLED и QLED графически похожи совсем не случайно – маркетологи свой хлеб едят совсем не зря. Но если про OLED за годы развития этой технологии накопилось достаточно много информации, то нюансы QLED и использования квантовых точек пока не столь очевидны. Попробуем в этом разобраться.

Светодиоды и различное их применение

Всё многообразие технологий, актуальное для современного телевизора, имеет в своих названиях LED – аббревиатуру от Light Emitting Diode, или просто «светодиод». В начале века была конкурирующая технология формирования изображения – так называемая «плазма», но не выдержав конкуренции она осталась в истории, напоминая о себе лишь изредка встречающимся жаргонным названием любого плоского телевизора. Итак, все современные телевизоры используют светодиоды как источники света. Но делают они это по-разному. Самая заслуженная технология – LED. Фактически, это обычный жидкокристаллический телевизор с подсветкой на основе белых светодиодов, которые могут располагаться как по периметру экрана, так и по всей его площади. Цветное изображение достигается в результате применения фильтров разного цвета.

Иной принцип предлагают технологии OLED и microLED. Здесь светодиоды непосредственно формируют картинку. То есть, триада таких диодов (субпикселей основных цветов – RGB) образуют реальный пиксель на экране. Главным отличием от других технологий формирования изображения является то, что в панелях OLED и microLED отсутствует подсветка. В результате такие экраны обеспечивают не только натуральную цветопередачу и широкий цветовой охват, но и способны формировать абсолютный чёрный цвет – другими словами, в темном участке экрана обеспечить нулевой уровень излучения. С использованием подсветки такого результата достичь невозможно.

Технология OLED (Organic Light Emitting Diode) использует органические светодиоды, а microLED – неорганические, имеющие ряд преимуществ. В частности, неорганические светодиоды способны обеспечить существенно более высокую яркость, более широкий цветовой охват и более высокую стабильность работы. Неорганические светодиоды не подвержены «выгоранию», поддерживают высокие частоты обновления картинки и отличаются низким временем отклика, выражаемом в наносекундах. Вишенкой на торте станут большие углы обзора экранов microLED и существенно меньшее в сравнении с OLED и ЖК-телевизорами энергопотребление. В общем, у этой технологии практически одни преимущества. Сдерживает её распространение тот факт, что это самая молодая технология, которая должна пережить проблемы роста и решить ряд технологических проблем производства таких экранов. Ну и пока такие телевизоры очень дороги, что неудивительно для аппаратов, базирующихся на совсем свежей технологии.

QLED – подсветка, но иная

Прежде чем перейти к технологии QLED, нужно определить, что такое «квантовые точки», на которых эта технология базируется. Квантовая точка – это полупроводниковый кристалл, свойства которого зависят от его размера. Такой кристалл способен излучать свет под воздействием электрического тока или света. Чтобы достичь выраженного квантово-размерного эффекта, этот кристалл должен быть очень малого размера. От размера зависит энергия испускаемого света, которая определяет цветовой оттенок свечения. Если такие квантовые точки равномерно нанести на тонкую пленку, которую подсветить внешним источником, то эта пленка будет люминесцировать. Учитывая то, что размер таких кристаллов контролировать достаточно просто, легко получать точные цветовые оттенки. Такие люминесцирующие покрытия назвали QDEF (Quantum Dot Enhancement Film).

В технологии QLED, предложенной компанией Samsung Electronics, а также в родственных технологиях NanoCell от LG Electronics, Triluminos от Sony или ULED от Hisense, квантовые точки используются в подсветке ЖК-экрана. В подсветке здесь работают не белые, а синие светодиоды гораздо большей, чем в обычных LED-телевизорах мощности, что позволяет достигать гораздо большей яркости. Особенно это качество QLED-телевизоров будет полезным для демонстрации видео с расширенным динамическим диапазоном HDR, предъявляющего особые требования к пиковым значениям яркости устройства отображения. Выбор именно синих светодиодов для подсветки QDEF обусловлено тем фактом, что для излучения синего света требуются квантовые точки наименьшего размера – около 2 нм (15 атомов) в диаметре. Для сравнения, размер красных квантовых точек составляет 7 нм (150 атомов), а зелёных – 3 нм (30 атомов). Из-за малых размеров синие квантовые точки неустойчивы и сложны и в производстве, и в эксплуатации.

Использование квантовых точек в подсветке позволяет достигать большего цветового охвата, вплотную приближающегося к стандарту DCI-P3. Другими словами, квантовые точки обеспечивают гораздо лучшую насыщенность и глубину цветов. Тем не менее, все же, подсветка остается подсветкой – потому по глубине чёрного цвета, а значит – по контрастности, экраны на квантовых точках уступают дисплеям OLED и microLED.

Краеугольный камень богатой цветовой палитры – источник правильного света

На одном моменте хотелось бы остановиться подробнее. Как отмечалось выше, в подсветке обычных LED-телевизоров используются белые светодиоды. Для получения корректной цветопередачи с широким цветовым охватом необходимо, чтобы источник обеспечивал свечение, пропустив которое через призму получался бы радужный спектр с компонентами одинаковой интенсивности. Проблема в том, что белый светодиод не может обеспечить такое излучение. В реальности у светодиодов весьма узкий цветовой спектр, а белый цвет чаще всего достигается применением люминофоров с добавкой желтой компоненты. Но даже эти меры не дают идеального результата – после призмы излучение таких диодов дает разные по интенсивности цветовые компоненты. Например, яркость красной составляющей оказывается меньше двух других. Чтобы скомпенсировать этот дисбаланс, приходится в настройках уменьшать яркость зелёного и синего компонентов, что приводит к общему снижению яркости картинки.

ФактЭкраны на квантовых точках унаследовали основной недостаток жидкокристаллических телевизоров – собственно, жидкие кристаллы, работающие «на просвет», которые не способны полностью блокировать проходящее через них излучение. Другими словами, в отличие от OLED и microLED телевизоров, абсолютного чёрного цвета они не дадут.

Использование квантовых точек в подсветке помогает во многом решить эту проблему. Упрощенно источник света с квантовыми точками представляет собой тонкую пленку с нанесенным покрытием из квантовых точек QDEF, генерирующих зеленый и красный цвет. Важно подчеркнуть – квантовые точки на этом покрытии тщательно перемешаны. Если такую пленку подсветить синими светодиодами, то в результате смешения трех основных цветовых составляющих мы получим источник белого света, по характеристикам близкий к идеальному. Качественный белый свет, получаемый от подсветки, позволяет достичь натуральной цветопередачи, поскольку для этого нет необходимости проводить никаких искусственных настроек, которые искажают спектр. Бонусом мы получаем высокую яркость картинки.

Технологии формирования изображения, использующие QD (Quantum Dot), стали следующей ступенью развития жидкокристаллических телевизоров. Квантовые точки позволили существенно улучшить качество подсветки и, как следствие, добиться ощутимо лучшей цветопередачи, более широкого цветового охвата и гораздо большей яркости картинки. При этом, недостатки ЖК-технологии, такие как недостаточная глубина чёрного цвета, квантовые точки не устраняют. С нетерпением ждем следующего года, когда компания Samsung обещала представить телевизоры, базирующиеся на новой технологии QD-OLED. Суть инновации пока не обнародована, но название определенно интригует.

Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector