Auto-park24.ru

Журнал "Автопарк"
5 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Что бы произошло если не было тепловых двигателей

Что бы произошло если не было тепловых двигателей

«Физика — 10 класс»

Что такое термодинамическая система и какими параметрами характеризуется её состояние.
Сформулируйте первый и второй законы термодинамики.

Именно создание теории тепловых двигателей и привело к формулированию второго закона термодинамики.

Запасы внутренней энергии в земной коре и океанах можно считать практически неограниченными. Но для решения практических задач располагать запасами энергии ещё недостаточно. Необходимо так же уметь за счёт энергии приводить в движение станки на фабриках и заводах, средства транспорта, тракторы и другие машины, вращать роторы генераторов электрического тока и т. д. Человечеству нужны двигатели — устройства, способные совершать работу. Большая часть двигателей на Земле — это тепловые двигатели.

Тепловые двигатели — это устройства, превращающие внутреннюю энергию топлива в механическую работу.

Принцип действия тепловых двигателей.

Для того чтобы двигатель совершал работу, необходима разность давлений по обе стороны поршня двигателя или лопастей турбины. Во всех тепловых двигателях эта разность давлений достигается за счёт повышения температуры рабочего тела (газа) на сотни или тысячи градусов по сравнению с температурой окружающей среды. Такое повышение температуры происходит при сгорании топлива.

Одна из основных частей двигателя — сосуд, наполненный газом, с подвижным поршнем. Рабочим телом у всех тепловых двигателей является газ, который совершает работу при расширении. Обозначим начальную температуру рабочего тела (газа) через T1. Эту температуру в паровых турбинах или машинах приобретает пар в паровом котле. В двигателях внутреннего сгорания и газовых турбинах повышение температуры происходит при сгорании топлива внутри самого двигателя. Температуру Т1 называют температурой нагревателя.

Роль холодильника.

По мере совершения работы газ теряет энергию и неизбежно охлаждается до некоторой температуры Т2, которая обычно несколько выше температуры окружающей среды. Её называют температурой холодильника. Холодильником является атмосфера или специальные устройства для охлаждения и конденсации отработанного пара — конденсаторы. В последнем случае температура холодильника может быть немного ниже температуры окружающего воздуха.

Таким образом, в двигателе рабочее тело при расширении не может отдать всю свою внутреннюю энергию на совершение работы. Часть тепла неизбежно передаётся холодильнику (атмосфере) вместе с отработанным паром или выхлопными газами двигателей внутреннего сгорания и газовых турбин.

Эта часть внутренней энергии топлива теряется. Тепловой двигатель совершает работу за счёт внутренней энергии рабочего тела. Причём в этом процессе происходит передача теплоты от более горячих тел (нагревателя) к более холодным (холодильнику). Принципиальная схема теплового двигателя изображена на рисунке 13.13.

Рабочее тело двигателя получает от нагревателя при сгорании топлива количество теплоты Q1, совершает работу А’ и передаёт холодильнику количество теплоты Q2

Так как у всех двигателей некоторое количество теплоты передаётся холодильнику, то η

Карно придумал идеальную тепловую машину с идеальным газом в качестве рабочего тела. Идеальная тепловая машина Карно работает по циклу, состоящему из двух изотерм и двух адиабат, причем эти процессы считаются обратимыми (рис. 13.14). Сначала сосуд с газом приводят в контакт с нагревателем, газ изотермически расширяется, совершая положительную работу, при температуре Т1, при этом он получает количество теплоты Q1.

Затем сосуд теплоизолируют, газ продолжает расширяться уже адиабатно, при этом его температура понижается до температуры холодильника Т2. После этого газ приводят в контакт с холодильником, при изотермическом сжатии он отдаёт холодильнику количество теплоты Q2, сжимаясь до объёма V4

Как следует из формулы (13.17), КПД машины Карно прямо пропорционален разности абсолютных температур нагревателя и холодильника.

Главное значение этой формулы состоит в том, что в ней указан путь увеличения КПД, для этого надо повышать температуру нагревателя или понижать температуру холодильника.

Любая реальная тепловая машина, работающая с нагревателем, имеющим температуру Т1, и холодильником с температурой Т2, не может иметь КПД, превышающий КПД идеальной тепловой машины: Процессы, из которых состоит цикл реальной тепловой машины, не являются обратимыми.

Формула (13.17) даёт теоретический предел для максимального значения КПД тепловых двигателей. Она показывает, что тепловой двигатель тем эффективнее, чем больше разность температур нагревателя и холодильника.

Лишь при температуре холодильника, равной абсолютному нулю, η = 1. Кроме этого доказано, что КПД, рассчитанный по формуле (13.17), не зависит от рабочего вещества.

Но температура холодильника, роль которого обычно играет атмосфера, практически не может быть ниже температуры окружающего воздуха. Повышать температуру нагревателя можно. Однако любой материал (твёрдое тело) обладает ограниченной теплостойкостью, или жаропрочностью. При нагревании он постепенно утрачивает свои упругие свойства, а при достаточно высокой температуре плавится.

Сейчас основные усилия инженеров направлены на повышение КПД двигателей за счёт уменьшения трения их частей, потерь топлива вследствие его неполного сгорания и т. д.

Для паровой турбины начальные и конечные температуры пара примерно таковы: Т1 — 800 К и Т2 — 300 К. При этих температурах максимальное значение коэффициента полезного действия равно 62 % (отметим, что обычно КПД измеряют в процентах). Действительное же значение КПД из-за различного рода энергетических потерь приблизительно равно 40 %. Максимальный КПД — около 44% — имеют двигатели Дизеля.

Охрана окружающей среды.

Трудно представить современный мир без тепловых двигателей. Именно они обеспечивают нам комфортную жизнь. Тепловые двигатели приводят в движение транспорт. Около 80 % электроэнергии, несмотря на наличие атомных станций, вырабатывается с помощью тепловых двигателей.

Однако при работе тепловых двигателей происходит неизбежное загрязнение окружающей среды. В этом заключается противоречие: с одной стороны, человечеству с каждым годом необходимо всё больше энергии, основная часть которой получается за счёт сгорания топлива, с другой стороны, процессы сгорания неизбежно сопровождаются загрязнением окружающей среды.

При сгорании топлива происходит уменьшение содержания кислорода в атмосфере. Кроме этого, сами продукты сгорания образуют химические соединения, вредные для живых организмов. Загрязнение происходит не только на земле, но и в воздухе, так как любой полёт самолёта сопровождается выбросами вредных примесей в атмосферу.

Одним из следствий работы двигателей является образование углекислого газа, который поглощает инфракрасное излучение поверхности Земли, что приводит к повышению температуры атмосферы. Это так называемый парниковый эффект. Измерения показывают, что температура атмосферы за год повышается на 0,05 °С. Такое непрерывное повышение температуры может вызвать таяние льдов, что, в свою очередь, приведёт к изменению уровня воды в океанах, т. е. к затоплению материков.

Отметим ещё один отрицательный момент при использовании тепловых двигателей. Так, иногда для охлаждения двигателей используется вода из рек и озёр. Нагретая вода затем возвращается обратно. Рост температуры в водоёмах нарушает природное равновесие, это явление называют тепловым загрязнением.

Для охраны окружающей среды широко используются различные очистительные фильтры, препятствующие выбросу в атмосферу вредных веществ, совершенствуются конструкции двигателей. Идёт непрерывное усовершенствование топлива, дающего при сгорании меньше вредных веществ, а также технологии его сжигания. Активно разрабатываются альтернативные источники энергии, использующие ветер, солнечное излучение, энергию ядра. Уже выпускаются электромобили и автомобили, работающие на солнечной энергии.

Источник: «Физика — 10 класс», 2014, учебник Мякишев, Буховцев, Сотский

Основы термодинамики. Тепловые явления — Физика, учебник для 10 класса — Класс!ная физика

Тепловые двигатели. Второй закон термодинамики

1. Принцип действия и основные элементы теплового двигателя

В курсе физики основной школы вы уже познакомились с различными видами тепловых двигателей и их устройством. Тепловые двигатели сыграли большую роль в истории человечества и сохраняют огромное значение сегодня. Они движут автомобили, вращают турбины тепловых электростанций, разгоняют космические корабли.

Принцип действия теплового двигателя

Тепловые двигатели названы так потому, что в них сжигают топливо (например, газ или бензин) для получения высокой температуры. Она нужна для того, чтобы увеличить давление газа, который совершает работу при расширении (например, двигая поршень, соединенный передаточным механизмом с ведущими колесами автомобиля). Этот газ называют рабочим телом.

При расширении газу передается количество теплоты Q1. На рисунке 43.1 график зависимости p(V) при расширении газа схематически показан красной линией. Как вы уже знаете, работа Aг, совершенная при этом газом, численно равна площади фигуры под этим графиком (на рисунке она закрашена).

Читать еще:  Ваз 2110 диагностика двигателя что может показать

Действие теплового двигателя имеет циклический характер, то есть представляет собой последовательность повторяющихся одинаковых процессов. Поэтому после того, как газ расширился, совершив работу, его надо сжать до прежнего объема, чтобы он снова смог совершить работу при следующем расширении.

Сжимая газ, надо совершать работу над газом. Чтобы двигатель совершал полезную работу, работа по сжатию газа должна быть меньше работы газа при его расширении. Для этого надо сжимать газ при меньшем давлении. А чтобы уменьшить давление газа, надо понизить его температуру, Для этого при сжатии надо охлаждать газ, то есть отбирать у него некоторое количество теплоты Q2.

График зависимости p(V) при сжатии более холодного газа изображен на графике (рис. 43.2) синей линией. Работа Aвнеш внешних сил, совершаемая при этом над газом, численно равна площади фигуры под этим графиком (на рисунке она закрашена).

Полезная работа Aпол совершенная двигателем за один цикл, равна разности работы газа Aг и работы внешних сил Aвнеш:

Из этого соотношения следует, что полезная работа численно равна площади, заключенной внутри цикла в координатах p, V. Она закрашена на рисунке 43.3.

Подсказка. Воспользуйтесь первым законом термодинамики и тем, что при возвращении в начальное состояние внутренняя энергия газа не изменилась.

Основные элементы теплового двигателя

Итак, тепловой двигатель состоит из следующих основных элементов (рис. 43.4).

  • Нагреватель – сжигаемое топливо. Нагреватель имеет высокую температуру T1 и при контакте с рабочим телом передает ему количество теплоты Q1.
  • Рабочее тело – обычно газ.
  • Холодильник – обычно окружающий воздух или вода водоема. Температура T2 холодильника ниже температуры нагревателя: T2 0, коэффициент полезного действия любого теплового двигателя меньше 100 %.

? 2. За некоторое время нагреватель передал рабочему телу количество теплоты 5 кДж, а рабочее тело отдало холодильнику количество теплоты 4 кДж. Чему равен КПД?

Максимально возможный КПД теплового двигателя

Исследуя различные циклические процессы, французский ученый С. Карно доказал, что

максимально возможный коэффициент полезного действия теплового двигателя

В этой формуле T1 – температура нагревателя, а T2 – температура холодильника.

Как увеличить КПД теплового двигателя? Из формулы (5) следует, что этого можно достичь двумя способами: повышая температуру T1 нагревателя и понижая температуру T2 холодильника. Какой способ более эффективен?

Чтобы ответить на этот вопрос, заметим, что температура холодильника T2 не может быть ниже температуры окружающего воздуха, поэтому особенно сильно понизить ее невозможно. Следовательно, единственно возможный путь – повышать насколько возможно температуру T1 нагревателя. Однако и тут есть ограничение: температура нагревателя не должна превышать температуру плавления материалов, из которых изготовлен двигатель.

Формула (5) соответствует максимально возможному КПД теплового двигателя. У реальных тепловых двигателей он существенно меньше максимально возможного. Например, КПД лучших двигателей внутреннего сгорания составляет 30–40 %.

? 3. Чему равен максимально возможный КПД теплового двигателя, если температура нагревателя 1000 ºС, а температура холодильника 20 ºC?

3. Пример расчета КПД цикла

Вычисление КПД для циклов реальных тепловых двигателей требует использования высшей математики. Мы рассмотрим упрощенный циклический процесс a – b – c – d – a, происходящий с идеальным одноатомным газом (рис. 43.5).

Прежде чем начинать расчеты, проведем качественное рассмотрение.

? 4. В следующей таблице приведены качественные характеристики некоторых этапов указанного циклического процесса. Перенесите таблицу в тетрадь и объясните содержание заполненных ячеек таблицы. Заполните остальные ячейки.

Итак, мы видим, что газ получает от нагревателя некоторое количество теплоты только на этапах a – b и b – c.

Напомним теперь, что коэффициент полезного действия равен отношению полезной работы Aпол к полученному от нагревателя количеству теплоты Q. Мы установили,что это количество теплоты газ получил в процессе a – b – c.

Согласно первому закону термодинамики:

где Aг и ∆U – работа газа и изменение его внутренней энергии в процессе a – b – c.

? 5. Чему равна работа газа Aг в процессе a – b – c?
Подсказка. Воспользуйтесь тем, что работа газа численно равна площади фигуры под графиком зависимости p(V).

Для нахождения изменения внутренней энергии газа воспользуемся формулой (§ 42):

В состоянии с произведение давления газа на его объем равно 2p * 2V = 4pV, а в состоянии a это произведение равно pV. Следовательно,

? 6. Чему равно количество теплоты Q, полученное газом от нагревателя за один цикл?
Подсказка. Воспользуйтесь формулой (6), результатом задания 4 и формулой (7).

Для нахождения КПД осталось найти полезную работу газа за один цикл.

? 7. Чему равна полезная работа газа за один цикл?
Подсказка. Воспользуйтесь тем, что полезная работа численно равна площади, заключенной внутри цикла в координатах (p, V).

Теперь можно найти КПД данного цикла.

? 8. Чему равен КПД данного цикла?
Подсказка. Воспользуйтесь результатами заданий 5–7.

4. Второй закон термодинамики

Обратимые и необратимые процессы и явления Среди происходящих вокруг нас явлений есть такие, которые могут протекать практически одинаково как в прямом, так и в обратном направлении во времени – как в фильме, который показывают в обратном порядке, от конца к началу. Такие явления называют обратимыми.

Явления же, которые могут протекать только в одном направлении, называют необратимыми.

Практически обратимыми являются механические явления, в которых очень мала роль трения: например, колебания груза на нити или на пружине.

Если заснять их, а затем показывать фильм в обратном порядке, зрители не заметят «обращения времени»: им будет казаться, что они наблюдают реальный процесс.

Однако те механические явления, в которых трение играет существенную роль, являются необратимыми: если показывать фильм о таких явлениях в обратном порядке, зрители сразу же это заметят.

Например, при прямом показе фильма катящийся по траве мяч замедляется и останавливается, а при обратном показе лежащий на траве мяч вдруг ни с того ни с сего начинает катиться, причем с возрастающей скоростью.

Среди тепловых явлений также есть обратимые и необратимые. Например, при адиабатном сжатии и расширении газа (то есть при отсутствии теплопередачи) газ ведет себя подобно пружине: если надавить на поршень, под которым находится газ в теплоизолированном цилиндрическом сосуде, а затем отпустить поршень, то он начнет совершать колебания – как груз на пружине.

Однако те тепловые явления, в которых существенную роль играет теплопередача, нельзя рассматривать как обратимые даже приближенно, так как теплопередача направлена всегда в одну сторону – от горячего тела к холодному.

Поскольку трение или теплопередача в той или иной степени присутствуют в любом процессе, все происходящие в природе процессы являются необратимыми. Например, колебания груза, подвешенного на нити или на пружине, могут продолжаться довольно долго, но постепенно они затухают и в конце концов прекращаются.

Второй закон термодинамики

Необратимость процессов обусловлена тем, что более упорядоченное состояние вещества со временем переходит в менее упорядоченное. (Закономерность такого перехода обосновывается с помощью теории вероятностей, но это обоснование выходит за рамки нашего курса.)

Например, вследствие трения кинетическая энергия тела, движущегося как единое целое, превращается в энергию хаотического движения молекул. При теплопередаче упорядоченность также уменьшается: у тел с разной температурой молекулы «рассортированы» по энергиям (средняя энергия молекул одного тела больше средней энергии молекул другого тела), а после выравнивания температур средние энергии молекул обоих тел становятся одинаковыми.

Утверждение о необратимости процессов в природе называют вторым законом термодинамики. Есть несколько равноценных с физической точки зрения формулировок этого закона. Например, немецкий ученый Р. Клаузиус предложил такую формулировку:
невозможен процесс, единственным результатом которого была бы передача некоторого количества теплоты от холодного тела к горячему.

В этой формулировке речь идет о передаче некоторого количества теплоты как единственном результате. Домашний холодильник осуществляет передачу тепла в обратном направлении – от холодных продуктов в морозильной камере к теплому окружающему воздуху, но при этом электродвигатель холодильника потребляет электроэнергию, которая вырабатывается на электростанции. Выработка же электроэнергии сопровождается необратимыми процессами. Поэтому охлаждение продуктов в морозильной камере – не единственный результат всего процесса.

5. Энергетический и экологический кризисы

Энергетический кризис понимают как недостаток энергии для развития промышленного производства. Он является сегодня одной из острых проблем цивилизации. Но как согласовать энергетический кризис с законом сохранения энергии: ведь если энергия сохраняется, то как ее может не хватать?
Дело в том, что энергетический кризис состоит прежде всего в недостатке энергии, пригодной для преобразования в механическую. Например, мы видели, что при работе тепловых двигателей происходит преобразование химической энергии топлива в механическую энергию, которая затем превращается в энергию хаотического движения частиц. Это преобразование энергии является необратимым.

Запасы топлива на нашей планете неуклонно уменьшаются: например, разведанных запасов нефти при нынешнем темпе ее использования хватит всего на несколько десятилетий. Таким образом, энергетический кризис является следствием необратимости процессов, происходящих в природе и технике.

Не менее серьезной проблемой, стоящей перед человечеством, является экологический кризис.

Огромные масштабы преобразования энергии уже начали оказывать воздействие на климат Земли и состав атмосферы.

Во всех тепловых двигателях в качестве холодильника используется окружающая среда (атмосферный воздух и вода открытых водоемов). В результате происходит повышение температуры окружающей среды, называемое тепловым загрязнением (рис. 43.6).

Оно усугубляется тем, что при сгорании огромного количества топлива повышается концентрация углекислого газа в земной атмосфере. В результате атмосфера не пропускает в космическое пространство тепловое излучение нагретой Солнцем поверхности Земли. Из-за этого возникает так называемый парниковый эффект, вследствие которого температура может повыситься еще больше.

Ученые установили, что средняя температура на Земле в течение последних десятилетий неуклонно повышается. Одной из причин этого может быть работа большого и все возрастающего количества тепловых двигателей – в основном на электростанциях и в автомобилях. Это грозит глобальным потеплением с весьма нежелательными последствиями. К их числу относятся таяние ледников и подъем уровня мирового океана.

Кроме того, при сжигании топлива в тепловых двигателях расходуется необходимый для жизни атмосферный кислород, а также образуются вредные вещества, загрязняющие атмосферу. Качество воздуха в больших городах оставляет желать лучшего.

Чтобы смягчить негативные последствия работы тепловых двигателей, стараются максимально повысить их КПД и уменьшить выбросы вредных веществ.

ТВОРЧЕСКИЙ ПРОЕКТ Разработка урока по теме: «Тепловые двигатели. КПД теплового двигателя. За и против…» по дисциплине «Физика»
методическая разработка по физике (10 класс) на тему

Подробный план-конспект открытого урока физики по Шадрикову, проведенный в группе по профессии «Повар, кондитер».

Скачать:

ВложениеРазмер
Открытый урок по физике45.99 КБ
презентация к уроку2.7 МБ

Предварительный просмотр:

Министерство образования и науки Российской Федерации

Федеральное государственное образовательное учреждение

дополнительного профессионального образования «Межрегиональный

институт повышения квалификации специалистов начального

Разработка урока по теме: «Тепловые двигатели. КПД теплового двигателя. За и против…» по дисциплине «Физика»

Выполнила: Хафизова Минзихан Габдулловна

Преподаватель ГАПОУ «Чистопольский многопрофильный колледж»

Руководитель: Бахтина Ирина Анатольевна

План — конспект урока

Тема урока: «Тепловые двигатели. КПД теплового двигателя. За и против…»

Методическая тема: «Использование инновационных технологий в деятельности преподавателя физики».

— разъяснить принцип действия теплового двигателя на примере работы

ДВС: карбюраторного и дизельного двигателей,

паровой турбины и реактивного двигателей;
— ознакомить с влиянием тепловых двигателей на окружающую среду;

— способы борьбы с отрицательным влиянием;

— научить выделять важные моменты, используя таблицу (за и против…)

воспитывающая:
— воспитывать интерес к предмету, умение видеть экологические проблемы, связанные с развитием техники.

развивающая:
— формировать логическое мышление посредством составления структурно-логических схем;
— содействовать развитию у учащихся умения самостоятельного приобретения знаний.

ОК 2. Организовывать собственную деятельность, исходя из цели и способов ее достижения, определенных руководителем.

ОК 3. Анализировать рабочую ситуацию, осуществлять текущий и итоговый контроль, оценку и коррекцию собственной деятельности, нести ответственность за результаты своей работы.

ОК 4. Осуществлять поиск информации, необходимой для эффективного выполнения профессиональных задач.

ОК 5. Использовать информационно-коммуникационные технологии в профессиональной деятельности.

ОК 6. Работать в команде, эффективно общаться с коллегами, руководством, клиентами.

ПК 1.5 Оформлять техническую документацию

Тип урока: Комбинированный

Вид урока: смешанный (беседа, самостоятельная работа, решение задач…)

Диалогический, эвристический, исследовательский метод ( организация самостоятельной работы; практические, проблемно-поисковые задания; мультимедийное сопровождение)

Межпредметные связи: физика, химия, математика

Первый и второй законы термодинамики, адиабатный процесс.

Материально-техническое дидактическое оснащение урока:

Плакаты, устройства различных ТД и их модели, компьютер, мультимедийный проектор, видеоролик «Тепловые двигатели и их применение», презентация.

  1. Организационный момент.
  2. Опрос учащихся по заданному на дом материалу ,
  3. Изучение нового учебного материала.
  1. Некоторые сведения из истории создания тепловых двигателей.
  2. Принцип действия тепловых двигателей.
  3. Принцип действия ДВС: карбюраторного и дизельного двигателей.
  4. Принцип действия паровой турбины и реактивного двигателя.
  5. КПД теплового двигателя.
  6. Цикл Карно. КПД машины Карно.
  7. Воздействие двигателей на окружающую среду.
  8. Способы борьбы с отрицательным влиянием
  1. Закрепление учебного материала :

1 .Анализ составленной структурно-логической схемы.

2.Решение задач по теме «КПД тепловых двигателей».

  1. Задание на дом .
  2. Рефлексия.
  3. Подведение итогов.

1.Организационный момент , включающий:

постановку цели, которая должна быть достигнута учащимися на данном этапе урока (что должно быть сделано учащимися, чтобы их дальнейшая работа на уроке была эффективной)

определение целей и задач, которых учитель хочет достичь на данном этапе урока;

описание методов организации работы учащихся на начальном этапе урока, настроя учеников на учебную деятельность, предмет и тему урока (с учетом реальных особенностей класса, с которым работает педагог) .

Цель: Подготовка учащихся к началу работы на уроке.

— проверка готовности учащихся к уроку

— проверка готовности доски, наглядного и дидактического материала.

Здравствуйте, ребята! Садитесь! Кто сегодня отсутствует? Ребята, вы готовы к уроку? Сегодняшний урок будет состоять из нескольких частей: проверка домашнего задания. Объяснение нового материала, закрепление изученного материала в виде составления структурно-логической схемы, решения задач…

Методы организации работы учащихся: словесный

Сегодня на уроке мы с вами познакомимся с новой и интересной темой, качественной темой, поскольку именно эта тема является ярким примером применения законов термодинамики. Кроме того, сегодня мы с вами продолжим работу над составлением структурно-логических схем (на доске уже начерчена пустая схема). (Слайд1)

А сейчас, начнем, как обычно, с проверки домашнего задания.

Цель: Подготовиться к работе на уроке.

2.Опрос учащихся по заданному на дом материалу , включающий:

определение целей, которые учитель ставит перед учениками на данном этапе урока (какой результат должен быть достигнут учащимися);

определение целей и задач, которых учитель хочет достичь на данном этапе урока;

описание методов, способствующих решению поставленных целей и задач;

описание критериев достижения целей и задач данного этапа урока;

определение возможных действий педагога в случае, если ему или учащимся не удается достичь поставленных целей;

описание методов организации совместной деятельности учащихся с учетом особенностей класса, с которым работает педагог;

описание методов мотивирования (стимулирования) учебной активности учащихся в ходе опроса;

описание методов и критериев оценивания ответов учащихся в ходе опроса. Проверка домашнего задания

Цель: Установление правильности выполнения домашнего задания учащимися.

— выявление уровня знаний учащихся по теме. определение ошибок в знаниях, их причины и ликвидация.

Методы решения задач:

— словесный (ответить на вопросы)

— упражнения (выполнение задания на доске)

Критерии достижения целей:

— наличие ошибок в ответе

— работа с учебником

Совместной деятельности учащихся на данном этапе нет.

— метод взаимной проверки (один учащийся отвечает, другой его проверяет)

— создание ситуаций успеха (индивидуальный подбор заданий разного уровня сложности

( Перед диктантом проверка готовности и фронтальный опрос по вопросам из диктанта (Слайд 2-6 немного вспомним ) ).

Вопросы к физическому диктанту:

1.Процесс, при котором один из макроскопических параметров остается неизменным, называется — …

2.Запишите первое начало термодинамики.

3.В чем физический смысл первого начала термодинамики

4.Запишите первый закон термодинамики для изохорного процесса;

5.Запишите первый закон термодинамики для изотермического процесса;

6.Дайте определение адиабатному процессу

7.Запишите первый закон термодинамики для адиабатного процесса

8.Сформулируйте второе начало термодинамики в формулировке Клаузиуса.

Цель: Показать выполнение домашнего задания, получить оценку своей работе

Самооценка – используя критерии, дать оценку своей деятельности

7-8 правильных ответов – оценка «5»

5-6 правильных ответов – оценка «4»

3-4 правильных ответа – оценка «3»

0-2 правильных ответов– оценка «2»

2.(∆U = Q+A — Изменение внутренней энергии системы при ее переходе из одного состояния в другое равно сумме количества теплоты, подведенного системе извне, и работы внешних сил, действующих на нее).

3.(в том, что вечный двигатель создать невозможно!)

4.(При изохорном процессе объем газа остается постоянным, поэтому газ не совершает работу. Изменение внутренней энергии газа происходит благодаря теплообмену с окружающими телами — ∆U = Q).

5.(При изотермическом процессе температура постоянна, поэтому внутренняя энергия не изменяется. Количество теплоты, переданное газу от нагревателя, полностью расходуется на совершение работы — Q=A).

6.(процесс, при котором отсутствует теплообмен);

7.(Адиабатный процесс – термодинамический процесс в теплоизолированной системе — A=-∆U ).

8. (В циклически действующем тепловом двигателе невозможно преобразовать все количество теплоты, полученное от нагревателя, в механическую работу.

Объяснение нового учебного материала. Данный этап предполагает:

постановку конкретной учебной цели перед учащимися (какой результат должен быть достигнут учащимися на данном этапе урока);

определение целей и задач, которые ставит перед собой учитель на данном этапе урока;

изложение основных положений нового учебного материала, который должен быть освоен учащимися (на основе содержания данного пункта эксперт выносит суждение об уровне владения педагогом предметным материалом);

описание форм и методов изложения (представления) нового учебного материала;

описание основных форм и методов организации индивидуальной и групповой деятельности учащихся с учетом особенностей класса, в котором работает педагог;

описание критериев определения уровня внимания и интереса учащихся к излагаемому педагогом учебному материалу;

описание методов мотивирования (стимулирования) учебной активности учащихся в ходе освоения нового учебного материала;

Цель: Ф ормирование знаний о тепловых двигателях, видах тепловых двигателей, КПД тепловых двигателей, воздействие ТД на окружающую среду, меры борьбы с вредным воздействием ТД на все живое на земле.

— дать понятие о ТД;

— научить учащихся различать виды двигателей;

— вычислять КПД ТД;

— исследовать воздействие ТД на окружающую среду;

— мотивировать учащихся найти возможности выхода из экологического кризиса.

Методы изложения нового материала:

— рассказ учителя (объяснение нового материала)

— демонстрация (показ презентации, моделей ТД)

Критерии определения уровня внимания:

— высокий (дети активны)

— средний (дети отвлекаются)

— низкий (дети не заинтересованы)

— метод поощрения (похвала учителем ребёнка)

Итак, мы с Вами на прошлых уроках изучили первый закон термодинамики и его применение к изопроцессам, рассмотрели новый процесс – АДИАБАТНЫЙ. Еще раз, скажите, пожалуйста, что это за процесс?
Чем он характеризуется?
Назовите, пожалуйста, самый яркий пример адиабатного процесса в технике.

Совершенно верно. Двигатель Дизеля или дизель относится к тепловым двигателям. Сегодняшний урок мы посвятим изучению тепловых двигателей, их применению и КПД. Тепловой двигатель. (Слайд 8-9)

Цель: Получить знания о тепловых двигателях, видах тепловых двигателей, КПД тепловых двигателей, воздействие ТД на окружающую среду, меры борьбы с вредным воздействием ТД на все живое на земле.

Исследовать воздействие ТД и найти способы устранения Экологического кризиса для всего человечества

Методы организации деятельности учащихся:

— частично-поисковый (изучение ТД, видов ТД, воздействие ТД на окружающую среду)

Почему вечный двигатель невозможен

Когда речь заходит о вечном двигателе, главная проблема — путаница в формулировках. Почему-то некоторые считают, что вечный двигатель – это машина, которая движется постоянно, что она никогда не останавливается. Эта правда, но лишь отчасти.

Действительно, если вы однажды установили и запустили вечный двигатель, он должен будет работать до «скончания времён». Назвать срок работы двигателя «долгим» или «продолжительным» – значит сильно преуменьшить его возможности. Однако, ни для кого не секрет, что вечного двигателя в природе нет и не может существовать.

Но как же быть с планетами, звездами и галактиками? Ведь все эти объекты находятся в постоянном движении, и это движение будет существовать постоянно, до тех пор пока существует Вселенная, пока не наступит время вечной, бесконечной, абсолютной темноты. Это ли не вечный двигатель?

Именно при ответе на этот вопрос и вскрывается та путаница в формулировках, о которой мы говорили в начале. Вечное движение не есть вечный двигатель! Само по себе движение во Вселенной «вечно». Движение будет существовать до тех пор, пока существует Вселенная. Но так называемый вечный двигатель — это устройство, которое не просто движется бесконечно, оно еще и вырабатывает энергию в процессе своего движения. Поэтому верно то определение, которое даёт Википедия:

Вечный двигатель — это воображаемое устройство, вырабатывающее полезную работу бо́льшую, чем количество сообщённой этому устройству энергии.

В интернете можно найти множество проектов, которые предлагают модели вечных двигателей. Глядя на эти конструкции, можно подумать, что они способны работать без остановки, постоянно вырабатывая энергию. Если бы нам действительно удалось спроектировать вечный двигатель, последствия были бы ошеломляющими. Это был бы вечный источник энергии, более того, бесплатной энергии. К сожалению, из-за фундаментальных законов физики нашей Вселенной, создание вечных двигателей невозможно. Разберёмся, почему это так.

Физика работы вечного двигателя

В нашей Вселенной безраздельно властвует закон сохранения энергии. Согласно этому закону, энергия всегда сохраняется. Это означает, что энергия не может быть ни создана, ни разрушена. Вместо этого она просто переходит из одного состояния в другое. Чтобы движение осуществлялось постоянно, энергия системы должна всегда оставаться постоянной и никуда не выделяться. Из одного этого факта следует, что вечный двигатель построить нельзя.

Почему? Чтобы поддерживать постоянное движение, мы должны соблюсти много требований к нашему устройству:

  1. Машина не должна иметь каких-либо «трущихся» частей. Любая движущаяся часть не должна касаться других деталей. Трение, которое будет создано между деталями, в конечном счете приведёт к тому, что двигатель потеряет свою энергию. Создание гладкой поверхности недостаточно, так как не существует идеально гладких объектов. Тепло всегда будет генерироваться при трении двух частей (образование тепла требует энергетических затрат, поэтому двигатель будет терять энергию).
  2. Машина должна работать в вакууме (без воздуха). Этот пункт напрямую связан с причиной, указанной в предыдущем пункте. Эксплуатация машины не в вакууме приведет к потере ее энергии за счет трения между движущимися частями и воздухом. Хотя потеря энергии из-за трения деталей двигателя о воздух очень мала, помните, что мы говорим о вечных двигателях. То есть, если существует малейший механизм потерь, то двигатель в конце концов потеряет свою энергию (даже если это займет очень много времени).
  3. Двигатель не должен воспроизводить звук. Звук также является формой передачи энергии. Если машина издает какие-либо звуки, это ведёт к потере энергии. Хотя эта проблема исчезнет, если двигатель будет работать в вакууме, поскольку в вакууме звук распространяться не может.

И даже если предположить, что когда-нибудь мы сможем соблюсти все эти условия и построить такое устройство, которое будет двигаться вечно. Сможем ли мы получать из него энергию? Да, но только ту энергию, которая использовалась для приведения этого устройства в движение. Вечный двигатель в реальной жизни будет просто хранить изначально переданную ему энергию. Мы должны помнить, что энергия не может быть создана; она всегда лишь преобразуется из одной формы в другую. Так что, если вам удастся построить идеальную машину, способную двигаться вечно, вам понадобится энергия, чтобы запустить её. Это единственная энергия, которую вы сможете в конечном итоге получить обратно.

Материал подготовлен репетитором по физике на Юго-Западной Сергеем Валерьевичем

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector