Auto-park24.ru

Журнал "Автопарк"
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Асинхронный двигатель схема соединения обмоток число полюсов

3.12. Обмотки фазных роторов асинхронных двигателей

По своей конструкции и схемам соединения обмотки фазных роторов машин переменного тока. В роторах машин мощностью до 80. 100 кВт обычно применяют катушечные обмотки. Конструктив­но катушечные обмотки фазных роторов отличаются от статорных только расположением лобовых частей и наличием на них бандажей. В схемах отличие состоит в выборе начал фаз обмотки. Если расстояние между началами фаз обмотки статора выбирается минимально возможным для обеспечения большей компактности расположения выводных концов, то в обмотке ротора их стремятся расположить равномерно по окружности, чтобы облегчить баланси­ровку обмотанного ротора.

С увеличением размеров машины уменьшается число витков в обмотке статора. Соответственно должно уменьшиться и число вит­ков обмотки ротора, так как иначе напряжение на контактных коль­цах возрастает, что может послужить причиной пробоя изоляции во время пуска машины. Поэтому в машинах больших габаритов об­мотку ротора выполняют стержневой, имеющей всегда два эффек­тивных проводника в пазу. Число витков в обмотке ротора при этом уменьшается, а ток ротора возрастает. Поэтому обмотку вы­полняют из прямоугольной меди или медных шин с площадью попе­речного сечения, много большей, чем сечение проводников обмотки статора.

Стержневую обмотку ротора, как правило, делают волновой, так как в волновой обмотке меньше межгрупповых соединений, ко­торые технологически трудновыполнимы при большом сечении проводников.

Основные закономерности соединений схем волновых обмоток фазных роторов рассмотрим на следующем примере. Составим схе­му стержневой волновой обмотки ротора, имеющего число пазов Z2= 24 и число полюсов 2р2 = 4. На рис. 3.40, а показаны 24 линии пазов, в которых расположены проводники верхнего слоя обмотки. Разметим эти пазы по фазам, предварительно определив полюсное деление τ2 = Z2 / 2p2 = 24/ 4 = 6 пазовым делениям и число пазов на полюс и фазу q2 = Z2/ (2p2m2) = 24/ (43) = 2.Стрелками на линиях ука­жем для первой фазы направления мгновенных значений токов в стержнях (одинаковые

Рис. 3.40. К построению схемы стержневой волновой обмотки фазного ротора

асинхронного двигателя, Z = 24, 2р = 4:

а – схема соединений одной фазы; б – последовательность соединения стержней

в пределах каждого полюсного деления и изменяющиеся на обратные при переходе на соседние полюсные деле­ния) и начнем построение схемы обмотки, приняв за начало первой фазы (К1) верхний стержень, лежащий в первом пазу.

Обмотку выполняют с диаметральным шагом. В данной схеме шаг обмотки по пазам у = τ2 = 6 зубцовых делений. Обмотка двух­слойная, поэтому верхний стержень из паза 1 должен быть соединен с нижним стержнем паза 1 + у = 1 + 6 = 7. Далее нижний стержень паза 7 соединяется с верхним стержнем паза 7 + у = 7 + 6= 13 и т. д. Одновременно с вычерчиванием схемы целесообразно записывать последовательность шагов обмотки (рис. 3.40, б).

Проделав таким образом 2р2 1 = 4 — 1 = 3 шага, убеждаемся, что при следующем — четвертом (по числу полюсов) шаге обмотка замкнется сама на себя, так как 2р2τ2 = Z2. При построении схемы этот шаг укорачивают или удлиняют на одно зубцовое деление, т. е. делают его равным у 1 или у + 1. Чаще встречаются схемы с укоро­ченными переходными шагами, так как они приводят к некоторой экономии меди обмотки. При удлиненном шаге возникают допол­нительные перекрещивания лобовых частей верхнего и нижнего сло­ев у выхода стержней из паза.

Укороченным (или удлиненным) шагом завершается первый об­ход обмотки по окружности ротора. После q2 таких обходов (в рас­сматриваемом примере — после двух обходов) изменение последне­го шага производить нельзя, так как это приведет обмотку данной фазы к стрежням соседней. Для соединения оставшихся после пер­вых q2 обходов стержней фазы последний стержень, на котором занимающим такое же положение в пазу на расстоянии шага от него в направле­нии обхода, т. е. нижний стержень паза 18 соединяют с нижним стержнем паза 18 + 6 = 24. Далее продолжают обход в том же порядке, но изменив его направление. Построение обмотки заканчивается после q2 обходов в обратном направлении.

Начала других фаз обмотки располагают симметрично через 2р2q2 пазовых делений, т. е. через 1/3 окружности ротора (см. § 3.5).

Полная схема обмотки, построение которой начато в примере на рис. 3.40, приведена на рис. 3.41. За начала фаз приняты верхние стержни, расположенные в пазах 1, 9 и 17. Рассмотренная обмотка является типичной для стержневых волновых обмоток фазных рото­ров асинхронных двигателей.

Отметим некоторые особенности обмоток данного типа. В стерж­невой волновой обмотке имеется только по одной перемычке на фазу независимо от числа полюсов, в то время как в катушечных двух­слойных обмотках таких перемычек — межгрупповых соединений — необходимо установить 2р — 1 на каждую фазу. Это обстоятельство существенно облегчает соединение схемы, особенно в многополюс­ных машинах. При симметричном расположении начал фаз также симметрично располагают перемычки и концы фаз. Если за начала фаз приняты верхние стержни пазов, то концами фаз также будут верхние стержни, а перемычки соединяют с нижними стержнями.

Рис. 3.41. Схема стержневой волновой обмотки фазного ротора, Z = 24, 2p = 4, a = 1

Находят применение также некоторые модификации рассмот­ренных схем обмоток роторов. Иногда в схемах выполняют укоро­ченные переходные шаги по обходу ротора в одну сторону и удли­ненные — в другую. В таких схемах перемычки смещаются на несколько пазовых делений, поэтому конструктивно выводные кон­цы фаз не пересекаются с перемычками, что облегчает крепление ло­бовых частей.

Распространены также схемы обмоток фазных роторов, выпол­няемых без перемычек. В таких обмотках в каждой из фаз на месте последнего при прямом обходе стержня, который в обычных схемах соединяют с перемычкой (см., например, на рис. 3.41 нижние стерж­ни в пазах 2, 10, 18), устанавливают изогнутый переходной стер­жень. На схеме одной фазы обмотки без перемычек (рис. 3.42) пере­ходной стержень размещен в 26-м пазу (отмечен кружком на схеме). Переходной стержень изгибается так, что одна половина его по дли­не находится в нижнем слое паза, а другая — в верхнем. Обе лобовые части стержня отгибают в одну и ту же сторону. После установ­ки переходного стержня направление обхода меняется на обратное так же, как после установки перемычек в рассмотренных ранее схе­мах. В такой обмотке концы фаз располагают на противоположной от начал фаз стороне ротора.

Отсутствие перемычек упрощает конструкцию обмоток и тех­нологию соединения схемы. Расположение начал и концов фаз на разных торцах ротора облегчает установку выводных концов и соединительной шины на конечных выводах обмотки для соеди­нения ее в звезду. В то же время наличие переходных, изогнутых по длине стержней требует их дополнительного

крепления в пазах (рис. 3.43).

Рис. 3.42. Схема (а) и последовательность соединения (б) одной фазы

стержневой волновой обмотки фазного ротора с

переходным стержнем, Z = 36, 2p = 4

Волновую стержневую обмотку выполняют с одной и, реже, с двумя параллельными ветвями. Образование большего числа парал­лельных ветвей технологически сложно. Для получения двух парал­лельных ветвей перемычку между половинами фаз убирают и каж­дую часть обмотки соединяют с начальным и конечным выводами фаз сохраняя в них направление тока.

Рис. 3.43. Положение переходного стержня в пазу ротора:

1 – переходный стержень; 1 – уплотняющие клинья;

3 – сердечник ротора

В большинстве случаевстержневыеволновые обмотки роторов выполняют с целым число пазовна полюс и фазу. Однако на прак­тике встречаются обмотки и с дробным q2. При q2 = b + с/d по­люсное деление τ2 = m2q2 содер­жит дробное число пазовых деле­ний (обмотки с d, кратным трем, в трехфазных машинах не применяют) и шаг обмотки выполняют с различны­ми шагами: большими, равными у’ = τ2 + ε1 пазовых делений, и малыми, равными

Рис. 3.44. Схема и последовательность соединения одной фазы

стержневой волновой обмотки фазного ротора, Z = 30, 2p = 4, q =

у» = τ2 – ε2 пазовых делений, где ε1 и ε2 — наименьшие дробные числа, при которых y’ и у» выражаются целыми числами. Количество больших и малых шагов, а также последовательность соединений стержней в схеме зависят от числа q2 и находятся аналогично числу и чередованию бо­льших и малых катушечных групп в двухслойных катушечных об­мотках с дробным q. Наиболее часто дробные обмотки фазных роторов выполняют при знаменателях дробности d = 2, т. е. с q2 = ,и т. п. В таких обмотках большие шаги равны у’ = τ2 + 1/2, а малые у» = τ2 — 1/2 пазовых делений. Схему обмотки строят так же, как и при целом q2, но большие шаги чередуют с малыми. Последовательность чередования шагов до перемычки и после изме­няется на обратную.

На примере схемы обмотки с q2 = , приведенной на рис. 3.44, видно, что две (прямая и обратная) ветви обмотки располагают та­ким образом, что в каждой фазной зоне занято стержнями фазы q2 = 2 + 1/2 паза (три верхние половины паза и две нижние либо наоборот). В оставшейся свободной половине паза размещают стержень, принадлежащий соседней фазе.

Подключение двигателя (звезда или треугольник)

  1. Как подключить асинхронный двигатель
  2. Почему сгорит электродвигатель при неправильном соединении
  3. Почему при подключении звездой, ток не становится меньше (при неизменной нагрузке)
  4. Схема подключения обмоток электродвигателя звездой
  5. Схема подключения обмоток электродвигателя треугольником
  6. Почему при пуске применяют схему звезда-треугольник
  7. Будьте внимательны.
  8. Подводим итоги:

Дорогие читатели, а вы знаете как подключить асинхронный двигатель?

Имею в виду, можете определить по шильдику, когда надо подключить обмотки электродвигателя звездой, а когда треугольником?

В этой статье я подробно расскажу как подключить асинхронный двигатель. А также Вы узнаете много разных нюансов при подключении электродвигателя.

А вы знали, что если двигатель рассчитан на напряжение 380/660В- треугольник/звезда, и если его подключить по схеме звезда на напряжение 380 вольт, то в определённых условиях он сгорит. Стало интереснее? Тогда советую ознакомиться со статьёй.

Перед чтением этой статьи рекомендую прочитать статью «Что такое мощность».

Как подключить асинхронный двигатель

Специалист перед подключением электродвигателя всегда поглядит на его шильдик и ознакомится со схемой подключения обмоток электродвигателя.

Шильдик асинхронного электродвигателя выглядит примерно вот так:

По информации на шильдике мы делаем вывод, что если у нас напряжение 380 вольт, то подключаем электродвигатель по схеме треугольник. Если у нас 660 вольт, то по схеме звезда.

Читать еще:  Chery bonus a13 2012 с чего двигатель

Так же бывают двигатели на 220/380 вольт:

По шильдику видно, что если у нас напряжение в сети 220 вольт, то подключаем треугольником. Следовательно, если 380 вольт, то звездой.

Теперь Вы уже хотя бы понимаете, как подключить асинхронный двигатель, ориентируясь на шильдик.

Почему сгорит электродвигатель при неправильном соединении

Сейчас я вкратце расскажу, почему электродвигатель, у которого обмотки на 380/660 треугольник/звезда, нельзя подключать звездой на 380 вольт.

Давайте представим, что в данный момент у нас линейное напряжение равно 380 вольт.

Что такое линейное напряжение, а фазное? Не знаете? Сейчас расскажу!

Линейное напряжение – это напряжение между линейными проводами (фазами), а фазное между линейным проводом и нейтральным.

Дело в том, что при соединении обмоток треугольником, на каждую обмотку приходится линейное напряжение 380 вольт,

а при соединении звездой фазное — 220 вольт.

В итоге нам надо поддерживать требуемую мощность на валу двигателя, а напряжение упало с 380 вольт до 220 вольт (переключили обмотки с треугольника на звезду), что же делать? Ток всё сделает за нас. Он начнёт расти.

Это формула для однофазной сети, но для понимания сути пойдёт.

P=UI

Где, P- мощность, U-напряжение, I-ток.

Подставим в нашу формулу выдуманные значения и получим следующее: 440=220*2, а теперь уменьшим напряжение в два раза, 440=110*4. Увидели? Напряжение уменьшили в два раза, но, чтобы поддержать заданную мощность у нас вырос ток в два раза.

Почему при подключении звездой, ток не становится меньше (при неизменной нагрузке)

При соединении обмоток электродвигателя треугольником фазный ток в 1.73 раза меньше линейного.

Давайте приведу пример: На шильдике электродвигателя указан ток 30А при соединении обмоток треугольником и напряжением 380 вольт. 30 ампер — это линейный ток, значит, чтобы получить фазный, нам надо 30/1.73. В итоге фазный ток равен 17,3 Ампера. Т.е. номинальный ток для обмотки двигателя 17,3 Ампера.

А теперь мы переключим двигатель с треугольника на звезду, но нагрузка на валу двигателя остаётся таже самая.

При соединении электродвигателя звездой линейный ток будет равен фазному. Напряжение на обмотке уменьшится в 1.73 раза. Следовательно на обмотку будет подаваться уже не 380 вольт, а 220.

В результате по обмотке будет протекать не 17,3 А, а целых 30 Ампер. Почему?

Потому что ток будет компенсировать падение напряжения на обмотке, которое у нас упало в 1,73 раза. Значит ток вырастит в 1,73 раза. Двигатель греется и если отсутствует защита — сгорает. А двигатель стоит немалых денег, поэтому Вы должны знать как подключить асинхронный двигатель!

Еще один пример для понимания. Обратите внимание на следующий шильдик электродвигателя:

Электродвигатель треугольник/звезда: 220 вольт/380 вольт: 38,3/22,2 Ампера.

Соединяем двигатель треугольником и подаём напряжение 220 вольт. Ток (линейный) по шильдику равен 38,3 Ампер. Следовательно, фазный будет равен 38,3/1,73= 22,2 Ампер. Т.е мы определили, что фазный номинальный ток для обмотки = 22,2 Ампер. Поехали дальше…

А теперь соединяем обмотки электродвигателя звездой и подаём напряжение 380 Вольт. Ток будет равен 22,2 Ампер. В звезде линейный ток равен фазному току.

При треугольнике и питающем напряжении 220 вольт, фазный ток равен 22,2 Ампер.

При звезде и питающем напряжении 380 вольт, фазный ток равен 22,2 Ампер. Следовательно мощность у двигателя будет одинаковая при таких подключениях.

А, что если мы соединим этот двигатель звездой и подадим напряжение 220 вольт. На обмотку будет приходиться уже 127 Вольт. Поэтому ток будет компенсировать падение напряжение на обмотке в 1,73 раза и будет равен 38,3 Ампер. А обмотка у нас рассчитана на 22,2 Ампер. Двигатель сгорит.

Схема подключения обмоток электродвигателя звездой

Вот так выглядит борно электродвигателя и здесь обмотки соединены звездой. Т.е. концы обмоток соединены в одной точке.

Мои коллеги-инженеры сталкивались с такими случаями, когда перемычки кидали на начало обмоток, куда подключался питающий кабель. Сразу возникало короткое замыкание.

Фазное и линейное напряжение при соединении обмоток в звезду разное, а ток одинаковый.

А теперь давайте найдём полную мощность, развиваемую электродвигателем.

Полная мощность в трёхфазной системе равна сумме полных мощностей трёх фаз:

И теперь формула полной мощности будет выглядеть вот так:

А чтобы найти активную мощность применим следующую формулу:

где cosф- коэффициент мощности, n- КПД

Из формулы активной мощности выразим ток:

Схема подключения обмоток электродвигателя треугольником

Вот так выглядит борно электродвигателя и здесь обмотки соединены треугольником. Т.е. конец обмотки соединён с началом следующей обмотки.

Фазное и линейное напряжение равны. Линейный ток в 1,73 раза больше фазного.

Формула полной мощности будет выглядеть вот так:

Если обратить внимание на формулу полной мощности при подключении звездой, то мы заметим, что формулы полной мощности одинаковые.

А чтобы найти активную мощность применим следующую формулу:

где cosф- коэффициент мощности, n- КПД

Из формулы активной мощности выразим ток:

Внимательный читатель должен был заметить, что формула мощности одинаковая при подключении треугольником и при подключении звездой. Так и есть, просто, чтобы поддержать необходимую мощность, у нас будет меняться ток.

Но чтобы двигатель не сгорел при переключении с треугольника на звезду, надо уменьшить нагрузку на валу двигателя до тех пор, пока фазный ток не станет равный фазному току при подключении треугольником.

Поэтому и говорят, что мощность при подключении обмоток электродвигателя звездой меньше, чем при соединении треугольником.

Почему при пуске применяют схему звезда-треугольник

Формула мощности в момент пуска не действует, т.к. двигатель не вращается – ЭДС Самоиндукции отсутствует (индуктивное сопротивление).

По факту у нас есть обмотка с очень маленьким сопротивлением и напряжение, подаваемое на двигатель. И ток здесь рассчитывается по закону Ома. Чем меньше у нас подаваемое напряжение на обмотку электродвигателя, тем меньше будет ток в обмотке.

А мы помним, что при треугольнике у нас на обмотку подаётся линейное напряжение, а при звезде напряжение будет в 1.73 раза меньше чем на треугольнике. Следовательно, и пусковые токи будут меньше.

Но не забываем, что закон Ома действует только в момент пуска электродвигателя. Когда двигатель выходит на номинальные обороты, ему необходимо поддерживать мощность, которая присутствует на валу. А так как напряжение при звезде меньше в 1.73 раза, то начинает подниматься ток, чтобы компенсировать падение напряжения на обмотках электродвигателя.

Будьте внимательны.

Бывает попадаются шильдики электродвигателей, которые путают электриков, и они могут допустить ошибку при подключении. Например: Написана буква V, под ней нарисован треугольник, а внизу два напряжения 400 Вольт на 50 Герц и 460 Вольт на 60 Герц. Специалист думает, что буква V-это значок звезды, а так как у него напряжение 400 Вольт, то подключает звездой. А на самом деле этот движок рассчитан на одно лишь подключение- треугольником. А буква V обозначает напряжение.

Обмотчик электрических машин — Схемы обмоток статоров многоскоростных двигателей

Содержание материала

  • Обмотчик электрических машин
  • Классификация и основные элементы
  • Потери и кпд электрических машин
  • Особенности электрических машин различных типов
  • Требования к изоляции
  • Изоляционные материалы
  • Обмоточные провода
  • Методы изолирования токопроводящих частей электрических машин
  • Виды и конструкция изоляции обмоток
  • Виды обмоток
  • Основные элементы и обозначения обмоток машин переменного тока
  • Способы изображения схем обмоток
  • Схемы трехфазных однослойных обмоток статоров
  • Схемы трехфазных двухслойных обмоток статоров
  • Соединение обмоток статоров в несколько параллельных ветвей
  • Обмотки статоров с дробным числом пазов на полюс и фазу
  • Схемы обмоток статоров многоскоростных двигателей
  • Особенности схем обмоток одно- и двухфазных двигателей
  • Намотка катушек из круглого провода
  • Укладка однослойных обмоток статоров из круглого провода
  • Укладка двухслойных обмоток статоров из круглого провода
  • Механизация изготовления и укладки обмоток статоров из круглого провода
  • Обмотки статоров для механизированной укладки
  • Механизированная намотка статоров совмещенным методом
  • Заклинивание пазов обмоток статоров
  • Механизированная намотка статоров раздельным методом
  • Формовка и бандажирование лобовых частей обмотки статоров
  • Комплексная механизация намотки статоров
  • Изготовление катушек из прямоугольного провода
  • Укладка обмоток статоров в полуоткрытые пазы
  • Укладка обмоток статоров в открытые пазы
  • Крепление обмоток статоров из прямоугольного провода
  • Изготовление стержневых обмоток статоров машин переменного тока
  • Особенности укладки обмоток статоров крупных электрических машин
  • Схемы обмоток фазных роторов
  • Обмотки фазных роторов с дробным числом пазов на полюс и фазу
  • Таблицы положений стержней в волновых обмотках роторов
  • Технология изготовления стержней волновых обмоток фазных роторов асинхронных двигателей
  • Технология укладки стержневой обмотки ротора
  • Короткозамкнутые роторы
  • Основные элементы и обозначения обмоток якорей машин постоянного тока
  • Простые петлевые обмотки машин постоянного тока
  • Уравнительные соединения машин постоянного тока первого рода
  • Простые волновые обмотки машин постоянного тока
  • Несимметричные волновые обмотки машин постоянного тока
  • Сложные петлевые и волновые обмотки машин постоянного тока
  • Уравнительные соединения машин постоянного тока второго рода
  • Комбинированные обмотки машин постоянного тока
  • Изготовление катушек якоря из круглого провода
  • Изготовление катушек якоря из прямоугольного провода
  • Особенности изготовления одновитковых обмоток якоря
  • Подготовка якоря к укладке обмотки якоря
  • Укладка обмотки якоря
  • Конструкция и типы коллекторов
  • Пайка коллекторов
  • Крепление обмоток якорей и роторов
  • Намотка проволочных бандажей
  • Бандажи из стеклоленты
  • Отделка якоря
  • Крепление обмоток роторов турбогенератора
  • Виды полюсных катушек обмоток возбуждения
  • Катушки обмоток возбуждения из изолированного провода
  • Катушки обмоток возбуждения из неизолированной шинной меди, намотанной плашмя
  • Катушки обмоток возбуждения из шинной меди, намотанной на ребро
  • Особенности изготовления катушек возбуждения крупных синхронных гидрогенераторов
  • Пропиточные составы и методы пропитки обмоток
  • Сушка обмоток
  • Пропитка обмоток лаками с растворителями
  • Пропитка обмоток лаками без растворителей
  • Пропитка обмоток в компаундах
  • Контроль и испытания обмоток
  • Измерение сопротивления обмоток
  • Измерение сопротивления изоляции обмоток
  • Контроль обмоток, уложенных в пазы
  • Проверка правильности маркировки выводных концов фаз обмотки статора
  • Испытание электрической прочности изоляции обмоток
  • Испытание междувитковой изоляции обмоток
  • Автоматизация испытаний электрических машин
  • Виды и система планово-предупредительных ремонтов
  • Частичный ремонт обмоток
  • Ремонт обмоток статоров
  • Ремонт обмоток фазных роторов асинхронных двигателей
  • Ремонт обмоток якорей, катушек возбуждения
  • Заключение, литература
Читать еще:  Что входит в двигатель внутреннего сгорания в автомобиле

Во многих механизмах требуется изменять скорость в процессе работы. Чаще всего для привода таких механизмов используют двигатели постоянного тока, но в ряде случаев применяют также и асинхронные двигатели, как более дешевые и надежные.
Частоту вращения асинхронного двигателя можно определить по формуле n= 1 — s) = (60f/p)(1 s). Из этой формулы следует, что частоту вращения асинхронного двигателя можно регулировать, изменяя частоту питающего тока I, скольжение s или число пар полюсов двигателя р. На практике применяют все три способа регулирования. Изменение частоты тока возможно с помощью статических преобразователей частоты. Скольжение меняют путем включения активного сопротивления в. цепь фазного ротора. Число полюсов обмотки можно изменить в двигателях, имеющих обмотки, соединенные в специальные схемы.

Такие двигатели называют многоскоростными, а их обмотки — полюсно-переключаемыми.
Переключение чисел обмотки асинхронного двигателя — простой и распространенный метод регулирования, так как не требуется дополнительного оборудования и в то же время обеспечивается работа двигателя с достаточно высокими энергетическими показателями на разных частотах вращения. Он широко применяется на практике, несмотря на то что частота вращения этим методом изменяется только ступенями. Частота вращения поля в машине n= 60f/p. При токе промышленной частоты f= 50 Гц она равна 3000 об/мин при 2р = 2, 1500 об/мин при 2р — 4, 1000 об/мин при 2р — 6 и т. д.
Частота вращения двигателя при переключении ее обмотки на разные числа полюсов меняется в таком же соотношении. Изменения числа полюсов статора можно достичь двумя способами: установкой в пазы статора двух независимых обмоток, выполненных на разные числа полюсов, или переключением схемы соединения катушечных групп одной обмотки.
Первый способ дает возможность получить любые соотношения между числами полюсов и, следовательно, между частотами вращения двигателя. Недостатком такого способа регулирования является неполное использование объема пазов статора, так как в пазы укладываются обе обмотки, а двигатель работает только на одной из них. Вторая обмотка в это время отключена и занятая ею часть объема пазов не используется. Это вызывает необходимость увеличения размеров пазов и всего двигателя по сравнению с односкоростным той же мощности.
Второй способ изменения числа полюсов основан на изменении направлений магнитных потоков в машине путем переключения схемы обмотки. На рис. 37, а на поперечном сечении машины с 2р = 2 условно показано положение двух катушечных групп (1 и 4), принадлежащих одной фазе в двухполюсной обмотке. Стрелками отмечено направление магнитных силовых линий потока машины. На схеме соединения катушечных групп этой фазы также стрелками отмечено направление обтекания их током. Причем направление стрелки над катушечной группой вправо (1-я катушечная группа) соответствует направлению силовых линий потока от центра, а влево (4-я катушечная группа) — к центру. При таком соединении катушечных групп обмотка образует два полюса. На рис. 37, б такое же построение проделано для четырехполюсной машины, одной фазе обмотки которой принадлежат 1, 4, 7 и 10-я катушечные группы.

Рис. 37. Направления потоков в магнитопроводе и условные схемы обмотки одной фазы машины:
а —с двумя катушечными группами при 2р=2, б — с четырьмя катушечными, группами при 2р=4, в — с двумя катушечными группами при 2р=4

При встречном включении четырех катушечных групп, т. е. при принятой в обычных двухслойных обмотках схеме, обмотка образует четыре полюса: два одной и два другой полярности. Такую же картину поля можно получить и при двух катушках в одной фазе обмотки, если их включить не встречно, а согласно, как показано на рис. 37, в. Сравнив между собой направления потоков и схемы обмоток, видим, что изменение направления тока в одной катушечной группе фазы двухполюсной обмотки приводит к увеличению числа полюсов с двух до четырех, т. е. в два раза. Если таким же образом изменить схему соединений двух (4-ю и 10-ю или 1-ю и 7-ю) катушечных групп четырехполюсной машины, то распределение потока будет такое же, как в машине с = 8. Таким образом, изменение направления включения половины катушечных групп в схеме двухслойной обмотки приводит к увеличению числа полюсов машины в два раза.
Этот принцип используется во всех двухскоростных асинхронных двигателях с отношением чисел полюсов 1 : 2, например в двигателях с переключением чисел полюсов с = 2 на = 4 или с = 4 на 2р = 8.
В коробке выводов многоскоростных двигателей шесть зажи- мов,к которым подсоединены выводные концы обмоток (рис. 38, а). Они обозначаются так же, как и выводные концы обычных обмоток (см. табл. 2), но перед обозначением ставится число, указывающее, сколько полюсов будет иметь обмотка, если эти выводы подключить к сети. Для работы двухскоростного двигателя на 2р — 2/4 с числом полюсов 2р = 2 с сетью соединяются выводы 2С1, 2С2 и 2СЗ (рис. 38, б); выводы 4С1, 4С2 и 4СЗ соединены между собой накоротко. Обмотка при этом соединяется в звезду с двумя параллельными ветвями. Если с сетью соединены выводы 4С1, 4С2 и 4С3, а выводы 2С1, 2С2 и 2С3 разомкнуты (рис. 38, в), то обмотка образует четыре полюса и соединяется в треугольник при а — 1.
Аналогичные схемы включения имеют двухскоростные двигатели и на другие числа полюсов (2р = 4/8, 6/12 и т. п.). Схемы соединений — звезда или треугольник — и числа параллельных ветвей каждой из схем определяются требованиями к соотношениям мощностей двигателей при различных частотах вращения.


Рис. 38. Схема включения обмоток на
а — соединения внутри машины, б — включение обмотки на 2р=2 при а= 2, в —включение обмотки на 2р=4 при а— 1

В статор трехскоростного двигателя укладывают две раздельные обмотки: одна обычная, а другая полюсно-переключаемая, например в двигателе на 2р = 4/6/8 обычная обмотка имеет 6 полюсов, а полюсно-переключаемая — 2р = 4/8.
В четырехскоростном двигателе также две самостоятельные обмотки, обе полюсно-переключаемые, например, в двигателе на 2р = 4/6/8/12 одна обмотка может быть включена на 4 или 8 полюсов, а вторая — на 6 или 12.
В новых сериях асинхронных двигателей применяют более сложные схемы полюсно-переключаемых обмоток, которые позволяют изменять числа полюсов и в отношениях, отличных от 1:2. В серии 4А выпускаются, например, двигатели с одной полюсно-переключаемой обмоткой на 2р = 4/6 или на 2р = 6/8 полюсов и т. д. Количество выводных концов и их обозначения остаются такими же, как и в ранее рассмотренных схемах.

СПОСОБ СОЕДИНЕНИЯ ОБМОТКИ СТАТОРА ТРЕХФАЗНОГО АСИНХРОННОГО ДВИГАТЕЛЯ, ПЕРЕКЛЮЧАЕМОЙ НА РАЗНЫЕ ЧИСЛА ПОЛЮСОВ Советский патент 1929 года по МПК H02K17/14

Описание патента на изобретение SU12147A1

Плавное регулирование оборотов индукционного мотора трехфазного тока возможно лишь с потерями энергии, вызываемыми включением сопротивления в цепь ротора или применением более сложных устройств в роде каскадного включения и т.п. Поэтому часто прибегают к методу переключения полюсов у трехфазных моторов, чтобы достигнуть, по крайней мере, нескольких определенных чисел оборотов. Для этой цели известны различные обмотки и соединения, дающие определенное соотношение чисел оборотов. В большинстве случаев, однако, определенная обмотка и определенное соединение бывают пригодны для одного лишь соотношения, например 1:2, так что для получения иных ступеней скоростей все же приходится прибегать к другим вспомогательным средствам, как, например, применение двух моторов в каскадном соединении или различных обмоток на одном моторе и т.д.

Предлагаемое изобретение касается способа соединения обмотки статора на числа полюсов, находящиеся в отношении 6:4:2 (6n:4n:2n) и заключается в том, что обмотка машины, соединенная при 6n полюсах треугольником, при 4n и 2n полюсах переключается по особой схеме на звезду-треугольник. При этом для каждого числа полюсов используются все витки обмотки, благодаря чему должно быть достигнуто сравнительно хорошее использование последней.

При получении числа полюсов 4n, согласно изобретению, для образования одной фазы служат те из 9n частей обмоток одной 6n-полюсной обмотки, которые являются соседними и смещены друг по отношению к другу на 6π, а также те части отдельных обмоток, которые лежат между двумя группами и сдвинуты по отношению к ним на , где 2π есть при этом угол в 360 электрических градусов.

Для получения числа полюсов 2n части отдельных обмоток включены навстречу друг другу описанным образом в образующихся фазах путем перемены начала и конца обмоток.

Известно уже полюсное переключение нормальной 6n-полюсной обмотки на 4n-полюсную, при котором из 9n частей 6n-полюсной обмотки каждые три катушки, смещенные на вместе с им противолежащими, смещенными на 6π, катушками, образуют одну фазу. Новое расположение, при котором три части обмотки не смещены на равномерно друг по отношению к другу, но при котором две части из них лежат непосредственно рядом, а третья сдвинута на , имеет, по сравнению с известными, прежде всего то преимущество, что из 4n-полюсного включения можно без дальнейших изменений получить 2n-полюсное. Достигается это путем включения в обратном направлении, меняя конец и начало той части обмотки, которая смещена на . Эта последняя операция у известного до сих пор способа включения была невозможна.

На чертеже фиг. 1 и 2 изображают схемы нормальной 12 (6n)-полюсной обмотки; фиг. 3 — схему этой же обмотки при 8 (4n)-полюсном включении; фиг. 4 — схему обмотки при 4 (2n) — полюсном включении; фиг. 5 и 6 — соответственно видоизменения двух последних схем.

Способ переключения обмотки на числа полюсов, находящиеся в отношении 6:4:2, описывается применительно к обмотке с числами полюсов соответственно 12, 8, 4, при чем указанная обмотка имеет наименьшее возможное число частей или катушек, а именно 18, и является обмоткой с одним проводом — на полюс и фазу. Изобретение может, разумеется, быть распространено без дальнейших изменений и к обмоткам со многими проводами на полюс и фазу; обмотки эти будут иметь тогда большее число частей или катушек. Таким образом, под упоминаемыми ниже частями обмотки следует понимать также и группы катушек.

Читать еще:  Горит лампа давления масла на прогретом двигателе газель

Согласно изобретению, отдельные, получающиеся при переключении с 6n на 4n и 2n, фазы состоят каждая из стороны треугольника и двух лучей звезды смешанного соединения — звезда-треугольник (фиг. 3 и 4). Подразделение фаз на указанные части при этом выполнено так, чтобы обусловленные этим подразделением различные сдвиги фаз токов по времени в частях обмотки одной фазы соответствовали бы пространственным смещениям друг по отношению к другу этих частей обмоток внутри полюсного деления и направлению вращающегося поля, что способствует улучшению обмоточного коэффициента. При включении обмотки на 4n-полюсное соединение (фиг. 3) обе рядом лежащие части обмотки этой фазы, именно части 1 и 18, соответствуют частям 9 и 10 и распределены здесь по двум лучам звезды смешанного соединения звезда-треугольник, части же 5 и 14 принадлежат стороне треугольника, находящейся между указанными лучами. Для того, чтобы токи в лежащих рядом частях отстояли друг от друга на 60°, а в отклонении части одиночной обмотки — на 30° по фазе, части обмоток включены в одной звезде в противоположном направлении по сравнению с другой звездой так, что, например, части 1-10 подходят к нулевой точке звезды своими началами, часть же 9-18 — своими концами. Это противоположное включение указано на чертеже при помощи направления стрелок у частей обмоток. Для 4n-полюсного соединения, при котором лучи звезды соединены последовательно со сторонами треугольника, получается то, что при следовании по обмотке в направлении: луч звезды — сторона треугольника — луч звезды — все части обмоток оказываются включенными последовательно и в одном и том же направлении. Если нужно фазу 1 перестроить на 2n-полюсное включение (фиг. 4), достаточно включить последовательно в противоположном направлении части обмоток 5-14, принадлежащие стороне треугольника. Таким образом, фаза I образуется из частей обмотки 10, 1, 5, 14, 18 и 9, фаза II — из частей 13, 4, 17, 8, 3 и 12, фаза III — из частей 7, 16, 2, 11, 6 и 15. Как видно, лучи звезды составляются из частей двух фаз (это показано противоположным направлением стрелок).

На фиг.5 и 6 изображены несколько видоизмененные соединения для 4n и 2n полюсов. В этом случае рядом расположенные части обмоток фазы I (1-18, соотв. 9-10) подразделены на двух сторонах треугольника соединения звезда-треугольник, а части 5-14 образуют луч звезды, исходящий из угловой точки этих сторон треугольника. Для того, чтобы фазовые положения токов в лежащих рядом частях обмоток опять-таки отличались друг от друга на 60°, эти части обмотки включены по одной стороне треугольника в противоположном направлении по сравнению с другой стороной треугольника, так что не только части 9 и 18, но также и части 1 и 10 своими началами подходят к угловой точке сторон треугольника (показано направлением стрелок). Принадлежащая лучу звезды часть одиночной обмотки 5 и 14 подходит при 4n-полюсном соединении (фиг. 5) своими концами, при 2n-полюсном соединении (фиг. 6) — своими началами к угловой точке треугольника. Фаза тока в частях одиночной обмотки находится тогда снова между фазами токов в последовательно соединенных частях обмотки и имеет по сравнению с этими частями сдвиг по 30° в каждую сторону. Она подходит, таким образом, к пространственным смещениям частей обмотки фазы внутри полюсных делений. Фаза I образуется из частей обмотки 1, 10, 9, 18, 5 и 14; фаза II — из частей 3, 12, 13, 4, 8 и 17; фаза III — из частей 16, 7, 6, 15, 11 и 2.

Приведенные соединения звезда — треугольник (фиг. 3, 4, 5, 6) имеют тот недостаток, что сила тока в лучах звезды больше силы тока в сторонах треугольника в три раза, так что обмотка должна быть выполнена с различным сечением, если желательно избежать неравномерного нагревания. Этот недостаток можно устранить путем параллельного и последовательного включения частей обмотки, при котором все четыре части обмотки в лучах звезды включены частью параллельно, частью последовательно. Расположение это таково, что обе части, обмотки одной фазы включены последовательно, тогда как части, принадлежащие различным фазам, включены параллельно. Разумеется, можно было бы также избрать и другую схему соединений.

Предлагаемые полюсные соединения могут быть также устроены независимо от того, имеется ли обмотка с катушками одинаковой или разной ширины, а также — однослойная, многослойная или какая-нибудь другая обмотка.

Для различных обмоток получаются различные коэффициенты их при разных полюсных числах, и отсюда — разные магнитные индукции.

Магнитная индукция, как известно, зависит главным образом от приложенного напряжения, числа полюсов, обмоточного коэффициента, междуфазового коэффициента (т.-е. отношения напряжений и токов при различном соединении фаз) и также от числа последовательно включенных витков. Например, если задаться постоянным напряжением (чтобы избежать трансформатора) и определенным полюсным числом для данной схемы соединения, можно варьировать магнитную индукцию, а следовательно и момент вращения и мощность мотора для какого-нибудь определенного случая путем изменения обмоточного коэффициента, фазового коэффициента и числа последовательно включенных витков. При предложенной схеме соединения сам по себе обмоточный коэффициент в большинстве случаев различен и, кроме того, изменяется в зависимости от выбора рода обмотки.

Фазовый коэффициент меняется в зависимости от того, включена ли обмотка звездой или треугольником.

Таким образом получается большое разнообразие способов, для того, чтобы установить в определенном случае магнитную индукцию, а следовательно и вращающий момент мотора.

Похожие патенты SU12147A1

Иллюстрации к изобретению SU 12 147 A1

Формула изобретения SU 12 147 A1

1. Способ соединения обмотки статора трехфазного асинхронного двигателя, переключаемой на числа полюсов, находящиеся в отношении 6:4:2, характеризующийся тем, что при переключении обмотки с 6n полюсов с целью получения соединения катушек обмотки в звезду-треугольник как 4n-, так и 2n-полюсной обмотки, соседние по расположению на статоре катушки, смещенные взаимно на угол 6π, где π отвечает полюсному шагу обмотки, например катушки 1, 18 или 9, 10 (фиг. 1), включаются в два луча звезды с соединением этих катушек навстречу друг другу, тогда как катушки, смещенные относительно первых на угол , например катушки 5 и 14 (фиг. 1), включаются в сторону треугольника, находящуюся между названными выше лучами звезды, при чем при 4n-полюсной обмотке все катушки, расположенные по пути: луч звезды — сторона треугольника — луч звезды соединяются последовательно, а при 2n-полюсной обмотке катушки, входящие в сторону треугольника, переключаются на обратное соединение (фиг. 6 и 7).

2. Видоизменение охарактеризованного в п. 1 способа, отличающееся тем, что соседние по расположению на статоре катушки, например катушки 1 и 18 (фиг. 1), вводятся каждая в одну из сторон треугольника так, что к вершине последнего обращены начала, а катушки, смещенные относительно первых на угол , например катушки 5 и 14 (фиг.1), вводятся в луч звезды, выходящий из названной выше вершины и присоединяются к ней при 4n-полюсной обмотке своими «концами», а при 2n-полюсной обмотке — своими «началами» (фиг. 5 и 6).

МНОГОСКОРОСТНЫХ АСИНХРОННЫХ ДВИГАТЕЛЕЙ

В статорах многоскоростных асинхронных двигателей применя­ют обмотки, которые могут быть включены на различное число по­люсов. Частота вращения двигателя изменяется при этом ступенчато, обратно пропорционально числу полюсов обмотки. Изменения числа полюсов двигателя можно достичь двумя путями: установкой в пазы статора двух независимых друг от друга обмоток, выполнен­ных на различные числа полюсов, или переключением схемы соединения катушечных групп одной обмотки. Обмотки, рассчитанные для такого способа переключения, называют полюсно-переключаемыми.

Укладка в статор двух независимых обмоток дает возможность получить любые соотношения между числами их полюсов и, следовательно, между частотами вращения двигателя. Недостатком такого способа является неполное использование объема паза статора, так как в пазы укладывают проводники двух обмоток, а двигатель работает на одной из них поочередно. Одна из обмоток во время ра­боты двигателя отключается от сети, и занятая ею часть объема паза не используется. Это приводит к увеличению размеров пазов и всего двигателя по сравнению с односкоростным той же мощности.

Способ изменения числа полюсов в полюсно-переключаемых обмотках основан на изменении направлений магнитных потоков в машине путем переключения схемы обмотки. На рис. 3.36, асхема­тично показано поперечное сечение статора и ротора двигателя и положение двух (7-й и 4-й) катушечных групп, принадлежащих пер­вой фазе двухполюсной обмотки. Стрелками отмечено направление магнитных силовых линий потока машины. На схеме соединения катушечных групп этой фазы также стрелками показано направле­ние обтекания их током, причем направление стрелки над катушеч­ной группой вправо соответствует направлению силовых линий по­тока от центра, а влево — к центру. На рис. 3.36, б такое же построение показано для четырех полюсной машины, одной фазе об­мотки которой принадлежат 1, 4, 7 и 10-якатушечные группы. При встречном включении катушечных групп, т. е. при принятой в обыч­ной двухслойной обмотке схеме, магнитное поле образует четыре полюса.

Рис. 3.36. Потоки в магнитопроводе и условные схемы обмоток:

а – с двумя катушечными группами при 2р = 2; б – с четырьмя катушечными

группами при 2р = 4; в – с двумя катушечными группами при 2р = 4

Такую же картину поля можно получить и при двух катуш­ках в одной фазе, если их включить не встречно, а согласно рис. 3.36, в. Сравнивая направления силовых линий потоков и схе­мы обмоток, видим, что изменение направления тока в половине катушечных групп двухслойной обмотки приводит к изменению числа ее полюсов в 2 раза.

На этом принципе построены двухскоростные полюсно-переключаемые обмотки, в которых числа полюсов изменяются в 2 раза. Двухскоростные обмотки выполняют с шестью выводами. При работе на одном числе полюсов три вывода подключают к сети, а три оставшихся в зависимости от схемы обмотки либо замыкают накоротко, либо оставляют свободными. Обозначения выводов многоскоростных обмоток согласно ГОСТ 26772—85 приведены в табл. 3.17.

Таблица 3.17 Обозначение выводов многоскоростных двигателей,

Дата добавления: 2016-11-04 ; просмотров: 3172 ; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ

Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector