Auto-park24.ru

Журнал "Автопарк"
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Что нужно для того чтобы сделать двигатель стирлинга

Мощный двигатель Стирлинга

Новые двигатели современного автомобилестроения почти достигли своего пика, кажется уже нечего усовершенствовать. Добавление в систему ДВС турбонаддува повышает мощность, но уменьшает ресурс двигателя, оно и понятно, объем двигателя небольшой, а из него выжимают мощь, как у мотора большего объема, но без турбины. Инженеры автоиндустрии начинают перебирать все возможные направления в развитие двигателестроения. Некоторые разрабатывают супертопливо, некоторые ищут нестандартные конструкции силового агрегата, некоторые планируют создать современный двигатель на базе двигателя Роберта Стирлинга, который был создан в 19 веке. Сейчас продаются сувениры ДВС, купить двигатель Стирлинга можно и на алиэкспресс.

Схема работы двигателя Стирлинга

Двигатель Стирлинга — это устройство, которое преобразует внешнюю энергию в полезную механическую. Это достигается за счет изменения температуры жидкости или газа, циркулирующие в замкнутой системе двигателя.

Кто понимает физические законы, тому легко понять принцип работы любого двигателя. Что касается данного силового агрегата, то схема его выглядит следующим образом: внизу устройства устройства находится газ, например, воздух, который нагревается и расширяясь толкает поршень. Затем горячий воздух попадает в верхнюю часть ДВС и охлаждается радиатором. Избыточное давление, которое толкало поршень снижается, и поршень опускается, затем воздух опять нагревается и поднимает поршень. Так повторяются циклы.

Три основных варианта двигателя Стирлинга

Модификация Альфа

Мотор устроен таким образом, что он имеет и горячий цилиндр-поршень, и холодный цилиндр-поршень. Горячий поршень толкается от расширения воздуха, а холодный расположен в системе охлаждения и движется от остывания воздуха.

Модификация Бета

Данная конструкция предполагает, что цилиндр и поршень нагреваются с одной стороны и охлаждаются с другой. Поршень толкает в сторону холодной части, а вытеснитель толкает в сторону горячей. Регенератор перемещает остывший воздух в горячий рабочий объем цилиндра.

Модификация Гамма

Устройство данной модификации состоит из двух цилиндров и поршней. Имеет регенератор циркуляции газа. Один цилиндр горячий с одной стороны и холодный с другой, в нем поршень и вытеснитель. Второй цилиндр полностью холодный, там только поршень.

Плюсы двигателя Стирлинга

Основной плюс такого типа силового агрегата — это то, что может работать на разных видах топлива. На практике было испытано следующее: во внешнюю камеру устройства подавался сначала бензин, потом дизель, потом метан, потом сырая нефть и растительное масло. Все это делалось без остановки двигателя и он продолжал успешно работать.

Также большим плюсом по сравнению с обычными двух тактными или четыерхтактрыми двигателями внутреннего сгорания является то, что двигателю Стирлинга не нужно дополнительное навесное оборудование, такое как газораспределительный механизм, коробка переключения передач, стартер.

Ресурс двигателя Стирлинга — больше 100 тысяч работы без остановки.

Немаловажный плюс — бесшумность работы. Такой двигатель не нуждается в удалении отработанного газа. В нем не может быть детонации двигателя, вибрация практически отсутствует.

Конструкция двигателя Бета

Преимущество для окружающей среды — это двигатель, который не загрязняет экологию, а значит это залог здоровья.

Минусы двигателя Стирлинга

Невозможно в настоящее время массовое применения данного вида двигателя. Для таких агрегатов требуется большие радиаторы охлаждения. Теплообменник должен быть сделать из материалов, устойчивых к высоким температурным воздействиям.

Коэффициент полезного действия

КПД от разности температур в двигателе может достигать около 70%. По циклу Карно на графике КПД выглядит следующим образом.

На практике был установлен 4-х цилиндровый двигатель Стирлинга на автомобиль был установлен вначале 20 века и выдал 35% КПД.

Американская автомобильная компания Mechanical Technology Inc (Меканикал Технолоджи Инкопорейтед) создает двигатели Стирлинга. Их ДВС выдают КПД 43,5%.

Примеры успешного применения двигателей Стирлинга

Во второй половине 20 века несколько компаний начали разрабатывать моторы Стирлинга и устанавливать их на легковые автомобили. Успешные модели оказались у таких компаний, как Ford Motor Company, Volkswagen Group, UNITED STIRLING (Швеция), General Motors, модель Стирлинга «Philips 4-125DA» (Нидерланды).

Видео

Фильм «Роберт Стирлинг и его двигатель».

Как работает двух цилиндровый вакуумный двигатель.

СТИРЛИНГИ

Из прошлого — в будущее! В 1817 году шотландский священник Роберт Стирлинг получил… патент на новый тип двигателя, названный впоследствии, подобно моторам Дизеля, именем изобретателя — стирлинг. Прихожане маленького шотландского местечка уже давно и с явным подозрением косились на своего духовного пастыря. Еще бы! Шипение и грохот, проникавшие через стены сарая, где частенько пропадал отец Стирлинг, могли смутить не только их богобоязненные умы. Ходили упорные слухи, что в сарае содержится страшный дракон, которого святой отец приручил и вскармливает летучими мышами и керосином.

Но Роберта Стирлинга, одного из просвещеннейших людей Шотландии, не смущала неприязнь паствы. Мирские дела и заботы все больше и больше занимали его, в ущерб служению господу: увлекали пастора… машины.

Британские острова в тот период переживают промышленную революцию: стремительно развиваются мануфактуры. И служители культа не остаются равнодушными к громадным доходам, которые сулит новый способ производства.

С благословения церкви и не без помощи фабрикантов несколько машин Стирлинга были построены, и лучшая из них, в 45 л. с., три года проработала на шахте в Дунди.

Дальнейшее развитие Стирлингов задержалось: в 60-х годах прошлого столетия на арену вышел новый двигатель Эриксона.

В обеих конструкциях было много общего. Это были двигатели внешнего сгорания. И в той и в другой машине рабочим телом был воздух, и в той и в другой основой двигателя являлся регенератор, проходя через который отработанный горячий воздух отдавал все тепло. Свежая же порция воздуха, просачиваясь через плотную металлическую сетку, отбирала это тепло, перед тем как попасть в рабочий цилиндр.

По схеме на рисунке 1 можно проследить, как воздух через всасывающую трубу 10 и клапан 4 попадает в компрессор 3, сжимается и через клапан 5 выходит в промежуточный резервуар. В это время золотник 8 перекрывает выхлопную трубу 9, и воздух через регенератор попадает в рабочий цилиндр 1, нагреваемый топкой 11. Здесь воздух расширяется, совершая полезную работу, которая частично направлена на поднимаемый тяжелый поршень, частично — на сжатие холодного воздуха в компрессоре 3. Опускаясь, поршень выталкивает отработанный воздух через регенератор 7 и золотник 8 в выхлопную трубу. При опускании поршня в компрессор засасывается свежая порция воздуха.

Рис. 1. Схема двигателя внешнего сгорания (Эриксона):

1 — рабочий цилиндр, 2 — поршень; 3 — компрессор; 4 — всасывающий клапан; 5 — нагнетательный клапан; 6 — промежуточный резервуар; 7 — регенератор; 8 — перепускной золотник; 9 — выхлопная труба; 10 — всасывающая труба; 11 —топка.

И та и другая конструкции не отличались экономичностью. Зато неполадок с двигателем шотландца случалось почему-то больше, и он был менее надежным, чем двигатель Эриксона. Быть может, именно поэтому просмотрели одну очень важную деталь: при равных мощностях двигатель Стирлинга был компактнее. Кроме того, он имел существенное преимущество в термодинамике…

Сжатие, нагрев, расширение, охлаждение — вот четыре основных процесса, необходимых для работы любого теплового двигателя. Каждый из них можно проводить разными путями. Скажем, нагрев и охлаждение газа можно вести в замкнутой полости постоянного объема (изохорный процесс) или под движущимся поршнем при постоянном давлении (изобарный процесс). Сжатие или расширение газа может происходить при постоянной температуре (изотермический процесс) или без теплообмена с окружающей средой (адиабатический процесс). Составляя замкнутые цепочки из различных комбинаций таких процессов, нетрудно получить теоретические циклы, по которым работают все современные тепловые двигатели. Скажем, комбинация из двух адиабат и двух изохор образуют теоретический цикл бензинового мотора. Если заменить в нем изохору, по которой идет нагревание газа, изобарой — получится цикл дизеля. Две адиабаты и две изобары дадут теоретический цикл газовой турбины. Среди всех мыслимых циклов комбинация из двух адиабат и двух изотерм играет особо важную роль в термодинамике, так как по такому циклу — циклу Карно — должен работать двигатель с самым высоким к.п.д.

Читать еще:  Где находиться датчик давление масла на двигателе d4cb

Если в двигателе Стирлинга подвод тепла производился по изохорам, то у Эриксона этот процесс происходил по изобаре, а процессы сжатия и расширения протекали по изотермам.

В начале нашего века движки Эриксона небольшой мощности (порядка 10—20 л. с.) нашли применение в различных странах. Тысячи таких установок трудились на фабриках, в типографиях, шахтах и рудниках, крутили валы станков, качали воду, поднимали лифты. Под названием «тепло и сила» они были известны и в России.

Предпринимались попытки сделать большой судовой двигатель, но результаты испытаний обескураживали не только скептиков, но и самого Эриксона. Вопреки пророчествам первых судно «сдвинулось с места» и даже пересекло Атлантический океан. Но и ожидания изобретателя были обмануты: четыре гигантских по размерам двигателя вместо 1000 л. с. развили всего 300 л. с. Расход угля получился такой же, как и у паровых машин. К тому же днища рабочих цилиндров к концу рейса прогорели насквозь, и в Англии двигатели пришлось снять и тайком заменить обычной паровой машиной. В довершение всех несчастий на обратном пути в Америку судно потерпело аварию и погибло со всем экипажем.

Рис. 2. Схема работы современного двигателя Стирлинга:

1 — рабочий поршень 2 — поршень-вытеснитель; 3 — охладитель; 4 — нагреватель; 5 — регенератор; 6 — холодное пространство; 7 — горячее пространство.

Отказавшись от мысли строить «калорические машины» большой мощности, Эриксон наладил массовый выпуск небольших двигателей. Дело в том, что уровень науки и техники того времени не позволял спроектировать и построить экономичную и мощную машину.

Но главный удар Эриксону нанесли изобретатели двигателя внутреннего сгорания. Бурное развитие дизелей и карбюраторных двигателей заставило предать забвению хорошую идею.

…Прошло столетие. В 30-х годах одно из военных ведомств поручает фирме «Филипс» разработать энергоустановку мощностью 200—400 вт для походной радиостанции. Причем двигатель должен быть всеядным, то есть работать на любом виде топлива.

Специалисты фирмы со всей основательностью принялись за дело. Начали с исследований различных термодинамических циклов и, к своему удивлению, обнаружили, что теоретически самый экономичный — давно забытый двигатель Стирлинга.

Война приостановила исследования, но в конце 40-х годов работы были продолжены. И тогда в результате многочисленных экспериментов и расчетов было сделано новое открытие — замкнутый контур, в котором под давлением около 200 атм. циркулировало рабочее тело (водород или гелий, как обладающие наименьшей вязкостью и наибольшей теплоемкостью). Правда, замкнув цикл, инженеры вынуждены были позаботиться об искусственном охлаждении рабочего тела. Так появился охладитель, которого не было у первых двигателей внешнего сгорания. И хотя нагреватель и охладитель, как бы компактны они ни были, утяжеляют стирлинг, зато сообщают ему одно очень важное качество.

Изолированные от внешней среды, они практически не зависят от нее. Стирлинг может работать от любого источника тепла всюду: под водой, под землей, в космосе — то есть там, где двигатели внутреннего сгорания, нуждающиеся в воздухе, работать не могут. В таких условиях без нагревателей и охладителей, передающих тепло через стенку, в принципе нельзя обойтись. И тут-то стирлинг побивают своих соперников даже по весу. У первых опытных образцов удельный вес на единицу мощности был порядка 6—7 кг на л. с., как у судовых дизелей. Современные стирлинги имеют еще меньшее соотношение — 1,5—2 кг на л. с. Они еще более компактны и легки.

Итак, схема стала двухконтурной: один контур с рабочим агентом и второй — подвод тепла; это позволило довести энергосъем до 200 л. с. на литр рабочего объема, а к.п.д. — до 38—40 процентов. Для сравнения: современ-

ные дизели имеют к.п.д. 34—38 процентов, а карбюраторные двигатели — 25—28. Кроме того, процесс сгорания топлива у стирлинга непрерывный, а это резко снижает токсичность — по выходу окиси углерода в 200 раз, по окиси азота — на 1—2 порядка. Вот где, возможно, одно из радикальных решений проблемы загрязнения атмосферы городов.

Рабочая часть современного Стирлинга представляет собой замкнутый объем, заполненный рабочим газом (рис. 2). Верхняя часть объема — горячая, она непрерывно нагревается. Нижняя — холодная, все время охлаждается водой. В том же объеме — цилиндр с двумя поршнями: вытеснителем и рабочим. Когда поршень идет вверх, газ в объеме сжимается; вниз — расширяется. Движением же вверх-вниз поршня-вытеснителя производится попеременное распределение нагретого и охлажденного газа. Когда поршень-вытеснитель находится в верхнем положении (в горячем пространстве), большая часть газа оказывается вытесненной в холодную зону. В это время рабочий поршень начинает двигаться вверх и сжимает холодный газ. Теперь поршень-вытеснитель устремляется вниз до соприкосновения с рабочим поршнем, и сжатый холодный газ перекачивается в горячее пространство. Расширение нагреваемого газа — рабочий ход. Часть энергии рабочего хода запасается на последующее сжатие холодного газа, а избыток идет на вал двигателя.

Регенератор находится между холодным и горячим пространствами. Когда расширившийся горячий газ движением поршня-вытеснителя перекачивается в холодную часть, он проходит через плотный пучок тонких медных проволочек и отдает им содержащееся в нем тепло. Во время обратного хода сжатый холодный воздух, прежде чем попасть в горячую часть, отбирает это тепло обратно.

Рис. 3. Устройство современного Стирлинга:

1 — топливная форсунка; 2 — выхлоп охлажденных газов, 3 — воздухонагреватель; 4 — выход горячих газов; 5 — горячее пространство; 6 — регенератор; 7 — цилиндр; 8 — трубки охладителя; 9 — холодное пространство; 10 — рабочий поршень; 11 — ромбический привод; 12 — камера сгорания; 13 — трубки нагревателя; 14 — поршень-вытеснитель; 15 — впуск воздуха для сжигания топлива; 16 — буферная полость.

Конечно, в реальной машине все выглядит не так просто (рис. 3). Невозможно быстро нагреть газ через толстую стенку цилиндра, для этого нужна гораздо большая поверхность нагрева. Вот почему верхняя часть замкнутого объема превращается в систему тонких трубок, нагреваемых пламенем форсунки. Чтобы как можно полнее использовать теплоту продуктов сгорания, холодный воздух, подводящийся к форсунке, предварительно подогревается выхлопными газами — так появляется довольно сложный контур сгорания.

Холодная часть рабочего объема — тоже система трубок, в которые нагнетается охлаждающая вода.

Под рабочим поршнем — замкнутая буферная полость, наполненная сжатым газом. Во время рабочего хода давление в этой полости повышается. Запасаемой при этом энергии достаточно для того, чтобы сжать холодный газ в рабочем объеме.

По мере совершенствования неудержимо росли температура и давление. 800° по Цельсию и 250 атм. — это весьма трудная задача для конструкторов, это поиски особо прочных и термостойких материалов, сложная проблема охлаждения, так как выделение тепла по сравнению с классическими двигателями здесь в полтора-два раза больше.

Результаты этих экспериментов порой приводят к самым неожиданным находкам. К примеру, специалисты фирмы «Филипс», обкатывая свой движок на холостом ходу (без нагрева), заметили, что головка цилиндра сильно охлаждается. Совершенно случайно обнаруженный эффект повлек за собой целую серию разработок, и в итоге рождение новой холодильной машины. Сейчас такие высокопроизводительные и малогабаритные холодильные агрегаты широко используются во всем мире. Но вернемся к тепловым машинам.

Последующие события нарастают как снежный ком. В 1958 году с приобретением лицензий другими фирмами стирлинг шагнул за океан. Его стали испытывать в самых различных областях техники. Разрабатывается проект применения двигателя для питания аппаратуры космических кораблей и спутников. Для полевых радиостанций создаются энергоустановки, работающие на любом виде топлива (мощностью порядка 10 л. с.), обладающие настолько малым уровнем шума, что его не слышно за 20 шагов.

Громадную сенсацию вызвала демонстрационная установка, работающая на двадцати видах топлива. Без отключения двигателя, простым поворотом крана, в камеру сгорания поочередно подавали бензин, солярку, сырую нефть, оливковое масло, горючий газ — и машина прекрасно «съедала» любой «корм». В зарубежной печати были сообщения о проекте двигателя на 2,5 тысячи л. с. с атомным реактором. Предполагаемый к.п.д. 48—50%. Значительно уменьшаются все габариты энергоблока, что позволяет высвободившиеся вес и площадь отдать под биологическую защиту реактора.

Читать еще:  Газель 406 двигатель карбюратор не заводится после ремонта

Еще одна интересная разработка — привод для искусственного сердца весом 600 г и мощностью 13 вт. Слаборадиоактивный изотоп обеспечивает ее практически неисчерпаемым источником энергии.

Двигатель Стирлинга испытывался на некоторых автомобилях. По своим рабочим параметрам он не уступил карбюраторному, а уровень шумов и токсичность выхлопных газов значительно снизились.

Автомобиль со стирлингом может работать на любом виде .топлива, а при необходимости — на расплаве. Представьте: перед тем как въехать в город, водитель включает горелку и расплавляет несколько килограммов окиси алюминия или гидрида лития. По городским улицам он едет «не дымя»: двигатель работает от тепла, запасенного расплавом. Одна из фирм изготовила мотороллер, в бак которого заливается около 10 литров расплава фтористого лития. Такой зарядки хватает на 5 часов работы при мощности движка 3 л. с.

Работы над Стирлингами продолжаются. В 1967 году изготовлен образец опытной установки мощностью 400 л. с. на один цилиндр. Проводится комплексная программа, согласно которой к 1977 году планируется серийное производство двигателей с диапазоном мощности от 20 до 380 л. с. В 1971 году «Филипс» выпустила четырехцилиндровый промышленный двигатель в 200 л. с. с полным весом 800 кг. Уравновешенность его настолько высока, что поставленная ребром на кожух монета (размером в пятак) стоит не шелохнувшись.

К достоинствам нового типа двигателя можно отнести и большой моторесурс порядка 10 тыс. час. (есть отдельные данные о 27 тыс.), и плавность работы, так как давление в цилиндрах нарастает плавно (по синусоиде), а не взрывами, как у дизеля.

Перспективные разработки новых моделей проводятся и у нас. Ученые и инженеры трудятся над кинематикой различных вариантов, на электронно-вычислительных машинах просчитывают различные виды «сердца», стирлинга-регенератора. Идет поиск новых инженерных решений, которые лягут в основу экономичных и мощных двигателей, способных потеснить привычные дизели и бензиновые моторы, исправив тем самым несправедливую ошибку истории.

Перспективы применения двигателя Стирлинга

Содержимое разработки

Министерство просвещения Российской Федерации

Муниципальное бюджетное общеобразовательное учреждение

города Новосибирска «Гимназия № 4»

секция: физика

Перспективы применения двигателя Стирлинга

Ученика 9 класса:

Томилова Александра Сергеевича

Научный руководитель:

Березин Н. Ю., старший преподаватель НГТУ

Руководитель:

Кудрявцева Т.А., учитель физики высшей квалификационной категории.

Введение 2

Глава I История двигателя 5

1.1. Что такое двигатель Стирлинга? 5

1.2 Принцип работы двигателя Стирлинга 7

1.3 Классификация двигателей Стирлинга: 8

Глава II Построение опытного образца конструкции 9

2.1 Разновидности двигателей 9

2.2 Изготовление двигателя 9

2.3 Расчёт КПД и рабочего давления двигателя Стирлинга. Усовершенствование модели 11

Заключение 14

Список литературы 15

В течение многих веков люди придумывали разные способы получения электричества. Одним из них являются тепловые двигатели. Эти двигатели широко используются в жизни человека. Обычно выделяют семь видов тепловых двигателей: двигатель Стирлинга, паровая машина, поршневой двигатель, турбинные двигатели внутреннего и внешнего сгорания, реактивные двигатели, твёрдотельные двигатели.

Планирую изготовить один из двигателей, работающих на практически любых перепадах температур, — двигатель Стирлинга.

Актуальность проекта: в наше время большое значение придаётся вопросу экологии. Сам по себе двигатель Стирлинга не загрязняет окружающую среду, то есть экологичность двигателя обусловлена, прежде всего, экологичностью источника тепла. При использовании некоторых экологически чистых источников тепла «стирлинг» даёт высокий довольно КПД.

Проблема проекта: существующие двигатели сильно загрязняют окружающую среду, необходимо создание более экологичного источника энергии.

Цель проекта: изготовить двигатель Стирлинга своими руками, исследовать его.

Задачи проекта:

осуществить поиск информации;

узнать способы изготовления двигателя Стирлинга в домашних условиях;

подобрать необходимый материал;

исследовать свойства двигателя, определить его преимущества и недостатки;

Методы исследования:

сбор и анализ информации,

Объект исследования: двигатель Стирлинга.

Предмет исследования: возможности сделанного двигателя, его свойства.

Гипотеза: на основе полученных исследований возможно создать оптимальную модель двигателя Стирлинга.

Продукт проекта: макет двигателя Стирлинга.

Глава I История двигателя

Изобретателем парового двигателя считается англичанин Джеймс Уатт, хотя у него были предшественники. В России первый паровой двигатель собственной конструкции построил Иван Ползунов.

В XIX веке инженеры хотели создать безопасную замену паровым двигателям того времени, котлы которых часто взрывались из-за высоких давлений пара и неподходящих материалов для их постройки. Эта проблема волновала и шотландского священника Роберта Стирлинга. Он решил создать машину, в которой будет использоваться сила нагретого воздуха вместо силы пара. Так и появился двигатель Стирлинга, который был запатентован 27 сентября 1816 года. В 1945 году инженеры фирмы «Philips» нашли Стирлингу обратное применение — раскрутив вал двигателя электромотором, они вызвали охлаждение головки цилиндров -190°С. Эта особенность двигателя Стирлинга нашла применение в промышленных холодильных установках. В наше время широко используется в сложных конструкциях, таких как современные подводные лодки.

    1. Что такое двигатель Стирлинга?

Сам двигатель представляет собой тепловую машину, в которой рабочее тело, в виде газа или жидкости, движется в замкнутом объёме. Он основан на периодическом нагреве и охлаждении рабочего тела с извлечением энергии из возникающего при этом изменения объёма рабочего тела. Обычно в роли рабочего тела выступает воздух, но также используются водород и гелий. Работает «стирлинг» от любого источника тепла.

Таблица сравнительных характеристик двигателя

Двигатели Стирлинга являются двигателями внешнего подвода теплоты и могут использоваться там, где работа других двигателей проблематична (подводные лодки и т. д.)

Основной недостаток двигателя — материалоёмкость. У двигателей внешнего сгорания вообще, и двигателя Стирлинга в частности, рабочее тело необходимо охлаждать, и это приводит к существенному увеличению массогабаритных показателей силовой установки за счёт увеличенных радиаторов.

Экономичность и более высокая, чем у двигателей внутреннего сгорания экологичность (рабочим телом двигателя может служить любая жидкость или газ, движущийся в замкнутом объёме)

Тепло не подводится к рабочему телу непосредственно, а только через стенки теплообменников.

Стенки имеют ограниченную теплопроводность, из-за чего КПД оказывается ниже, чем можно было ожидать. Горячий теплообменник работает в очень напряженных условиях теплопередачи, и при очень высоких давлениях, что требует применения высококачественных и дорогих материалов.

Возможность использования различных источников тепла, начиная с традиционных органических топлив и кончая энергией радиоактивного распада и солнечной радиации

Недоработанность и высокая стоимость конструкции на сегодняшний день

1.2 Принцип работы двигателя Стирлинга

Двигатель Стирлинга использует цикл Стирлинга. Цикл Стирлинга состоит из четырёх фаз и разделён двумя переходными фазами: нагрев, расширение, переход к источнику холода, охлаждение, сжатие и переход к источнику тепла. Таким образом, при переходе от тёплого источника к холодному источнику происходит расширение и сжатие газа, находящегося в цилиндре. При этом изменяется давление, за счёт чего можно получить полезную работу.

Таким образом, он работает за счёт разности температур между нагревающей и охлаждающей частью.

Принцип работы низкотемпературного двигателя Стирлинга

Сам двигатель состоит из цилиндра, в котором движется вытеснитель и из второго цилиндра, в котором ходит рабочий поршень. Боковые стенки большого цилиндра не проводят тепло. Верхняя часть холодная, нижняя – горячая. Когда вытеснитель опускается вниз, перекрывая горячую пластину, воздух резко охлаждается и сжимается, втягивая рабочий поршень (зеленого цвета). При движении вытеснителя вверх, он перекрывает холодную пластину, воздух от нижней пластины резко нагревается, расширяется (от нагрева) и вытесняет рабочий зеленый поршень вверх.

Далее цикл повторяется, так как вытеснитель и рабочий поршень связаны между собой коленвалом со смещением 90 градусов.

1.3 Классификация двигателей Стирлинга:

По способу соединения цилиндров:

Глава II Построение опытного образца конструкции 2.1 Разновидности двигателей

Так как двигатель несложен в строении, его нетрудно изготовить своими руками. Существуют различные способы его изготовления. Самые популярные — из жестяных банок из-под консервов или газировок. Их популярность объясняется тем, что жесть хорошо проводит тепло, а также её легко паять. Также сделать двигатель можно из шприцов или других пластиковых предметов. Минус таких двигателей в том, что они работают только на низких температурах из-за нетермоустойчивости пластика.

Читать еще:  Холодный двигатель заводиться а горячий нет матиз

Из этих вариантов более удобным кажется жестяной двигатель, который мы и решили изготовить.

2.2 Изготовление двигателя

Список материала и оборудования:

Пластмассовая трубка диаметра 25 мм и высоты 25 мм

Металлическая проволока диаметром 1,4 мм

Деревянные бруски с отверстиями для коленвала

Взять пустую металлическую консервную банку.

Из картона изготовить вытеснитель, диаметр которого должен быть на 5 мм меньше диаметра консервной банки.

Прикрепить в центре вытеснителя тонкую леску длиной около 20 см.

Взять полиэтиленовую крышку для банок, в центре сделать небольшое отверстие для лески.

Взять пластмассовую трубку диаметром 25 мм, высотой 25 мм.

В полиэтиленовой крышке сбоку прорезать отверстие диаметром чуть меньше пластмассовой трубки (20-23 мм).

Приклеить трубку к полиэтиленовой крышке термоклеем

Продеть леску через полиэтиленовую крышку.

Крышку герметично приклеить к консервной банке (вытеснитель внутри банки!)

Взять два деревянных бруска, прикрепить по бокам консервной банки (крепление для коленвала).

Взять целлофановый пакет, прикрепить к нему поршень от шприца (5 мл).

Закрепить целлофановый пакет на пластмассовой трубке с помощью резинки.

Сделать коленвал так, чтобы угол между коленами был 90 градусов.

Закрепить коленвал на деревянных брусках.

Из проволоки сделать шатун, длина которого регулируется самостоятельно.

Прикрепить леску ко второму колену коленвала.

Сделать маховик из CD – диска.

2.3 Расчёт КПД и рабочего давления двигателя Стирлинга. Усовершенствование модели

Берём вторую металлическую консервную банку большего диаметра.

Вырезаем в дне отверстие, диаметр которого чуть больше диаметра дна первой консервной банки.

Впаиваем банки в области дна друг к другу.

Заливаем холодную жидкость в полость, созданную между двумя банками.

Расчёты параметров работы модели двигателя Стирлинга:

Измерение рабочего хода поршня, частоты вращения коленвала, температуры холодильника и нагревателя:

ν – частота вращения коленвала;

— температура нагревателя; — температура холодильника;

Базовая модель

Усовершенствованная модель

=360ºС; =23ºС;

=360ºС; =-25ºС;

Расчёт КПД идеального (по таблице) и КПД реального:

Реальный КПД равен 1/3 идеального, т.к. система не теплоизолирована (большая потеря энергии).

Для базовой модели:

КПД идеальный (по таблице) = 53%, значит КПД реальный = 18%.

Для усовершенствованной модели:

КПД идеальный = 60%, значит КПД реальный = 20%, что выше чем КПД базовой модели на 2%.

Расчёт рабочего давления:

, где Pn – полезная мощность двигателя (1)

A – полезная работа

A = FH, (2)

где F= pS, (3)

где S – площадь поперечного сечения банки

p – рабочее давление

H – высота банки

(4)

Где t – время работы поршня

ν – частота вращения коленвала

Решаем совместно уравнения 1 – 4:

= η∙q∙m

Где q — удельная теплота сгорания стеарина

m — масса сгоревшей свечи

;

Для базовой модели:

; р = 171 кПа

Для усовершенствованной модели:

; р = 611 кПа

осуществили поиск информации по теме исследования;

узнали способы изготовления двигателя Стирлинга в домашних условиях;

подобрали необходимый материал, изготовили двигатель, исследовали свойства двигателя, определили его преимущества и недостатки;

двигатель Стирлинга полезен при использовании возобновляемых источников тепловой энергии (КПД до 30% при использовании солнечной энергии).

двигатель можно использовать в быту как доступный источник энергии, а также как устройства обучения или развлечения.

при изготовлении модели двигателя в домашних условиях возникают трудности с отводом тепла, в связи, с чем двигатель недолговечен.

Работа над исследовательским проектом помогла узнать об изобретателях индустриального века, благодаря которым произошла Первая промышленная революция. В процессе работы познакомился с работой и принципом действия и областью применения Двигателей Стирлинга. Вероятно, в ближайшее время двигатель Стирлинга найдет применение в качестве основной силовой установки в стационарных энергоблоках небольшой мощности, использующих нетрадиционные источники теплоты, или во вспомогательных системах основной силовой установки транспортных средств. Способность производить электричество из возобновляемых ресурсов делает двигатель Стирлинга эко машиной будущего.

Бреусов В.П., Куколев М.И. Проектная разработка и технология изготовления двигателей с внешним подводом теплоты, работающих на биогазе, Двигателестроение №2 (236), 2009

Круглов М.Г. Двигатели Стирлинга/Круглов М.Г., Даниличев В.Н.,

Ефимов С.И. – М.: Машиностроение, 1977. 150 с.

Перельман Яков Исидорович «Занимательная физика. Книга 2» Издательство «Наука», Москва, 1983

Ридер Г., Хупер Ч. Двигатели Стирлинга / перевод с англ. д-ра техн. наук Ченцова С.Н. и кандидатов техн. наук Черейского Е.Е. и Кабакова В.И. – М.: Мир, 1986. 464 с.

Уокер Г. Двигатели Стирлинга / Сокращенный перевод с англ. Сутугина — М.: Машиностроение,2011. 408 с.

Узнаем как изготовить двигатель Стирлинга своими руками

Двигатель Стирлинга представляет собой тепловую машину, в которой рабочее тело (газообразное или жидкое) двигается в замкнутом объёме, по сути это разновидность двигателя внешнего сгорания. Этот механизм основан на принципе периодического нагрева и охлаждения рабочего тела. Извлечение энергии происходит из возникающего объема рабочего тела. Двигатель Стирлинга работает не только от энергии сгорающего топлива, но и от практически любого источника тепловой энергии. Запатентован этот механизм шотландцем Робертом Стирлингом в 1816 году.

Описанный механизм, несмотря на невысокий КПД, имеет ряд преимуществ, в первую очередь это простота и неприхотливость. Благодаря этому многие конструкторы-любители совершают попытки собрать двигатель Стирлинга своими руками. Некоторым это удается, а некоторым нет.

В этой статье мы рассмотрим, как сделать двигатель Стирлинга своими руками из подручных материалов. Нам понадобятся следующие заготовки и инструменты: консервная банка (можно из-под шпрот), листовая жесть, канцелярские скрепки, поролон, резинка, пакет, кусачки, медная проволока, плоскогубцы, ножницы, паяльник, наждачная бумага.

Теперь приступим к сборке. Вот подробная инструкция к тому, как сделать двигатель Стирлинга своими руками. Сначала необходимо вымыть банку, зачистить наждачной бумагой края. Вырезаем из листовой жести круг таким образом, чтобы он лег на внутренние края банки. Определяем центр (для этого воспользуемся штангенциркулем или линейкой), делаем ножницами отверстие. Далее берем медную проволоку и канцелярскую скрепку, выпрямляем скрепку, на конце делаем кольцо. Наматываем на скрепку проволоку — четыре плотных витка. Далее паяльником пролудим полученную спираль небольшим количеством припоя. Потом необходимо аккуратно спираль припаять к отверстию в крышке таким образом, чтобы шток получился перпендикулярным крышке. Скрепка должна двигаться свободно.

После этого необходимо сделать в крышке сообщающееся отверстие. Из поролона делаем вытеснитель. Его диаметр должен быть немного меньше диаметра банки, но при этом не должно быть большого зазора. Высота вытеснителя – немногим больше половины банки. Вырезаем в поролоне по центру отверстие для втулки, последнюю можно изготовить из резины или пробки. Вставляем в полученную втулку шток и все заклеиваем. Вытеснитель необходимо размещать параллельно крышке, это важное условие. Далее остается закрыть банку и запаять края. Шов должен быть герметичным. Теперь приступаем к изготовлению рабочего цилиндра. Для этого вырезаем из жести полосу длиной 60 мм и шириной 25 мм, загибаем плоскогубцами край на 2 мм. Формируем гильзу, после этого спаиваем край, далее необходимо припаять гильзу к крышке (над отверстием).

Теперь можно приступить к изготовлению мембраны. Для этого отрезаем от пакета кусок пленки, немного продавливаем его пальцем внутрь, резинкой прижимаем края. Далее необходимо проверить правильность сборки. Нагреваем на огне дно банки, тянем за шток. В результате мембрана должна выгибаться наружу, а если шток отпустить, вытеснитель под собственным весом должен опуститься, соответственно, мембрана возвращается на место. В том случае, если вытеснитель сделан неправильно или пайка банки не герметична, шток не вернется на место. После этого делаем коленвал и стойки (разнос кривошипов должен составить 90 градусов). Высота кривошипов должна составлять 7 мм, а вытеснителей 5 мм. Длина шатунов определена положением коленвала. Конец кривошипа вставляется в пробку. Вот мы и рассмотрели, как собрать двигатель Стирлинга своими руками.

Такой механизм будет работать от обычной свечки. Если прикрепить к маховику магниты и взять катушку аквариумного компрессора, то такое устройство способно заменить простой электродвигатель. Своими руками, как вы видите, сделать такой прибор совсем не сложно. Было бы желание.

Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector