Что лучше двигатель постоянного тока или переменного тока - Журнал "Автопарк"
Auto-park24.ru

Журнал "Автопарк"
5 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Что лучше двигатель постоянного тока или переменного тока

—> Детская Энциклопедия —>

Переменный и постоянный ток в технике

В наше время электрический ток исполь­зуется во всех отраслях народного хозяйства. И мы знаем, что ток бывает двух видов: по­стоянный и переменный. Напомним, что при постоянном токе электроны в электрической цепи движутся все время в одном направлении, а при переменном токе непрерывно меняют на­правление. Какой же ток — переменный или постоянный — больше нужен технике и про­мышленности?

Передача электрической энергии на большие расстояния возможна только при высоких на­пряжениях тока, достигающих 110, 220, 400 и даже 500—800 тыс. в. А генератор электриче­ской станции способен создать напряжение не выше 20 тыс. в. В то же время для различных электрических машин и аппаратов нужен элект­рический ток напряжением всего в несколько десятков или сотен вольт. Вот здесь переменный ток оказывается незаменимым. Ведь он позволяет с помощью трансформаторов легко изменять напряжение в любых пределах: повы­шать на электростанциях для передачи на боль­шие расстояния и снова понижать непосредст­венно у потребителей.

В конце прошлого столетия русский элект­ротехник М. О. Доливо-Добровольский получил трехфазный переменный ток, обладающий очень важными достоинствами. Во-первых, трехфаз­ные линии электропередач выгоднее однофаз­ных: по ним при той же затрате проводов и изо­ляции можно передать больше энергии, чем по однофазным. А во-вторых, благодаря свой­ству трехфазного переменного тока создавать вращающееся магнитное поле удалось построить очень простые и надежные асинхронные элек­трические двигатели, которые сейчас широко используются для привода станков и машин.

Вот эти качества переменного тока позво­лили ему занять ведущее положение в технике и послужили причиной того, что в наши дни все промышленные электростанции вырабаты­вают только трехфазный переменный ток.

Больше половины вырабатываемой электри­ческой энергии потребляют электрические дви­гатели. Кроме простых асинхронных двигате­лей, не имеющих обмотки на роторе, есть дви­гатели с обмоткой и контактными кольцами на роторе. Такие моторы развивают большие усилия при трогании с места, и поэтому их чаще всего применяют на подъемных кранах. Есть еще синхронные двигатели, имеющие постоянную скорость вращения. Благодаря этому они применяются в машинах и механиз­мах, требующих постоянной скорости движе­ния независимо от их нагрузки: в эскалато­рах метрополитена, в больших водяных насосах, электрических часах и др. Электрические дви­гатели бывают маленькими, меньше катушки ниток, и огромными, как карусель.

Применение для привода станков сразу не­скольких электрических двигателей позволило устранить сложную систему передач, упро­стить механизмы станков, облегчило управле­ние ими и дало возможность создать автома­тические линии.

Малые размеры и простота электрических двигателей позволили использовать электри­ческую энергию там, где раньше применялся только ручной труд. Электрические дрели, пилы, рубанки, гайковерты и другой инстру­мент намного облегчили труд рабочих, сделали его более производительным. Электрические полотеры, пылесосы, стиральные машины и хо­лодильники пришли на помощь домашним хозяйкам. А еще раньше в домах появились электрические чайники, утюги, плитки.

Переменный ток — хороший источник теп­ла. В мощных дуговых электропечах плавят и варят металл. Электрические печи широко используются в установках «искусственного климата», для обогрева сушильных шкафов и помещений, нагрева металлов и т. д.

Электрические лампочки светят независимо от того, какой ток идет через их нити: перемен­ный или постоянный. Но передача переменного тока более экономична, и трансформаторы по­зволяют легко получать и поддерживать необ­ходимое напряжение. Поэтому осветительная сеть городов и сел питается переменным током.

Но вот мы сели в трамвай, троллейбус, в ва­гон метро, в пригородную электричку — и сра­зу попали во владения постоянного тока. Дело в том, что простые и удобные электрические дви­гатели переменного тока не позволяют плавно менять скорость своего вращения. А изменять скорость движения приходится почти непрерыв­но; с такой работой может хорошо справиться только тяговый двигатель постоянного тока.

Питание таких двигателей осуществляется от специальных тяговых выпрямительных под­станций, на которых переменный ток преобра­зуется в постоянный, а затем подается в кон­тактную сеть — в провода и рельсы.

Но ученые и инженеры задумались, нельзя ли на транспорте применить переменный ток. Оказалось, можно. И уже сейчас на многих железных дорогах в контактных проводах течет переменный ток напряжением до 25 тыс. в, а в дальнейшем переменным током будут элек­трифицированы все железные дороги. Но дви­гатели электровозов по-прежнему работают на постоянном токе: выпрямительные уста­новки, превращающие переменный ток в по­стоянный, в этом случае находятся также на электровозах.

При помощи электрических двигателей по­стоянного тока приводятся в движение колеса тепловозов, механизмы прокатных станов, ша­гающих экскаваторов и многих других машин.

Есть и еще большая и важная область, в ко­торой переменный ток не может соперничать с постоянным. Речь идет об электролизе — про­цессе, связанном с прохождением тока через жидкие растворы — электролиты. Под дейст­вием постоянного тока электролит разлагается на отдельные элементы, которые осаждаются на опущенных в электролит электродах. Таким способом получают алюминий, магний, цинк, медь, марганец. В химической промыш­ленности при помощи электролиза добывают фтор, хлор, водород и другие вещества. С по­мощью электролиза наносят защитные покры­тия на металлические изделия (см. ст. «Защита металла»).

Постоянный ток успешно соперничает с пе­ременным в сварочном деле (см. ст. «Как сва­ривают металл»). При сварке постоянным током частички металла переносятся с электрода на изделие более правильно и шов получается лучше, чем при сварке переменным током.

Есть у постоянного тока еще одна особен­ность. Скорее не у самого тока, а у его источ­ников. Чтобы получить переменный электри­ческий ток, нужно непременно приводить в дви­жение генератор, а постоянный ток могут давать неподвижные аккумуляторные батареи и галь­ванические элементы. Эти свойства источников электрического тока в ряде случаев застав­ляют отдавать предпочтение постоянному току. Например, как завести двигатель стоящего на месте автомобиля? Достаточно нажать кнопку стартера, и двигатель постоянного тока, получая питание от аккумуляторной батареи, заведет мотор. А когда мотор работает, он вращает генератор, который вновь заряжает аккумуляторную батарею. Такой обратимый процесс недоступен для переменного тока.

Читать еще:  В системе охлаждение двигателя воздушная пробка как избавится

На многих шахтах работают электровозы с аккумуляторными батареями, а в цехах заво­дов, на вокзалах и на складах часто можно встретить небольшие электрические тележки с аккумуляторами — электрокары.

Большие аккумуляторные батареи исполь­зуются для питания устройств сигнализации, управления и аварийного освещения на элект­ростанциях, в поездах и даже в троллейбусах. Легкие аккумуляторы и гальванические бата­реи применяются в переносных радиостанциях, в радиоприемниках, в электрических фонарях, измерительных и других приборах.

А вспомните об искусственных спутниках Земли и космических кораблях: на них уста­новлены полупроводниковые солнечные бата­реи — они тоже дают постоянный электриче­ский ток (см. ст. «Полупроводники в технике»).

Прежде чем закончить наш рассказ, вер­немся ненадолго к его началу — к передаче электрической энергии по проводам. Переда­ваемые мощности и длина линий электропере­дач непрерывно возрастают, и приходится повы­шать напряжение до 500 и даже до 800 тыс. в.

И вот оказалось, что при этих условиях пе­редавать электрическую энергию выгоднее на постоянном токе. Вдвое лучше используется изо­ляция, увеличивается пропускная способность воздушных линий электропередач, уменьшает­ся количество проводов. Важно, что отпа­дет необходимость в сложном процессе синхро­низации при включении линий, соединяющих большие электростанции или энергетические системы. Этого, пожалуй, вполне достаточно, чтобы доказать целесообразность использова­ния постоянного тока для сверхдальних передач энергии. Правда, для получения постоянного тока высокого напряжения и последующего преобразования его в переменный ток низкого напряжения нужны очень сложные и дорогие преобразовательные подстанции. Но, несмотря на это, расчеты показывают, что в ряде случаев для сверхмощных и сверхдальних электропе­редач все же выгоднее использовать постоян­ный ток. Поэтому сейчас уже ведутся работы по сооружению таких линий электропередач на постоянном токе.

Конечно, перечисленными здесь примерами далеко не исчерпываются все области приме­нения электрической энергии. Здесь ничего не сказано об ее использовании для телеграфной и телефонной связи, для радио и телевидения и прочих целей, но об этом вы прочтете в других статьях этого тома. Ясно одно: нам нужен и пе­ременный и постоянный ток и никогда один из них не вытеснит другого. Наоборот, разум­ное применение обоих позволяет лучше и пол­нее использовать электрическую энергию на благо человека.

Электрические машины тока

Электрическая машина – это устройство, в котором энергия электрического тока преобразуется в энергию механическую, заставляя рабочие агрегаты вращаться или совершать возвратно-поступательные движения.

Принцип действия и устройство электрических машин

Принцип действия таких устройств основан на взаимодействии магнитных и электрических полей. Машины, в которых такое взаимодействие происходит при помощи магнитных полей, называются индуктивными, а в устройства с электрическим полем – емкостными. Последний тип не нашел применения в современной технике из-за неустойчивой работы во влажной среде.

Основные типы электрических машин это:

  • электродвигатели – оборудование, преобразующие электрическую энергию в механическое движение.
  • генераторы – устройства, позволяющие вырабатывать электрическую энергию при механическом воздействии.

Электрические машины переменного тока

Машины, использующие при преобразовании электрической энергии в механическую переменный ток промышленной частоты, могут быть синхронными и асинхронными. Эти два типа отличаются конструктивным исполнением ротора и статора, имеют разные схемы подключения питания и регулировки частоты вращения.

Электрические машины постоянного тока

Электрические машины постоянного тока более сложны в изготовлении, но при этом обладает существенным преимуществом: более стабильной работе при любых оборотах вращающейся части.

Регулировка частоты вращения производится напряжением, подаваемым в электродвигатель. Именно электрические машины постоянного тока устанавливаются на самых ответственных местах, начиная от автомобилей и электровозов и заканчивая атомными подводными лодками.

Электрические машины-генераторы постоянного тока

Для преобразования возвратно-поступательного механического действия или вращения в электрическую энергию постоянного тока применяются специальные машины-генераторы.

Принцип действия генератора прост – в однородном вращающемся магнитном поле, в проводнике возникает ЭДС, которую можно снять через специальные щетки и использовать по своему усмотрению.

Величина и сила тока генератора зависит от количества вращающихся обмоток, витков в них, сечения используемого провода.

Простейшие генераторы постоянного тока уже с начала прошлого века устанавливались на автомобилях и использовались для подзарядки аккумуляторной батареи.

По типу возбуждения такие устройства подразделяются:

  • генераторы с внешним, независимым возбуждением;
  • самовозбуждающиеся генераторы (с параллельным, последовательным или смешанным способом возбуждения).

Технические расчеты показывают, что КПД генераторов постоянного тока тем выше, чем больше его мощность, и может достигать 90%.

Производители и поставщики электрических машин переменного и постоянного тока

Производство современных электрических машин – это наукоемкое предприятие, требующее:

  • серьезных инвестиций;
  • дорогостоящего оборудования;
  • квалифицированного персонала.

В России работают предприятия, которые имеют большой опыт в проектирование и создании электрических машин переменного и постоянного тока, которые рассчитаны на любые классы напряжений и потребляемых мощностей.

Лидером в данном направлении – это Государственное предприятие завод «Электротяжмаш», продукция которого является известным мировым брендом.

ЗАО «Росэнергомаш» – этот концерн объединил несколько предприятий в России и за её пределами, успешно конкурирующие с аналогичной импортной продукцией.

ООО «Торговый Дом «Электромашина» осуществляет прямые поставки любого электротехнического оборудования на территории Российской Федерации, обеспечивает его гарантийное и сервисное сопровождение.

Больше об электрических машинах переменного и постоянного тока можно узнать на выставке «Электро».

Электродвигатель переменного тока

Электрический двигатель — это, электрическая машина, в которой электрическая энергия преобразуется в механическую, побочным эффектом является выделение тепла.

Классификация электродвигателей

  • Двигатель постоянного тока — электрический двигатель, питание которого осуществляется постоянным током;
    • Коллекторные двигатели постоянного тока. Разновидности:
      • С возбуждением постоянными магнитами;
      • С параллельным соединением обмоток возбуждения и якоря;
      • С последовательным соединением обмоток возбуждения и якоря;
      • Со смешанным соединением обмоток возбуждения и якоря;
    • Бесколлекторные двигатели постоянного тока (вентильные двигатели) с электронным переключателем тока;
Читать еще:  Что будет если перелил масло в двигатель мотоблока

  • Двигатель переменного тока — электрический двигатель, питание которого осуществляется переменным током, имеет две разновидности:
    • Синхронный электродвигатель — электродвигатель переменного тока, ротор которого вращается синхронно с магнитным полем питающего напряжения;
    • Асинхронный электродвигатель — электродвигатель переменного тока, в котором частота вращения ротора отличается от частоты вращающего магнитного поля, создаваемого питающим напряжением.
  • Однофазные — запускаются вручную, или имеют пусковую обмотку, или имеют фазосдвигающую цепь
  • Двухфазные — в том числе конденсаторные.
  • Трёхфазные
  • Многофазные
  • Шаговые двигатели — Электродвигатели, которые имеют конечное число положений ротора. Заданное положение ротора фиксируется подачей питания на соответствующие обмотки. Переход в другое положение осуществляется путём снятия напряжения питания с одних обмоток и передачи его на другие.
  • Вентильные двигатели — Электродвигатели, выполненные в виде замкнутой системы с использованием датчика положения ротора (ДПР), системы управления (преобразователя координат) и силового полупроводникового преобразователя (инвертора).
  • Универсальный коллекторный двигатель (УКД) — коллекторный электродвигатель, который может работать и на постоянном токе и на переменном токе.

Из-за связи с низкой частотой сети (50 Герц) асинхронные и синхронные двигатели имеют больший вес и размеры, чем коллекторный двигатель постоянного тока и универсальный коллекторный двигатель той же мощности. При применении выпрямителя и инвертора с частотой значительно большей 50 Гц вес и размеры асинхронных и синхронных двигателей приближаются к весу и размерам коллекторного двигателя постоянного тока и универсального коллекторного двигателя той же мощности.

Синхронный двигатель с датчиком положения ротора и инвертором является электронным аналогом коллекторного двигателя постоянного тока.

История.

Принцип преобразования электрической энергии в механическую энергию электромагнитным полем был продемонстрирован британским учёным Майклом Фарадеем в 1821 и состоял из свободно висящего провода, окунающегося в пул ртути. Постоянный магнит был установлен в середине пула ртути. Когда через провод пропускался ток, провод вращался вокруг магнита, показывая, что ток вызывал циклическое магнитное поле вокруг провода. Этот двигатель часто демонстрируется в школьных классах физики, вместо токсичной ртути используют рассол. Это — самый простой вид из класса электрических двигателей. Последующим усовершенствованием является Колесо Барлова. Оно было демонстрационным устройством, непригодным в практических применениях из-за ограниченной мощности.

Ссылки

Wikimedia Foundation . 2010 .

  • Электродвигатель, завод
  • Электрогитарист

Полезное

Смотреть что такое «Электродвигатель переменного тока» в других словарях:

электродвигатель переменного тока — — [А.С.Гольдберг. Англо русский энергетический словарь. 2006 г.] Тематики энергетика в целом EN ас motor … Справочник технического переводчика

Электродвигатель постоянного тока — Рис. 1 Устройство простейшего коллекторного двигателя постоянного тока с двухполюсным статором и с двухполюсным ротором Двигатель постоянного тока электрическая машина, ма … Википедия

Переменного тока электродвигатель — машина переменного тока, предназначенная для работы в режиме двигателя (см. Переменного тока машина). П. т. э. подразделяют на синхронные и асинхронные. Синхронные электродвигатели (См. Синхронный электродвигатель) применяют в… … Большая советская энциклопедия

Переменного тока машина — электрическая машина, применяемая для получения переменного тока (генератор) или для преобразования электрической энергии в механическую (двигатель) либо в электрическую энергию другого напряжения или частоты (преобразователь) П. т. м.… … Большая советская энциклопедия

ПЕРЕМЕННОГО ТОКА ЭЛЕКТРОДВИГАТЕЛЬ — машина перем. тока, предназнач. для работы в режиме двигателя. П. т. э. подразделяют на синхронные и асинхронные. Синхронные электродвигатели применяют в электроприводах в осн. тогда, когда требуется постоянство угловой скорости. Из асинхронных… … Большой энциклопедический политехнический словарь

электропривод переменного тока — электропривод постоянного [переменного] тока Электропривод, содержащий электродвигатель постоянного [переменного] тока. [ГОСТ Р 50369 92] Тематики электропривод EN ac drivealternating current drive DE Wechselstromantrieb … Справочник технического переводчика

электропривод постоянного (переменного) тока — 3.1.3 электропривод постоянного (переменного) тока: Привод, содержащий электродвигатель постоянного (переменного) тока и редуктор; Источник: СТ ЦКБА 087 2010: Арматура трубопроводная. Электроприводы. Общие технические условия … Словарь-справочник терминов нормативно-технической документации

ЭЛЕКТРОДВИГАТЕЛЬ — (электрический двигатель) машина, преобразующая подводимую внешнюю электрическую энергию в механическую, обычно энергию вращения. Э. имеют в общих чертах то же устройство, что и генераторы (см. ), но основаны на обратном принципе действия.… … Большая политехническая энциклопедия

ЭЛЕКТРОДВИГАТЕЛЬ, ЭЛЕКТРОМОТОР — (Electric motor) электрическая машина, служащая для преобразования подводимой к ней извне электрической энергии в механическую. Различают Э. постоянного тока и переменного тока. Э. постоянного тока бывают с последовательным возбуждением,… … Морской словарь

ЭЛЕКТРОДВИГАТЕЛЬ — электромотор, машина, преобразующая получаемую ею электр. энергию в механическую. Большинство Э. не отличается по конструкции от электр. генераторов (см. Генератор электрический), к рые при использовании их в качестве Э. не приводятся во вращение … Технический железнодорожный словарь

Что лучше двигатель постоянного тока или переменного тока

Для привода механизмов кранов и других подъемно-транспортных машин применяются электродвигатели постоянного и трехфазного переменного тока. По своим электромеханическим свойствам электродвигатели постоянного тока наилучшим об­разом соответствуют условиям работы подъемно-транспортных машин. Но для их питания требуются преобразовательные агрегаты или специальная сеть постоянного тока. Поэтому электродвигатели постоянного тока используют, как правило, для кранов, работающих в особо тяжелых условиях, при частых и значительных перегрузках, а также в тех случаях, когда требуется широкое и плавное регулирование скорости и точная остановка (монтажные краны, быстроходные лифты и т.п.). Электродвигатели постоянного тока различаются по способу возбуждения и по схеме включения обмоток (рис. 4).

Читать еще:  Датчик давления масла в двигателе пежо 308

Электродвигатель с независимым возбужде­нием (рис. 4, а) имеет обмотку возбуждения, питаемую от по­стороннего источника постоянного тока (специального возбуди­теля, посторонней сети и т. д.). В таком электродвигателе ве­личина тока возбуждения не зависит от его скорости и нагруз­ки. Электродвигатели с независимым возбуждением для при­вода подъемно-транспортных машин применяются редко, так как при достаточно мощном источнике питания нет особого различия между работой электродвигателей с параллельным ил и независимым возбуждением. Поэтому более целесообраз­но .использовать электродвигатели с параллельным возбужде­нием, которые не требуют отдельного источника для питания обмотки возбуждения.

Электродвигатель с параллельным возбуж­дением или шунговой электродвигатель (рис. 4, б) имеет об­мотку возбуждения, которая подключается к зажимам якоря. Если машина работает в генераторном режиме, то такое под­ключение обмотки возбуждения приводит к сильной зависимо­сти тока возбуждения от нагрузки. Однако в двигательном режиме этого почти не наблюдается, так как к якорю двигате­ля подается напряжение, не зависящее от нагрузки. Электро­двигатели с параллельным возбуждением могут использовать­ся для привода лифтов, механизмов подъема, поворота и пере­движения кранов.

Электродвигатель с последовательным возбуждением (сериесный электродвигатель) снабжается об­моткой возбуждения (рис. 4, в), соединенной последовательно с обмоткой якоря. Поэтому магнитный поток возбуждения очень сильно зависит от нагрузки электродвигателя. Как правило, та­кие электродвигатели используются для привода механизмов подъема кранов.

Электродвигатель со смешанным возбуждением (компаундный электродвигатель) имеет две обмотки возбуждения: последовательную и параллельную (рис. 4, г). Магнитный поток возбуждения в данном случае в меньшей сте­пени зависит от нагрузки электродвигателя, чем у электродви­гателей с последовательным возбуждением. В зависимости от того, какая из двух обмоток создает больший магнитный по­ток, характеристики электродвигателя со смешанным возбуж­дением приближаются к характеристикам электродвигателей с параллельным или последовательным возбуждением. Чаще все­го такие электродвигатели попользуются для привода механиз­мов передвижения тележек и мостов кранов.

По конструктивному исполнению электродвигатели постоян­ного тока различного возбуждения ничем практически не отли­чаются друг от друга. Основными частями кранового электро­двигателя постоянного тока (рис. 5) являются станина с полю­сами 1 и якорь 3 с коллектором 4. Станина выполняется из стали или чугуна. На ней располагаются главные полюсы 1 с обмотками возбуждения 2. Полюсы набираются из тонких ли­стов специальной электротехнической стали толщиной 0,5— 1 мм. Якорь является вращающейся частью электродвигателя. Он также набирается из штампованных тонких листов стали.

В сердечнике якоря имеются пазы, куда закладывается обмот­ка, которая соединяется с коллектором и через угольные щетки 5 присоединяется к источнику питания через соответствующую пускорегулирующую аппаратуру. Щетки укрепляются в специ­альных щеткодержателях и при работе машины скользят по гладкой поверхности коллектора. Послед­ний набирается из пластин холоднока­таной электролитиче­ской меди, разделен­ных изоляционными прокладками из ми­канита (слюда; проклеенная лаком). Ча­сто электродвигатели постоянного тока снабжаются допол­нительными полюса­ми, служащими для уменьшения искре­ния на коллекторе. Дополнительные полюсы, так же как и главные, крепятся к станине. На них распо­лагается обмотка, включаемая в цепь якоря последовательно. Крупные электродвигатели постоянного тока снабжаются ком­пенсационной обмоткой, которая закладывается в пазы полюсных башмаков (выступающая часть полюсов). Компенсационная об­мотка служит для устранения реакции якоря, вызываемой влиянием магнитного потока якоря на основной поток главных полю­сов, в результате чего усиливается искрение на коллекторе.

Наибольшее применение для привода механизмов подъемно-транспортных машин получили асинхронные электродвига­тели трехфазного тока (рис. 6). Основными частями электродвига­теля (рис. 6, а) являются вращающий ротор 2 и неподвижный статор 1, которые набираются из тонких листов электротехнической стали толщиной 0,5 мм. В специально предусмотренных пазах размещаются обмотки 3 статора и 4 ротора. Обмотка статора всегда выполняется трехфазной и может включаться звездой и треугольником (рис. 6, б). Выводы от нее присоединяются к зажимам электродвигателя, к которым с помощью соответствую­щей пускорегулирующей аппаратуры подается питание от сети.

Различают асинхронные электродвигатели с фазным и короткозамкнутым ротором, на валах которых укрепляется кры­латка 7 для охлаждения. У первых обмотка ротора выполняет­ся трехфазной и через кольца 5 и щетки 6 присоединяется к пусковым сопротивлениям. В электродвигателях с короткозамкнутым ротором обмотка ротора состоит из медных, латунных или алюминиевых стержней, помещенных в пазах ротора и замкнутых между собой с его торцов кольцами. Эти стержни могут составлять или одинарную, или двойную «беличью» клет­ку. В первом случае электродвигатель имеет недостаточно удов­летворительную пусковую характеристику. Более приемлемыми являются двухклеточные асинхронные электродвигатели. У них стержни верхней клетки ротора выполняются из материала с большим удельным сопротивлением (латунь, алюминиевая брон­за и т. д.), стержни нижней клетки делаются с малым удель­ным сопротивлением (красная медь). В момент пуска такого электродвигателя (при подаче трехфазного тока в обмотку статора) ток протекает по стержням верхней клетки, имеющей срав­нительно небольшое индуктивное сопротивление в момент пуска и значительное активное сопротивление. Это равноценно введе­нию пускового реостата в роторную цепь и приводит к умень­шению пускового тока и увеличению пускового момента. После разгона электродвигателя, когда частота тока в обмотке ротора упадет, ток протекает по стержням нижней клетки, имею­щей небольшое активное сопротивление.

Аналогично работают электродвигатели с глубоким пазом, обладающие повышенными пусковыми моментами по сравнению с обычными электродвигателями. Так, у электродвигателей с нормальным короткозамкнутым ротором отношение пускового момента к номинальному составляет 0,8—1,3 при значительном пусковом токе (5?7 I н ), электродвигатели же с двойной клет­кой или глубоким пазом могут развивать двукратный пусковой момент при меньшем пусковом токе. Это позволяет широко применять их для привода электроталей, кранбалок, лифтов и машин непрерывного транспорта. Обычные же асинхронные электродвигатели с короткозамкнутым ротором из-за трудно­стей с регулированием скорости применяются в подъемно-тран­спортных машинах очень редко. Механизмы кранов и других портовых подъемно-транспортных машин приводятся асинхронны­ми электродвигателями с фазным ротором.

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector