Auto-park24.ru

Журнал "Автопарк"
1 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Что такое двигатель постоянного тока с параллельным возбуждением

Характеристики двигателей с последовательным возбуждением

Рис. 3.8

Двигатели постоянного тока с последовательным возбуждением имеют меньшее распространение по сравнению с другими двигателями. Они используются в установках с нагрузкой, не допускающей режима холостого хода. Позже будет показано, что работа двигателя последовательного возбуждения в режиме холостого хода может привести к разрушению двигателя. Схема подключения двигателя показана на рис. 3.8.

Ток якоря двигателя одновременно является и током возбужде­ния, так как обмотка возбуждения ОВ включена последовательно
с якорем. Сопротивление обмотки возбуждения достаточно мало, так как при больших токах якоря намагничивающая сила, достаточная для создания номинального магнитного потока и номинальной индукции в зазоре, достигается малым количеством витков провода большого сечения. Катушки возбуждения располагаются на главных полюсах машины. Последовательно с якорем может быть включен дополнительный реостат , который может использоваться для ограничения пускового тока двигателя.

Естественная скоростная характеристика двигателей последовательного возбуждения выражается зависимостью при
U = Uн = const. При отсутствии дополнительного реостата
в цепи якоря двигателя сопротивление цепи определяется суммой сопротивления якоря и обмотки возбуждения , которые достаточно малы. Скоростная характеристика описывается таким же уравнением, каким описывается скоростная характеристика двигателя с независимым возбуждением

.

Отличие заключается в том, что магнитный поток машины Ф создается током якоря I в соответствии с кривой намагничивания магнитной цепи машины. Для упрощения анализа предположим, что магнитный поток машины пропорционален току обмотки возбуждения, то есть току якоря . Тогда , где k – коэффициент пропорциональности.

Заменив магнитный поток в уравнении скоростной характеристики, получим уравнение:

.

График скоростной характеристики представлен на рис. 3.9.

Из полученной характеристики следует, что в режиме холостого хода, т. е. при токах якоря, близких нулю, частота вращения якоря в несколько раз превышает номинальное значение, а при стремлении тока якоря к нулю частота вращения стремится к бесконечности (ток якоря в первом слагаемом полученного выражения входит в знаменатель). Если считать формулу справедливой для весьма больших токов якоря, то можно сделать предположение, что . Полученное уравнение позволяет получить значение силы тока I, при котором частота вращения якоря будет равняться нулю. У реальных двигателей последовательного возбуждения при определенных значениях тока магнитопровод машины входит в насыщение, и магнитный поток машины изменяется незначительно при значительных изменениях тока.

Характеристика показывает, что изменение тока якоря двигателя в области малых значений приводит к значительным изменениям частоты вращения.

Характеристика механического момента

Рассмотрим характеристику момента двигателя постоянного тока с последовательным возбуждением. , при U = U н = const.

Как уже показано, . Если магнитная цепь машины не насыщена, магнитный поток пропорционален току якоря ,
а электромагнитный момент М будет пропорционален квадрату тока якоря .

Полученная формула с математической точки зрения представляет собой параболу (кривая 1 на рис. 3.10). Реальная характеристика проходит ниже теоретической (кривая 2 на рис. 3.10), так как из-за насыщения магнитной цепи машины магнитный поток не пропорционален току обмотки возбуждения или току якоря в рассматриваемом случае.

Характеристика момента двигателя постоянного тока с последовательным возбуждением представлена на рисунке 3.10.

КПД двигателя последовательного возбуждения

Формула, определяющая зависимость КПД двигателя от тока якоря, для всех двигателей постоянного тока одинакова и не зависит от способа возбуждения. У двигателей последовательного возбуждения при изменении тока якоря механические потери и потери в стали машины практически не зависят от тока Iя . Потери же в обмотке возбуждения и в цепи якоря пропорциональны квадрату тока якоря. КПД достигает максимального значения (рис. 3.11) при таких значениях тока, когда сумма потерь в стали и механических потерь равна сумме потерь в обмотке возбуждения и цепи якоря.

При номинальном токе КПД двигателя несколько меньше максимального значения.

Механическая характеристика двигателя последовательного возбуждения

Естественная механическая характеристика двигателя последовательного возбуждения, т. е. зависимость частоты вращения от механического момента на валу двигателя , рассматривается при постоянном напряжении питания, равном номинальному напряжению U = Uн = const. Если магнитная цепь машины не насыщена, как уже утверждалось, магнитный поток пропорционален току якоря, т. е. , и механический момент пропорционален квадрату тока . Ток якоря в этом случае равен

,

а частота вращения

.

Или .

Подставив вместо тока его выражение через механический момент, получаем

.

Обозначим и ,

получаем .

Полученное уравнение представляет собой гиперболу, пересекающую ось моментов в точке .

Так как или .

Пусковой момент таких двигателей в десятки раз больше номинального момента двигателя.

Рис. 3.12

Общий вид механической характеристики двигателя постоянного тока последовательного возбуждения представлен на рис. 3.12.

В режиме холостого хода частота вращения стремится к бесконечности. Это следует из аналитического выражения механической характеристики при М → 0.

У реальных двигателей последовательного возбуждения час­тота вращения якоря в режиме холостого хода может в несколько раз превышать номинальную частоту вращения. Такое превышение опасно и может привести к разрушению машины. По этой причине двигатели последовательного возбуждения эксплуатируются в ус­ловиях постоянной механической нагрузки, не допускающей режима холостого хода. Такой тип механической характеристики относят к мягким механическим характеристикам, т. е. к таким механическим характеристикам, которые предполагают значительное изменение скорости вращения при изменении момента на валу двигателя.

3.4.3. Характеристики двигателей постоянного тока
смешанного возбуждения

Схема подключения двигателя смешанного возбуждения представлена на рис. 3.13.

Последовательная обмотка возбуждения ОВ2 может быть включенной так, что ее магнитный поток может совпадать по направлению с магнитным потоком параллельной обмотки ОВ1 или не совпадать. Если намагничивающие силы обмоток совпадают по направлению, то суммарный магнитный поток машины будет равен сумме магнитных потоков отдельных обмоток. Частота вращения якоря n может быть получена из выражения

.

В полученном уравнении и – магнитные потоки параллельной и последовательной обмоток возбуждения.

В зависимости от соотношения магнитных потоков и скоростная характеристика представляется кривой, которая занимает промежуточное положение между характеристикой того же двигателя при параллельной схеме возбуждения и характеристикой двигателя с последовательным возбуждением (рис. 3.14). Характеристика моментов займет также промежуточное положение между характеристиками двигателя последовательного и параллельного возбуждения.

В общем случае, с увеличением момента частота вращения якоря уменьшается. При определенном количестве витков последовательной обмотки можно получить очень жесткую механическую характеристику, когда частота вращения якоря практически не будет изменяться при изменении механического момента на валу.

Если магнитные потоки обмоток не совпадают по направлению (при встречном включении обмоток), то зависимость частоты вращения якоря двигателя от потоков опишется уравнением

.

При увеличении нагрузки ток якоря будет увеличиваться. При увеличении тока магнитный поток будет расти, а частота вращения n уменьшаться. Таким образом, механическая характеристика двигателей смешанного возбуждения с согласным включением обмоток является очень мягкой (см. рис. 3.14).

Читать еще:  Шевроле авео двигатель не заводится с первого раза

Двигатели постоянного тока с последовательным, параллельным, со смешанным возбуждением.

Наличие обмотки возбуждения (ОВ) у двигателя постоянного тока позволяет осуществлять различные схемы подключения. В зависимости от того как включена ОВ, различают двигатели с независимым возбуждением, с самовозбуждением, которое делится на последовательное, параллельное и смешанное.

ДПТ с параллельным возбуждением

По сути, схема подключения ОВ с параллельным возбуждением(рис.2) аналогична схеме с независимым возбуждением. Свойства двигателя при подключении по обеим схемам одинаковы. Плюсом данного вида подключения является то, что отпадает необходимость в отдельном источнике питания.

ДПТ с последовательным возбуждением

При подключении по данной схеме ОВ соединена последовательно цепи якоря (рис.3), при этом ток якоря равен току возбуждения. В связи с этим ОВ изготавливают из провода толстого сечения. Данную схему используют, если требуется обеспечить большой пусковой момент. При уменьшении нагрузки на валу меньше 25% от номинальной, частота вращения резко увеличивается и достигает опасных для двигателя значений. Характеристика ДПТ с последовательным возбуждением “мягкая”.

ДПТ со смешанным возбуждением

ДПТ со смешанным возбуждением (рис.4) имеет две ОВ, одна из которых соединена последовательна, а другая параллельно якорной цепи. При согласном соединении обмоток с увеличением нагрузки на валу растёт магнитный поток, что приводит к уменьшению частоты вращения. При встречном соединении суммарный магнитный поток с увеличением нагрузки уменьшается, что приводит к резкому увеличению частоты вращения. Это приводит двигатель к нестабильному режиму работы, поэтому последовательную обмотку выполняют из малого числа витков, чтобы при увеличении нагрузки магнитный поток снижался незначительно, тем самым стабилизируя работу двигателя.

Характеристики двигателей постоянного тока с различным типом возбуждения.

Двигатели независимого и параллельного возбуждения.
Схема включения двигателя независимого возбуждения показана на рисунке

В цепь якоря может быть включено добавочное сопротивление Rд, например пусковой реостат. Для регулирования тока возбуждения в цепь обмотки возбуждения может быть включен регулировочный реостат Rр. У двигателя параллельного возбуждения обмотки якоря и возбуждения подключены к одному источнику питания, и напряжение на них одинаковое. Следовательно, двигатель параллельного возбуждения можно рассматривать как двигатель независимого возбуждения при Uя= Uв.

Какие существуют схемы подключения электродвигателей постоянного тока

В домашнем хозяйстве редко встретишь мотор, работающий на постоянном токе. Зато они всегда устанавливаются в детских игрушках, которые летают, ездят, шагают и т.д. Всегда они стоят в автомобилях: в различных приводах и вентиляторах. В электротранспорте чаще всего используют тоже их.

Другими словами, применяются двигатели постоянного тока там, где требуется достаточно широкий диапазон регулирования скорости и точность ее поддержания.

Электродвигатели постоянного тока

Электрическая мощность в моторе преобразуется в механическую, заставляющую его вращаться, а часть этой мощности расходуется на нагревание проводника. Конструкция двигателя электрического постоянного тока включает якорь и индуктор, которые разделяют воздушные зазоры. Индуктор, состоящий из добавочных и главных полюсов, и станины, предназначен для создания магнитного поля. Якорь, собранный из отдельных листов, обмотка рабочая и коллектор, благодаря которому постоянный ток подводится к рабочей обмотке, образуют магнитную систему. Коллектор – это насаженный на вал двигателя цилиндр, собранный из изолированных друг от друга медных пластин. К его выступам припаиваются концы обмотки якоря. Ток с коллектора снимается при помощи щеток, закрепленных в определенном положении в щеткодержателях, благодаря чему обеспечивается нужный прижим на поверхность коллектора. Щетки с корпусом двигателя соединяются с помощью траверса.

Щетки, в процессе работы, скользят по поверхности вращающегося коллектора, переходя от одной его пластины к другой. При этом, в параллельных секциях обмотки якоря происходит изменение тока (когда щетка накоротко замыкает виток). Процесс этот называют коммутацией.

Под влиянием своего магнитного поля, в замкнутой секции обмотки возникает ЭДС самоиндукции, вызывающая появление дополнительного тока, который на поверхности щеток распределяет неравномерно ток, что приводит к искрению.

Частота вращения – одна из важнейших его характеристик. Ее регулировать можно тремя способами: изменяя поток возбуждения, изменяя величину подводимого напряжения к двигателю, изменяя сопротивление в якорной цепи.

Два первых способа встречаются намного чаще третьего, ввиду его неэкономичности. Ток возбуждения регулируется при помощи любого устройства, у которого возможно изменять активное сопротивление (например, реостата). Регулирование при помощи изменения напряжения требует наличие источника постоянного тока: преобразователя или генератора. Такое регулирование применяют во всех промышленных электроприводах.

Торможение электрического двигателя постоянного тока

Для торможения электроприводов с ДПТ также есть три варианта: торможение противовключением, динамическое и рекуперативное. Первое происходит за счет изменения полярности тока в обмотке якоря и напряжения. Второе происходит благодаря замыканию накоротко (через резистор) обмотки якоря. Электрический двигатель при этом работает как генератор, преобразуя в электрическую, запасенную им механическую энергию, которая выделяется в виде тепла. Это торможение сопровождается мгновенной остановкой двигателя.

Последнее происходит, если электрический мотор, включенный в сеть, вращается со скоростью, которая выше скорости холостого хода. ЭДС обмотки двигателя в этом случае, превышает значение напряжении я в сети, что приводит к изменению на противоположное направление тока в обмотке мотора, т.е. двигатель отдает в сеть энергию, переходя в режим генератора. Одновременно возникает тормозной момент на валу.

Преимущества двигателей постоянного тока

Сравнивая их с асинхронными моторами, нужно отметить отличные пусковые качества, высокую (до 3000 об/мин) частоту вращения, а также хорошую регулировку. Из недостатков отметить можно? Сложность конструкции, низкую надежность, высокую стоимость и затраты на ремонт и обслуживание.

Принцип действия ДПТ

ДПТ, как и любой современный мотор, работает на основе «Правила левой руки», с которым все знакомы еще со школы и закона Фарадея. При подключении тока к нижней обмотке якоря в одном направлении, а к обмотке верхней – в другом, якорь начинает вращаться, а уложенные в его пазах проводники – выталкиваться магнитным полем статора или обмоток корпуса двигателя постоянного тока. Вправо выталкивается нижняя часть, а влево – верхняя. В результате якорь вращается до тех пор, пока его части не поменяются местами. Чтобы добиться непрерывного вращения, необходимо полярность обмотки якоря регулярно менять местами. Как раз этим и занимается коллектор, коммутирующий при вращении обмотки якоря. На коллектор от источника подается напряжение через пару прижимных щеток из графита.

Принципиальные схемы ДПТ

Двигатель переменного тока подключается просто, в отличие от ДПТ. Обычно у таких двигателей высокой и средней мощности имеются отдельные выводы в клеммной коробке (от обмотки и якоря). На якорь обычно подается полное напряжение, а на обмотку — ток, регулировать который можно реостатом или напряжением переменным. От величины тока, имеющегося на обмотке возбуждения, прямопропорционально зависят обороты двигателя переменного тока.

Читать еще:  Форд фокус кузов и двигатель что это

В зависимости от того, какая используется схема подключения электродвигателя постоянного тока, двигатель электрический может быть постоянного тока, разделяют на самовозбуждающиеся и с независимым возбуждением (от отдельного источника).

Схема для подключения двигателя с возбуждением параллельным

Она аналогична предыдущей, но не имеет отдельного источника питания.

Когда требуется большой пусковой ток, применяют двигатели с возбуждением последовательным: в городском электротранспорте (троллейбусах, трамваях, электровозах).

Токи обоих обмоток в этом случае одинаковы. Недостаток – требуется постоянная нагрузка на вал, поскольку при ее уменьшении на 25%, резко увеличивается частота вращения и происходит отказ двигателя.

Есть еще моторы, которые крайне редко используются — со смешанным возбуждением. Их схема представлена ниже.

Электродвигатель постоянного тока с параллельным возбуждением

Под понятием «возбуждение» понимают создание в электрических машинах магнитного поля, которое необходимо, чтобы заработал двигатель. Схем возбуждения несколько:

  • С независимым возбуждением (питание обмотки происходит от постороннего источника).
  • Электродвигатель постоянного тока с параллельным возбуждением (источник питания обмотки возбуждения и якоря включены параллельно) – шунтовые.
  • С последовательным возбуждением (обе обмотки включены последовательно) – сериесные.
  • Со смешанным возбуждением – компаундные.

Бесщеточные моторы

Но, двигатель со щетками, которые быстро изнашиваются и приводят к искрению, не может использоваться там, где необходима высокая надежность, поэтому среди электротранспорта (электровелосипедов, скутеров, мотоциклов и электромобилей) наибольшее применение нашли бесщеточные электродвигатели. Они отличаются высоким КПД, невысокой стоимостью, хорошей удельной емкостью, длительным сроком службы, малыми размерами, бесшумной работой.

Работа этого двигателя основывается на взаимодействии магнитных полей электромагнита и постоянного. Когда за окном 21 век, а вокруг полно мощных и недорогих проводников, логично заменить механический инвертор цифровым, добавить датчик положения ротора, решающий в какой момент на конкретную катушку необходимо подать напряжение, и получить бесщеточный электродвигатель постоянного тока. В качестве датчика чаще используется датчик Холла.

Поскольку в этом двигателе удалены щетки, он не нуждается в регулярном обслуживании. Управляется двигатель постоянного тока при помощи блока управления, позволяющего изменять частоту вращения вала мотора, стабилизировать на определенном уровне обороты (независимо от имеющейся на валу нагрузки).

Состоит блок управления из нескольких узлов:

  • Системы импульсно-фазового управления СИФУ.
  • Регулятора
  • Защиты.

Двигатель постоянного тока с параллельным возбуждением

    Дмитрий Григорович 4 лет назад Просмотров:

1 Двигатель постоянного тока с параллельным возбуждением Цель работы: Ознакомиться с устройством, принципом действия двигателя постоянного тока с параллельным возбуждением. Снять его основные характеристики. Требуемое оборудование: Модульный учебный комплекс МУК-ЭП1 Краткое теоретическое введение Двигатель постоянного тока (ДПТ) представляет собой преобразователь электрической энергии постоянного тока в механическую. Конструкция двигателя показана на рис.1. Она имеет три основные части: статор (индуктор), якорь и коллектор. Рис. 1. Конструкция двигателя постоянного тока 1 индуктор, 2 якорь, 3 коллектор Индуктор (1) — неподвижная часть машины, представляет собой полый литой стальной цилиндр из электротехнической стали, к которому с внутренней стороны болтами крепятся сердечники (полюса). На сердечниках располагается обмотка возбуждения (ОВ), подключаемая к щеткам. Индуктор предназначен для создания основного магнитного поля. Якорь (2) (вращающаяся внутренняя часть машины) представляет собой цилиндр, собранный из стальных листов. В пазах якоря уложена якорная обмотка. На одном валу с якорем закреплен коллектор (3), который представляет собой полый цилиндр, составленный из отдельных медных пластин (ламелей), изолированных друг от друга и от вала якоря и электрически связанных с отдельными частями обмотки якоря. Назначение коллектора — механическое выпрямление переменных синусоидальных ЭДС в постоянное по величине и направлению напряжение, снимаемое во внешнюю цепь с помощью щеток, примыкающих к коллектору. 1

2 Свойства двигателей постоянного тока, в основном, определяются способом питания обмотки возбуждения. В связи с этим двигатели постоянного тока классифицируют на 2 типа: с независимым возбуждением (рис.2а) и самовозбуждением (рис.2 б, в, г) а) б) в) г) Рис.2 ОВ — обмотка возбуждения, Я якорь. Обмотка возбуждения в ДПТ с независимым возбуждением питается от отдельного источника постоянного тока (от полупроводникового выпрямителя, аккумулятора или возбудителя — генератора постоянного тока). В самовозбуждающихся ДПТ цепи якоря и индуктора электрически связаны, т.е. обмотка возбуждения питается от ЭДС якоря машины. В зависимости от электрической схемы соединения обмоток якоря и индуктора машины с самовозбуждением делятся еще на три типа: параллельного, последовательного и смешанного возбуждения (рис.2 б, в, г). ДПТ как все электрические машины обратимы, т.е. они без существенных конструктивных изменений могут работать как в режиме генератора, так и в режиме двигателя. Режим работы ДПТ с параллельным возбуждением. Рассмотрим работу ДПТ с параллельным возбуждением (рис.2б). При включении двигателя в сеть постоянного тока в обеих обмотках возникают токи. При этом в обмотке возбуждения ток возбуждения I В создает магнитное поле индуктора. Взаимодействие тока якоря с магнитным полем индуктора создает электромагнитный момент М Э. М Э = сфi Я, (1) где с постоянный коэффициент; I Я ток якоря; Ф магнитный поток. Электромагнитный момент М Э отличается от момента М В на валу двигателя на величину момента потерь холостого хода М ХХ, которым ввиду малости можно пренебречь и считать, что Мэ=Мв=М. В проводниках вращающего якоря индуктируется протво-эдс E: Е = knф, (2) где n скорость вращения якоря; k — постоянный коэффициент. Уравнение электрического равновесия двигателя имеет вид: 2

3 где напряжение питания сети. = E + I Я R Я =knф+ I Я R Я, (3) Пуск двигателя в ход При пуске двигателя якорь в первый момент неподвижен (n = 0) и учитывая (2) ЭДС якоря Е =кnф=0. При этом согласно (3) пусковой ток якоря I ЯП недопустимо велик, т.к. R Я мало и определяется как: I ЯП (4) R Я Поэтому для ограничения пускового тока последовательно в цепь якоря вводится сопротивление пускового реостата R П, который полностью введен перед запуском двигателя и выводится после разгона двигателя по мере возрастания противо- ЭДС (Е). I ЯП (5) R R Я П Такой запуск двигателя предохраняет его якорную обмотку от больших пусковых токов I ЯП и позволяет получить в этом режиме максимальный магнитный поток. Если пуск двигателя осуществляется на холостом ходу, то нет необходимости развивать максимальный вращающий момент М В на валу. По этому пуск двигателя может быть осуществлен путем плавного увеличения напряжения питания сети. Реверсирование двигателя Изменение направления вращения двигателя может быть достигнуто изменением тока или в обмотке якоря, или в обмотке возбуждения, т.к. при этом меняется знак вращающего момента. Одновременное изменение направления тока в обоих обмотках направление вращения двигателя не изменяет. Переключение концов обмоток должно производиться только после полной остановки двигателя. Регулирование скорости вращения Из выражения (3) можно определить скорость вращения двигателя: n I Я RЯ (6) kф Из формулы (6) видно, что регулировать скорость вращения двигателя постоянного тока можно изменением напряжения сети, магнитного потока возбуждения и сопротивления цепи якоря. Наиболее распространенный способ регулирования скорости вращения двигателя — изменение магнитного потока посредством регулировочного реостата в цепи возбуждения. Уменьшение тока возбуждения ослабляет магнитный поток и увеличивает скорость вращения электродвигателя. Этот способ экономичен, т.к. ток возбуждения (в двигателях параллельного возбуждения) составляет 3-5% от I Н якоря, и тепловые потери в регулировочном реостате весьма малы. Основные характеристики двигателя постоянного тока с параллельным возбуждением Работа двигателя постоянного тока с параллельным возбуждением оценивается следующими основными характеристиками: 3

Читать еще:  Газель 406 двигатель карбюратор не заводится после ремонта

4 Характеристика холостого хода: (рис.3) n 0 = ƒ (I В ), при = Н = const и I Я = I 0, где n 0 скорость вращения на холостом ходу (без нагрузки), I 0 ток холостого хода составляющий 5 10% I Н ; Н номинальное значение напряжения питающей сети. Учитывая, что на холостом ходу произведение I Я R Я мало по сравнению с, то из (6) скорость двигателя определяется обратной зависимостью к магнитному потоку Ф: n (7) kф При увеличении тока в обмотке возбуждения магнитный поток изменяется по кривой намагничивания Ф = ƒ(i В ), поэтому зависимость между скоростью вращения двигателя n и током возбуждения I В имеет почти гиперболический характер. При малых значениях тока возбуждения обороты меняются почти обратно пропорционально. При больших токах возбуждения начинает сказываться магнитное насыщение стали полюсов, и кривая становится более пологой и идет почти параллельно оси абсцисс. Резкое изменение уменьшение тока возбуждения, а также случайный обрыв цепи возбуждения согласно (9) могут вызвать «разнос» двигателя (при I В 0, а следовательно Ф также стремится к 0, n ). Рис. 3 Рис. 4 Рис. 5 Механическая характеристика. Это зависимость скорости вращения ротора от момента М В на валу двигателя при неизменном напряжении питания сети и токе возбуждения: n=ƒ(м В ), при = Н = const, I В = const. Для двигателя параллельного возбуждения момент М В пропорционален первой степени тока якоря IЯ. Поэтому механическая характеристика может быть представлена зависимостью n(iя), которая называется электромеханической или скоростной (рис.4). К валу двигателя приложена нагрузка (тормозной момент). Согласно (6) при постоянных значениях тока возбуждения уменьшение скорости вращения n является следствием падения напряжения в цепи якоря I Я R Я и реакции якоря. При увеличении нагрузки скорость вращения уменьшается на незначительную величину, порядка 3-8%. Такая скоростная характеристика называется жесткой. Регулировочная характеристика (рис.5). Это зависимость тока возбуждения I В от тока якоря I Я при постоянном напряжении сети и постоянной скорости вращения n: I В = ƒ(i Я ) при = Н, n = const. 4

5 Из анализа внешней характеристики видно, что скорость вращения падает с ростом нагрузки. Регулировочная характеристика дает возможность судить о том, каким образом, в каких пределах необходимо регулировать ток в обмотке возбуждения, чтобы поддерживать постоянную скорость вращения. Методика эксперимента Исследование режимов работы ДПТ с параллельным возбуждением проводятся на модульном учебном комплексе МУК-ЭП1, который состоит из: блока питания двигателя постоянного тока БПП1; блока питания асинхронного двигателя БПА1 электромашинного агрегата МА1-АП. В качестве исследуемого двигателя постоянного тока использован ПЛ073У3 (220В, 180 Вт, 1500 об/мин). Автоматическая коммутация обмоток двигателя и подключение измерительных приборов осуществляется в блоке БПП1. В качестве нагрузки использован асинхронный двигатель (АД) в режиме динамического торможения. Автоматическая коммутация обмоток АД и подключение измерительных приборов к нему осуществляется в блоке БПА1. Схема работы комплекса после коммутаций блоков представлена на рис. 6. Рис. 6 5

6 При работе с комплексом МУК-ЭП1 необходимо соблюдать следующую последовательность в работе: 1. Включите БПП1 в сеть. Установите нажатием кнопок «Двигатель» и «Палаллельное возбуждение» соответствующий режим коммутации обмоток двигателя постоянного тока и измерительных приборов. 3. Для запуска ДПТ необходимо в блоке БПП1 нажать кнопку «Пуск/Стоп». Разгон двигателя осуществляется при плавном увеличении напряжения питающей сети. Регулятором напряжения обмотки ротора устанавливается требуемое значение. Остановка ДПТ осуществляется повторным нажатием кнопки «Пуск/Стоп». 4. Включите БПА1 в сеть. Установите нажатием кнопки «Торможение» соответствующий режим коммутации для динамического торможения асинхронного двигателя и измерительных приборов. Включение питания обмоток АД осуществляется нажатием кнопки «Пуск/Стоп». Отключение режима торможения осуществляется повторным нажатием кнопки «Пуск/Стоп». 5. Измерение частоты вращения производится при помощи тахометра, который расположен в электромашинном агрегате МА1-АП. Внимание: Запуск ДПТ должен осуществляться при отсутствии нагрузки на валу. Рекомендуемое задание 1. Снять характеристику холостого хода: n 0 =ƒ(i В ), при = Н = const и I Я = I 0,. Характеристика снимается следующим образом: Установите номинальное значение напряжения питающей сети 220В. Постепенно меняя значения регулировочного реостата R посл в цепи возбуждения снимите показания (5-6 точек) I В. Обороты вала двигателя измерить тахометром. По данным опыта построить характеристику холостого хода n 0 =ƒ(i В ). 2. Снять скоростную характеристику двигателя: n(iя) при = Н = const, I В = const. Скоростная характеристика снимается следующим образом: Установите номинальное значение напряжения питающей сети 220В. С помощью регулировочного реостата R посл устанавливается постоянный ток возбуждения в пределах I В = мА. Затем постепенно увеличивают нагрузку на валу двигателя до номинального значения. При этом снимаются показания амперметра, измеряющего ток якоря, и измеряются обороты вала двигателя. Ток в обмотке возбуждения поддерживается постоянным в течение всего опыта нагрузки. Полученные данные (5-6 точек). По данным опыта построить скоростную характеристику. 3. Снять регулировочную характеристику: I В =ƒ(i Я ), при = Н, n = const. Характеристика снимается следующим образом: Установите номинальное значение напряжения питающей сети 220В. При холостом ходе установите номинальную скорость вращения (1500 об/мин). Затем постепенно увеличивают нагрузку на валу двигателя и поддерживают установленную скорость вращения постоянной с помощью реостата R посл, в цепи возбуждения. Полученные данные (5-6 точек). По данным опыта построить регулировочную характеристику Список использованных источников 1. Электрические машины. Методические указания к лабораторным работам для студентов строительных специальностей всех форм обучения / Сост.: Л. Я. Егоров, Г. И. Захватов, В. С. Камалетдинов, Ю. В. Никитин. Казань: КГАСУ, с 6

Генератор постоянного тока с независимым возбуждением. Краткое теоретическое введение

050204. Генератор постоянного тока с независимым возбуждением Цель работы: ознакомиться с основными свойствами генератора постоянного тока с независимым возбуждением, его характеристиками и эксплуатационными

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector