Auto-park24.ru

Журнал "Автопарк"
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Что такое коэффициент полезного действия некоторого двигателя определяется

КПД электродвигателей

Подписка на рассылку

  • ВКонтакте
  • Facebook
  • ok
  • Twitter
  • YouTube
  • Instagram
  • Яндекс.Дзен
  • TikTok

Электрическими двигателями переменного или постоянного тока комплектуются приводы станков, насосов и вентиляторов, а также других механизмов, используемых на предприятиях тяжелой и легкой промышленности. Рентабельность производства напрямую зависит от себестоимости продукции, на которую в большой степени влияет эффективность эксплуатации оборудования, поэтому КПД и мощность электродвигателя являются основными параметрами, на основании которых выполняется подбор привода.

Определение КПД электродвигателя

Принцип работы любой электрической машины основан на преобразовании энергии тока, протекающего по обмоткам статора и создающего магнитное поле, во вращение ротора. Коэффициент полезного действия (КПД) электродвигателя определяется соотношением вырабатываемой им механической мощности на валу (p2) к полной мощности, потребляемой из сети (p1) и выражается в процентах:

Исходя из формулы, следует, что чем ближе этот параметр к единице, тем выше будет эффективность использования оборудования.

Факторы, влияющие на величину КПД

Коэффициент полезного действия никогда не может быть равным единице, так как существуют неизбежные потери, снижающие полезную мощность. Они делятся на три группы:

  • электрические;
  • магнитные;
  • механические.

Электрические потери зависят от степени нагрузки двигателя и являются следствием нагрева обмоток статора, вызванного работой тока по преодолению электрического сопротивления проводников, из которых они выполнены. Поэтому максимальный КПД электродвигателя достигается, когда нагрузка на двигатель составляет 75% от максимальной расчетной величины.

Магнитные потери происходят из-за неизбежного перемагничивания активного железа статора и ротора, а также возникновения в нем вихревых токов.

Третья группа обусловлена наличием трения в подшипниках, на которых вращается вал, а также сопротивлением, оказываемым воздухом крыльчатке вентилятора и самому ротору (якорю). Из-за наличия щеточно-коллекторного узла КПД электродвигателя постоянного тока несколько ниже коэффициента полезного действия машин с короткозамкнутым ротором. Это также относится к асинхронным электродвигателям с фазным ротором из-за дополнительного трения щеток об контактные кольца.

Способы повысить КПД двигателя

Следует помнить, что реальный коэффициент полезного действия может несколько отличатся от паспортных величин, указанных на шильдике двигателя. Чтобы выполнить расчет КПД электродвигателя в реальных условиях эксплуатации, необходимо учитывать неравномерность распределения питающего напряжения в фазах. В зависимости от величины асимметрии падение полезной мощности может достигать 5-7%.

Увеличение КПД электрической машины возможно только за счет снижения потерь и контроля качества силовой сети.

Механические потери можно уменьшить благодаря более качественным подшипникам, установки крыльчатки вентилятора, выполненной из современных материалов для уменьшения сопротивлению воздуху. Нагрев обмоток можно уменьшить благодаря использованию обмоточных проводов, выполненных из очищенной меди, имеющих меньшее сопротивление.

Снизить потери на перемагничивание активного железа и минимизировать влияние вихревых токов можно используя для набора сердечника необходимо использовать качественную электромагнитную сталь с надежной изоляцией. Кроме того, ведутся работы по разработке наилучшей геометрии зубцов статора, благодаря которым будет увеличена концентрация магнитного поля.

В реальности КПД асинхронного электродвигателя можно несколько увеличить за счет использования частотного преобразователя, позволяющего оптимизировать расход электроэнергии. Следует помнить, что эффективность эксплуатации двигателя с КПД 98% сильно упадет, если его использовать для приведения в движения механизма, имеющего более низкий коэффициент полезного действия.

Понятие КПД электродвигателя

Что такое КПД электродвигателя и его простейшая формула

Эффективность работы любого электропривода, в первую очередь, определяется коэффициентом полезного действия электродвигателя (КПД). Говоря простым языком, электрическая машина, потребляя электрическую энергию, преобразует её в механическую для работы различных устройств, станков, инструментов и проч. Соотношение величин полезной механической мощности на валу двигателя (Р 2 ) к мощности, потребляемой из сети (Р 1 ), и есть КПД (η). КПД является номинальной величиной и указывается в процентах: η = (Р 2 / Р 1 ) х 100%.

Совершенно очевидно: чем большая механическая мощность развивается на валу электродвигателя, тем больше полезной работы выполняется и выше КПД электрической машины .

Важность такого показателя как КПД обусловлена прежде всего тем, что около 70% вырабатываемой во всём мире электроэнергии потребляется электродвигателями, начиная от простейших бытовых электроприборов до вентиляционных установок и приводов оборудования крупнейших предприятий.

Величины КПД современных электродвигателей

У большинства современных электродвигателей КПД лежит в пределах 80-90%. Нередко встречаются маломощные модели с КПД до 75%.

Для машин, работающих в особых условиях, современные технологии позволяют увеличивать КПД до 96%. Это достигается не только за счёт их высокоточного производства, но и благодаря использованию дорогостоящих материалов для сердечников, перемагничивание которых не сопряжено с высокими энергетическими затратами.

Факторы, влияющие на изменение КПД электрической машины

Сразу следует сделать уточнение: КПД электропривода никогда не превышает 100%.

Это объясняется расходом потребляемой мощности на нагрев обмоток двигателя, перемагничивание статора (в асинхронных двигателях), вихревые токи, механическое сопротивление при движении ротора.

Нагрев обмоток двигателя – явление закономерное. Из курса физики известно:

  1. при прохождении электрического тока проводник нагревается;
  2. чем однороднее среда, тем легче происходит теплоотдача.

Если с первым пунктом всё ясно, то пункт 2 требует дополнительных объяснений. Традиционно внимание акцентируется на том, что пропитка обмоток статора делается для их защиты от влияния влаги или агрессивной среды. Но также следует учитывать, что после пропитки не остаётся свободных зазоров между обмоткой и сердечником статора, а это позволяет значительно увеличить теплоотдачу и снизить нагрев во время работы. Для этой же цели предусмотрена такая конструктивная особенность как монолитная отливка корпуса с охлаждающими рёбрами, что в значительной мере стабилизирует рабочий нагрев электропривода и препятствует снижению КПД.

Читать еще:  Что будет если отключить на работающем двигателе рхх

Бывает так, что во время работы электродвигателя наблюдается стремительный рост температуры. Зачастую это происходит из-за замыкания в обмотках статора .

Расчётная температура нагрева для двигателей класса “А” лежит в пределах 90℃, для класса “В” не превышает 110℃.

Любая электрическая машина – это воплощение взаимодействия электрических и магнитных полей. Поэтому в обязательном порядке следует учитывать такое явление как перемагничивание сердечника статора в результате изменения направления тока в обмотках. Чтобы не углубляться в теорию, достаточно вспомнить, что магнитная индукция (В) запаздывает от изменения напряжённости магнитного поля (Н). Эта зависимость отражается на графике под названием “петля гистерезиса”. Дешёвые материалы для сердечников почти всегда имеют широкий график, что указывает на большие энергозатраты на более длительное перемагничивание. И наоборот: чем уже петля гистерезиса, тем быстрее перемагничивается сердечник, и выше КПД двигателя.

Вихревые токи или токи Фуко (иногда можно встретить термин “паразитарные токи”) возникают в металлических элементах там, где есть переменное магнитное поле. Согласно закону Ленца они являются причиной наведения магнитных потоков, противодействующих рабочему магнитному потоку вокруг катушек. Понятно, что это влияет на крутящий момент и вызывает дополнительный нагрев двигателя, снижая КПД.

Для уменьшения потерь от вихревых токов надо увеличить электрическое сопротивление магнитопровода. Поэтому магнитопроводы и сердечники якорей набирают (шихтуют) из очень тонких (до 0,5 мм) пластин электротехнической стали, иногда с добавлением кремния, покрытых специальным лаком для их изоляции друг от друга. До сих пор существуют производственные участки, где для этой цели применяют тяжёлый ручной труд.

Механические факторы снижения КПД электродвигателя возникают в результате конструктивных изменений, трения в подшипниках, воздушного сопротивления

Нередко в процессе эксплуатации наблюдаются искривление вала и другие дефекты, вызывающие вибрации на опорных подшипниках ротора, и, соответственно, увеличение механического сопротивления.

Бывает так, что в случае заводского брака при изготовлении обмоток (несоблюдении расчётного количества витков одной из обмоток) нарушается плавность хода ротора, что тоже сказывается на эффективности работы электродвигателя. (Утверждение, что опытный электромеханик определяет эту неполадку на слух, является правдой.)

Также следует указать на недопустимость превышения номинальной нагрузки , как на один из факторов снижения КПД. В этом случае нагрев элементов электродвигателя приближается к критическому, и коэффициент полезного действия начинает снижаться.

Важно помнить: никогда производитель электродвигателей не указывает КПД при максимальной (предельной) нагрузке на валу электрической машины. В техническом паспорте прописывается величина КПД при номинальной нагрузке .

Может ли КПД быть более 100%?

Если говорить об электродвигателях, то следует однозначно заявить: нет!

Выше уже отмечалось, что в электрических машинах мы сталкиваемся с энергией магнитного поля, электрической энергией, тепловой и механической. Достаточно минимальных знаний из области физики и основ электротехники, чтобы раз и навсегда усвоить: преобразованию одного вида энергии в другой всегда сопутствуют процессы обратной направленности. Для примера можно вспомнить токи Фуко.

Существует ещё один важный аргумент в пользу утверждения о невозможности достижения КПД свыше 100%. На данном этапе развития человечество не обладает технологиями производства универсальных материалов, которые не нагревались бы в процессе работы или демонстрировали молниеносное перемагничивание, а также не подвергались бы механической усталости.

Многочисленные энтузиасты не оставляют попыток создать устройства, которые могли бы, выполнять механическую работу и одновременно вырабатывать электроэнергию, покрывая потери и собственные энергозатраты. При этом они не учитывают элементарный принцип обратимости электрических машин: либо генератор, либо двигатель.

КПД источника тока

Для работы электронных и электрических устройств необходимо подключать их к источникам питания. Источники питания могут быть как стационарные, так и автономные. В качестве питающих устройств используются гальванические элементы или преобразователи электроэнергии. И те, и другие являются источниками тока или напряжения.

Что такое источник тока

Это устройство или элемент, в общем понимании – двухполюсник, у которого проходящий через него ток не зависит от величины напряжения на полюсах. Основные характеристики источника тока (ИТ):

  • величина;
  • внутренняя проводимость (импеданс).

Внутреннее сопротивление такого двухполюсника очень мало. У идеального источника (ИИТ) оно приближается к нулю.

Генераторы движения электронов могут быть как независимыми, так и зависимыми.

Первые представляют собой идеальный двухполюсник, с двумя зажимами. У них ток, движущийся от одного зажима к другому, не зависит от формы и величины разности потенциалов на зажимах. Его изменения происходят по своим законам.

Второй тип ИТ – идеальный двухполюсник, с двумя зажимами, у которого движение зарядов от одного зажима к другому зависит от формы и величины напряжения на этих зажимах.

Существует управляемый зависимый ИТ. Он представляет собой идеальный двухполюсник, имеющий 2 зажима на входе и 2 зажима на выходе. Его особенность в том, что выходное значение тока на выходе зависит от его величины на входе. В таком ИТ происходит усиление мощности. Изменяя нулевое значение мощности на его входе, управляют величину мощности на выходных зажимах.

Информация. Управление производителем энергии может осуществляться напряжением (ИТУН) или током (ИТУТ). Одни находят применение для полевых триодов и электровакуумных ламп, вторые – для транзисторов биполярного типа.

Читать еще:  Ваз 2110 как установит двигатель от опель

В реальности генераторы тока имеют определённые ограничения по напряжению. Они далеки от идеальных ИТ и создают движение электричества в таком интервале напряжений, где их верхняя граница зависит от Uпит ИТ. Следовательно, у реального источника тока есть существенные пределы по нагрузке.

КПД электрической цепи

Выполняя продвижения зарядов через замкнутую цепь, двухполюсник проделывает некоторую работу. Когда генератор двигает заряды по внешнему контуру цепи, то это полезная работа. Когда ИТ продвигает электрические носители по всей цепи, говорят о полной работе.

Внимание! В этой цепочке перемещения зарядов особое значение имеет КПД (коэффициент полезного действия) источника. Он равен соотношению сопротивлений внешней цепи и полному сопротивлению цепи.

Обращая внимание на КПД электроцепи, нужно отметить, что он напрямую зависит от физических величин, определяющих скорость передачи или трансформации электрической энергии. Одной из таких величин является мощность Р (Вт).

Формулы мощности:

P = U * I = U2/R = I2 * R,

где:

  • U – напряжение на нагрузке, В;
  • I – ток, А;
  • R – сопротивление нагрузки, Ом.

Для разных цепей значения напряжения и сила тока различаются, следовательно, производимая ими работа будет разной. Когда предстоит оценить скорость передачи и преобразования электрического тока, то обращают внимание на Р. Она соответствует работе, проделанной за единицу времени:

где:

  • P – мощность, Вт;
  • A – работа, Дж;
  • ∆t – временной интервал, с.

Исходя из этой формулы, чтобы найти работу А, нужно умножить Р на время:

Чтобы найти КПД (η) электроцепи, нужно найти отношение полезно потраченной энергии к количеству всей энергии, поданной в цепь. Формула для расчёта:

где:

  • А – проделанная потребителем работа, Дж;
  • Q – количество энергии, взятой от источника, Дж.

Важно! КПД не может быть выше единицы. В основном он или равен ей, или меньше её. Этому причина – Закон сохранения энергии. Согласно ему, полезная совершённая работа никогда не превысит затраты энергии, необходимые для её выполнения.

Наглядно это можно объяснить на примере электрической цепи, в которую включен проводник, имеющий определённое сопротивление. При прохождении электричества через цепь часть энергии будет рассеиваться на проводнике, превращаясь в тепло и нагревая его. Потери мощности будут зависеть от величины этого сопротивления.

Что такое КПД ИТ

Когда речь идёт о кпд источника тока, также рассматривают полезную и полную работу, совершаемую двухполюсником. Перемещая электроны во внешней цепи, он выполняет полезную работу, двигая их по всей цепи, включая и свою внутреннюю, он производит полную работу.

В виде формул это выглядит так:

  • А полезн. = q*U = I*U*t = I2*R*t;
  • А полн. = q*ε = I* ε*t = I2*(R+r)*t.

где:

  • q – количество энергии, Дж;
  • U – напряжение, В;
  • ε – ЭДС, В;
  • I – ток, А;
  • R – сопротивление нагрузки, Ом;
  • r – импеданс источника, Ом;
  • t – время, за которое совершается работа, с.

С учётом этого можно выразить мощности двухполюсника:

  • Р полезн. = А полезн./t = I*U = I2*R;
  • P полн. = А полн./t = I*ε = I2*(R+r).

Формула кпд источников тока имеет вид:

η = Р полезн./P полн.= U/ε = R/ R+r.

Исследование мощности и КПД генератора тока

Максимальная полезная Pmax и максимальный КПДmax – несовместимые понятия. Нельзя добиться максимального КПД источника при максимальной мощности. Это обусловлено тем, что Р, отдаваемая двухполюсником, достигнет своего максимального значения только при условии согласования сопротивления нагрузки и внутреннего импеданса ИТ:

В этом случае КПД источника будет:

η = R/ R+r = r/ r+r = 1/2, что составляет всего 50%.

Для согласования двухполюсника и нагрузки применяют электронные схемы или согласующие блоки, для того чтобы добиться максимального отбора мощности от источника.

Мощность ИТ и внутреннее сопротивление

Можно собрать последовательную схему, в которую войдут гальванический двухполюсник и сопротивление нагрузки. Двухполюсник, имеющий внутренний импеданс r и ЭДС – Е, отдаёт на внешнюю нагрузку R ток I. Задача цепи – питание электричеством активной нагрузки, выполняющей полезную работу. В качестве нагрузки может быть применена лампочка или обогреватель.

Рассматривая эту цепь, можно определиться с зависимостью полезной мощности от величины сопротивления. Для начала находят R-эквивалентное всей цепи.

Оно выглядит так:

Движение электричества в цепи находится по формуле:

В таком случае Р ЭДС на выходе составит Рвых. = E*I = E²/(R + r).

Далее можно найти Р, рассеиваемую при нагреве генератора из-за внутреннего сопротивления:

Pr = I² * r = E² * r/(R + r)².

На следующем этапе определяются с мощностью, отбираемой нагрузкой:

PR = I² * R = E² * R/(R + r)².

Общая Р на выходе двухполюсника будет равна сумме:

Это значит, что потери энергии изначально происходят при рассеивании на импедансе (внутреннем сопротивлении) двухполюсника.

Далее, чтобы увидеть, при какой величине нагрузки достигается максимальная величина полезной мощности Рполезн., строят график.

При его рассмотрении видно, что самое большое значение мощности – в точке, где R и r сравнялись. Это точка согласования сопротивлений генератора и нагрузки.

Внимание! Когда R > r, то ток, возникающий в цепи, мал для передачи энергии нагрузке с достаточной скоростью. При R Видео

КПД насоса

КПД насосов позволяет повысить энергоэффективность производства и сэкономить деньги. В статье рассмотрено из чего складывается КПД насосов, что на него влияет и как его посчитать. Приводится информация по центробежным (в т.ч. с магнитной муфтой), винтовым, импеллерным и мембранным пневматическим насосам.

Коэффициент полезного действия это характеристика эффективности системы (устройства или машины) в отношении преобразования или передачи энергии, которая показывает совершенство его конструкции и экономичность эксплуатации. Так как насосы перекачивают жидкость посредством преобразования одного вида энергии в другой вид энергии, то они идеально подходят под данное правило, а значит, обладают собственным коэффициентом полезного действия.

Читать еще:  Газ 2705 двигатель 405 инжектор не заводится

Формула

Коэффициент полезного действия не имеет системы измерений и обозначается обычно в процентах. Общий КПД жидкостного насоса определяется произведением КПД его привода (электродвигатель, пневмодвигатель, гидродвигатель) и КПД насосной части. Ƞ = ƞпр * ƞнч

КПД привода насоса это не что иное, как отношение мощности, которую мы получаем на выходном валу двигателя к потребляемой двигателем мощности. Нужно сразу уточнить, что данное отношение не может быть больше единицы, так как потребляемая двигателем мощность всегда больше мощности на выходе. Это обуславливается тем, что в процессе преобразования энергии всегда присутствуют тепловые и механические потери. Ƞпр = P2 / P1

Расчет КПД

Потребляемая мощность зависит от вида и характеристик собственного источника. Если насос имеет электрический привод – электродвигатель, то потребляемая мощность электрическая, если пневмодвигатель, значит потребляемая мощность это мощность нагнетаемого воздуха. Электрическая потребляемая мощность это произведение напряжения на силу тока.

Мощность на выходном валу двигателя, это мощность механическая, полученная вследствие преобразования подведенного электрического или пневматического вида энергии. Данную мощность нужно рассматривать как отношение работы к единице времени.

Так как насосная часть состоит из деталей, узлов и механизмов, а во время её работы происходят различные процессы и присутствуют разные физические явления, то её коэффициент полезного действия необходимо рассматривать как произведение трёх составляющих: механический КПД, гидравлический КПД и объёмный КПД. Ƞнч = ƞм * ƞг * ƞо

Механический КПД

Механический КПД во многом зависит от качества изготовления насоса, от его конструктивных особенностей. Механические потери связанные с работой трущихся частей (в подшипниках, в механическом торцевом уплотнении, в сальниковом уплотнении, в проточной части) снижают данный КПД.

Гидравлический КПД

Гидравлический КПД определяется течением жидкости внутри проточной части насоса, а если точнее гидравлическими потерями, которые возникают во время работы насоса. Например, если шероховатость поверхности стенок насоса увеличена, то жидкости станет сложнее преодолеть сопротивление трения, а значит, скорость течения жидкости будет ниже. Многое зависит и от вида течения жидкости. Возникающий в проточной части насоса турбулентный (вихревой) поток жидкости увеличивает гидравлические потери.

Отношение количества жидкости поступившей в насос через всасывающий патрубок, к количеству жидкости вышедшей из него через напорный патрубок является объёмным КПД насосной части. Объёмный КПД ещё называют КПД подачи, так как его можно рассмотреть как отношение производительностей, действительной к теоретической.

Чтобы потребитель имел возможность определить КПД насоса в конкретной рабочей точке, многие производители насосного оборудования прилагают к диаграммам рабочих характеристик насоса диаграммы с графиками характеристик КПД.

График эффективности насоса на примере Argal TMR 10.15

КПД промышленных насосов

В данной статье косвенно рассмотрим коэффициент полезного действия насосов различных видов: центробежных, винтовых, импеллерных, мембаранно-пневматических.

Центробежный насос

КПД самых распространенных центробежных насосов во многом зависит от режима их работы и конструктивных особенностей. Максимальным КПД обладают центробежные насосы с приводом большой мощности и высокими рабочими характеристиками. Их эффективность может достигать 92-95 %. Значение мощности двигателя таких центробежных насосов обычно начинается от 10кВт, а насосная часть имеет высокое качество изготовления.

Насос с магнитной муфтой

Насосы с магнитной муфтой имеют схожий КПД. Для данного типа насоса очень важно, чтобы герметичная задняя крышка насоса, располагающаяся между ведущим и ведомым магнитом, была изготовлено из токонепроводящих материалов. Иначе, будут возникать вихревые токи, которые вызывают потерю мощности и снижают общий КПД насоса.

Винтовой насос

Винтовые насосы имеют высокие механические потери. Они в первую очереди связаны с трениями, которые возникают в подшипниковом узле, а также между ротором и статором, но благодаря высоким рабочим характеристикам (расход, напор) данный тип насосов может иметь КПД колеблющийся от 40 до 80 %.

Импеллерный насос

Мембранно-пневматический насос

Мембранно-пневматические насосы не имеют двигателя и работают от поданного на него сжатого воздуха. Так как требуется дополнительное превращение электрической энергии в энергию сжатого воздуха, то КПД мембранно-пневматического насоса во многом зависит от КПД воздушного компрессора. Обычно КПД поршневых компрессоров составляет 80-92%, лопастных 90-96%. Кроме этого, в самом насосе, в той или иной мере, присутствуют все виды потерь. Гидравлические потери возникают, когда жидкость через небольшое всасывающее отверстие поступает в рабочую камеру насоса и выходит через отверстие подачи под определенным углом. Здесь поток жидкости сталкивается с внезапным расширением сечения при последующем резком повороте. Механические потери связаны с тем, что основная втулка насоса является парой трения скольжения. Кроме этого имеет место трение жидкости с деталями насоса: клапана, коллектора, мембрана, стенки боковой крышки. Объемные потери определяются отношением количества жидкости поступившего в насос и количеством жидкости вышедшего из него за два такта (всасывание – нагнетание).

Вывод

Подводя итог данной статьи можно сказать, что эффективность перекачивающих насосов во многом зависит от мощности двигателя насоса, а также от качества изготовления деталей и узлов самого насоса. Среди рассмотренных типов насосов наибольшим КПД обладают высокопроизводительные и высоконапорные центробежные насосы. Наименьшая эффективность у мембранно-пневматических насосов.

Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector