Auto-park24.ru

Журнал "Автопарк"
1 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Асинхронный двигатель с конденсатором принцип работы и устройство

Подключение двухскоростного асинхронного двигателя

Капитальный ремонт токарного станка в процессе. Главный двигатель – двухскоростной

В те времена, когда преобразователи частоты для асинхронных двигателей были роскошью (более 20 лет назад), в промышленном оборудовании в случае необходимости применялись двигатели постоянного тока, в которых имелась возможность регулировать частоту оборотов.

Способ этот был громоздкий, и наряду с ним использовался ещё один, попроще – применялись двускоростные (многоскоростные) двигатели, в которых обмотки подключаются и переключаются определённым образом по схеме Даландера, что позволяет изменять скорость вращения.

Двигатели постоянного тока с изменением скорости и управлением от электронного блока используются в дорогостоящем промышленном оборудовании.

А вот двухскоростные двигатели встречаются в станках производства СССР 1980-х годов средней ценовой категории. И по подключению лично у меня возникали проблемы, в связи с путаницей и недостатком информации.

Последние примеры – токарный станок спец. исполнения, лесопилка. Подробности будут ниже.

Исполнение обмоток напоминает соединение “треугольником”, в связи с этим переключение может быть ассоциировано со “звездой-треугольником”. И это сбивает с толку.

Схема “Звезда – Треугольник” используется для лёгкого пуска двигателей (при этом скорость в обоих режимах одинакова!), а двухскоростные двигатели с переключением обмоток – для переключения рабочих скоростей.

Существуют двигатели не только с двумя, но и с бОльшим количеством скоростей. Но я буду говорить о том, что лично подключал и держал в руках:

Двухскоростной асинхронный электродвигатель Даландера

Поменьше теории, побольше практики. И как обычно, от простого к сложному.

Двухскоростной асинхронный электродвигатель

Обмотки двухскоростного двигателя выглядят таким образом:

Схема двухскоростного двигателя Даландера

При подключении выводов U1, V1, W1 такого двигателя к трехфазному напряжению он будет включен в “треугольник” на пониженную скорость.

А если выводы U1, V1, W1 замкнуть между собой, а питание подать на выводы U2, V2, W2, то получатся две “звезды” (YY), и скорость будет в 2 раза выше.

Что будет, если обмотки вершин треугольника U1, V1, W1 и середин сторон U2, V2, W2 поменять местами? Я думаю, ничего не изменится, тут дело только в названиях. Хотя, я не пробовал. Кто знает – напишите в комментариях к статье.

Схемы подключения

Кто немного не в курсе, как подключаются к трехфазной сети асинхронные электродвигатели – настоятельно рекомендую ознакомиться с моей статьёй Подключение двигателя через магнитный контактор. Я предполагаю, что читатель знает, как включается электродвигатель, зачем и какая нужна защита двигателя, поэтому в этой статье я эти вопросы опускаю.

В теории всё просто, а на практике приходится поломать голову.

Очевидно, что включение обмоток двигателя Даландера можно реализовать двумя путями – через переключатель и через контакторы.

Переключение скоростей с помощью переключателя

Рассмотрим сначала схему попроще – через переключатель типа ПКП-25-2. Тем более, что только такие принципиальные схемы мне и встречались.

Переключатель должен иметь три положения, одно из которых (среднее) соответствует выключенному двигателю. Про устройство переключателя – чуть позже.

Подключение двухскоростного двигателя. Схема на переключателе ПКП.

Крестиками на пунктирах положения переключателя SA1 отмечены замкнутые состояния контактов. То есть, в положении 1 питание от L1, L2, L3 подается на треугольник (выводы U1, V1, W1). Выводы U2, V2, W2 остаются не подключенными. Двигатель вращается на первой, пониженной скорости.

При переключении SA1 в положение 2 выводы U1, V1, W1 замыкаются друг с другом, а питание подается на U2, V2, W2.

Переключение скоростей с помощью контакторов

Схема включения двигателя на разных скоростях на контакторах

Здесь на первую скорость двигатель включает контактор КМ1, на вторую – КМ2. Очевидно, что физически КМ2 должен состоять из двух контакторов, поскольку необходимо замыкание сразу пяти силовых контактов.

Практическая реализация схемы подключения двухскоростного электродвигателя

На практике мне попадались только схемы на переключателях ПКП-25-2. Это универсальное чудо советской коммутации, у которого может быть миллион возможных сочетаний контактов. Внутри есть кулачок (их тоже несколько вариантов по форме), который можно переставлять.

Это реальная головоломка и ребус, требующий высокой концентрации сознания. Хорошо, что каждый контакт просматривается в небольшую щёлку, и можно посмотреть, когда он замкнут или разомкнут. Кроме того, через эти прорези в корпусе можно чистить контакты.

Количество положений может быть несколько, их количество ограничивается упорами, показанными на фото:

Переключатель пакетный ПКП-25-2

Переключатель ПКП 25. Головоломка на любителя.

Переключатель пакетный ПКП-25-2 – контакты

Практическое применение

Как я уже говорил, такие двигатели мне встречались в советских станках, которые я восстанавливал.

А именно – циркулярный деревообрабатывающий станок ЦА-2А-1, там используется двухскоростной асинхронный двигатель 4АМ100L8/4У3. Его основные параметры – первая скорость (треугольник) 700 об/мин, ток 5,0А, мощность 1,4 кВт, звёзды – 1410 об/мин, ток 5,0 А, мощность 2,4 кВт.

Меня просили сделать несколько скоростей, для разной древесины и для разной остроты циркулярной пилы. Но увы – без преобразователя частоты здесь не обойтись.

Другой старичок – токарный станок спец.исполнения УТ16П, там стоит двигатель 720/1440 об/мин, 8,9/11 А, 3,2/5,3 кВт:

Шильдик двухскоростного электродвигателя 11 кВт токарного станка

Переключение также переключателем, а схема станка выглядит так:

схема электрическая токарного станка

В этой схеме есть ошибка, как раз по теме статьи. Во первых, переключение скоростей осуществляется не реле Р2, а выключателем В2. А второе (и главное) – схема переключения абсолютно не соответствует реальности. И она меня сбила с толку, я пытался подключить по ней. Пока не сотворил вот такую схему:

Реальная схема включения двухскоростного двигателя токарного станка УТ16П

Дополнительно – внешний вид и расположение элементов электросхемы.

схема токарного станка – внешний вид

схема электрическая токарного станка – расположение элементов

Друзья! Кому попадаются такие станки и двигателя, пишите, делитесь опытом, задавайте вопросы, буду рад!

Обновление Март 2017

Выкладываю фото и схемы практического включения двухскоростного электродвигателя.

Двигатель работает на гидростанции. На пониженной скорости он дает малое давление, позволяющее управлять механизмами с гидравлическим приводом более точно. На повышенной скорости – давление возрастает примерно в 2 раза, и скорость перемещения соответственно.

Борно двухскоростного двигателя – на клеммы приходят 6 проводов

Схема двухскоростного двигателя

Двухскоростной двигатель гидростанции

Контакторы двухскоростного двигателя. Левый включает в треугольник (низкая скорость), правые – двойная звезда

Мотор-автоматы. Видно, что ток треугольника – до 8А, ток звезд – до 13А

Схема включения силовой части двигателя Даландера.

Схема включения части управления двухскоростного двигателя Даландера.

Коротко о схеме включения двигателя Даландера.

Двигатель включается через реле времени с задержкой отключения.

Реле времени 215А2 включается сразу, а отключается через 5 секунд. Это нужно, чтобы двигатель и контакторы не дергать по пустякам, и кратковременные остановки гидравлических перемещений не отключали двигатель гидростанции.

Далее реле 261К0 включает режим работы треугольник, реле 261К1 – звёзды.

Видео работы двигателя по схеме Даландера

К сожалению, видео на русском по этой теме нет.

Ещё схема, переключение скоростей – через Стоп:

Заточной станок (точило) на двигателе Даландера

Недавно попался заточной станок с двухскоростным двигателем, выкладываю его схему.

Схема заточного станка на двухскоростном двигателе Даландера

Меня часто спрашивают, какую защиту сделать этому двигателю? Вот, на схеме – простое тепловое реле (РТ1), настроенное на бОльший ток (около 11 А).

Читать еще:  Форд фиеста с дизельным двигателем как это

Вот шильдик двигателя:

Параметры двухскоростного двигателя заточного станка

А вот – его обозначения выводов:

Выводы двухскоростного двигателя

Как думаете, почему вместо схемы подключения показан прямоугольничек ПС (переключатель скоростей)? Правильно, схема тогда была бы в 2 раза больше и сложнее.

Скачать

Если тема интересует более глубоко, рекомендую ознакомиться с литературой, приведенной на странице Скачать.

Вот одна из книг, приведенных там:
• Ломоносов, В.Ю.; Поливанов, К.М.; Михайлов, О.П. Электротехника. / Ломоносов, В.Ю.; Поливанов, К.М.; Михайлов, О.П. Электротехника. Одна из лучших книг, посвящённых основам электротехники. Изложение начинается с самых основ: объясняется, что такое напряжение, сила тока и сопротивление, приводятся указания по расчёту простейших электрических цепей, рассказывается о взаимосвязи и взаимозависимости электрических и магнитных явлений. Объясняется, что такое переменный ток, как устроен генератор переменного тока. Описывается, что такое конденсатор и что собой представляет катушка индуктивности, какова их роль в цепях переменного тока. Объясняется, что такое трёхфазный ток, как устроены генераторы трёхфазного тока и как организуется его передача. Отдельная глава посвящена полупроводниковым приборам: в ней речь идёт о полупроводниковых диодах, о транзисторах и о тиристорах; об использовании полупроводниковых приборов для выпрямления переменного тока и в качестве полупроводниковых ключей. Коротко описываются достижения микроэлектроники. Последняя треть книги целиком посвящена электрическим машинам, агрегатам и оборудованию: в 10 главе речь идёт о машинах постоянного тока (генераторах и двигателях); 11 глава посвящена трансформаторам; о машинах переменного тока (однофазных и трёхфазных, синхронных и асинхронных) подробно рассказывается в 12 главе; выключатели, электромагниты и реле описываются в главе 13; в главе 14 речь идёт о составлении электрических схем. Последняя, 15 глава, посвящена измерениям в электротехнике. Эта книга — отличный способ изучить основы электротехники, понять основополагающие принципы работы электрических машин и агрегатов., zip, 13.87 MB, скачан: 2050 раз./

Двигатель с фазным ротором принцип работы

Принцип работы АД (асинхронного двигателя) с фазным ротором

Асинхронный двигатель (АД) с фазным ротором представляет собой многофункциональную силовую установку, которая поддерживает регулировку с помощью внесения в роторную цепь добавочных сопротивлений. От классических моделей с короткозамкнутым ротором агрегат отличается более высоким пусковым моментом и низким пусковым током. Классификация устройств осуществляется с учетом их свойств и конструкции.

  • Общая информация
  • Технические характеристики
  • Устройство и конструкция
  • Принцип работы
  • Плюсы и минусы
  • Сферы применения

Технические параметры

Асинхронная машина обладает следующими техническими характеристиками:

  • габариты и мощность. Они должны равняться приведенным в техрегламенте;
  • степень защиты. При эксплуатации в разных условиях требуется различный уровень защиты. Машина может работать на улице или в помещениях, в зависимости от этого требуется определенный уровень защиты;
  • хорошая степень изоляции. Нужно, чтобы мотор был устойчив нагреванию;
  • вид. Существуют различные типы асинхронных машин, предназначенные для эксплуатации в экстремальных погодных условиях, при очень низких или высоких температурах (в холодной местности на севере или на жаркой территории на юге). Необходимо, чтобы устройство двигателя соответствовало окружающим условиям;
  • абсолютное соответствие режимам работы (на практике и в теории);
  • система охлаждения, работающая согласно конкретному режиму;
  • громкость работы при холостом включении не должна превышать второй класс.

Принцип работы

В основе АД лежит вращение поля магнитов. В область обмотки трёхфазного статора поступает ток, а в фазах возникает поток магнитов, изменяемый в зависимости от скорости и частоты постоянной электрической мощности. При статорном вращении возникает электродвижущая сила.

В роторную обмотку подходит напряжение, которое совместно с постоянным магнитным потоком статора образует пуск. Он стремится направить ротор по магнитному вращению статора и при достижении превышения момента торможения, приводит к скольжению. Оно выражает отношение между частотами статорного силового поля магнитов и скоростью роторного вращения.

Чертеж режима кз

При балансе между моментами электромагнита и торможения, перемена значений остановится. Особенность эксплуатации АД – сольватация кругового движения силового поля статора и им наводящих токов в роторе. Момент вращения возникает лишь при разнице частот круговых движений магнитных полей.

Машины различают синхронные, асинхронные. Разница механизмов в их обмотке. Она образует магнитное поле.

Неподвижность ротора и замыкание обмотки приводит к короткому замыканию (кз).

Отличие от синхронного двигателя

Наряду с простыми асинхронными электрическими машинами в промышленности также используются и синхронные агрегаты. Основным отличием синхронного двигателя является наличие вспомогательной обмотки на роторе, предназначенной для создания постоянного магнитного потока, что показано на рисунке 4 ниже.

Рис. 4. Отличие асинхронного от синхронного электродвигателя

Эта обмотка создает магнитный поток, не зависящий от наличия электродвижущей силы в обмотках статора электродвигателя. Поэтому при возбуждении синхронного электродвигателя его вал начинает вращаться одновременно с полем статора. В отличии от асинхронного типа, где существует разница в движении, которая физически выражается как скольжение и рассчитывается по формуле:

где s – это величина скольжения, измеряемая в процентах, n1 – частота, с которой вращается поле статора, n2 – частота, с которой вращается ротор.

Синхронные электродвигатели применяются в тех устройствах, где важно соблюдать высокую точность синхронизации подачи питания и начала движения. Также они обеспечивают сохранение рабочих характеристик в момент пуска.

На практике существует огромное количество разновидностей асинхронных электродвигателей, отличающихся как сферой применения, так и мощностью согласно ГОСТ 12139-84 . В связи с тем, что все вариации перечислить невозможно, мы рассмотрим наиболее значимые критерии, по которым асинхронные аппараты разделяются на виды.

По количеству питающих фаз выделяют:

  • трехфазные – используются в сетях, где есть возможность подключиться сразу ко всем фазам, но в частных случаях могут запускаться и в однофазной сети;
  • двухфазные – применяются во многих бытовых приборах, состоят из двух рабочих обмоток, одна из которых питается напряжением сети, а вторая подключается через фазосдвигающий конденсатор.
  • однофазные – как и предыдущая модель содержат две обмотки, одна из которых рабочая, а вторая пусковая.

По типу ротора различают:

  • с короткозамкнутым ротором – имеет тяжелый пуск, но и меньшую стоимость;
  • с фазным ротором – на роторе устанавливается вспомогательная обмотка, делающая работу электродвигателя более плавной.

Рисунок 5: асинхронный двигатель с короткозамкнутым и с фазным ротором

По способу подачи питания:

  • статорные – классические модели, в которых рабочие обмотки устанавливают на статор;
  • роторные – рабочие обмотки помещаются на вращающемся элементе, широкое применение на практике получили асинхронные двигатели Шраге-Рихтера.

Принцип работы асинхронного электродвигателя с фазным ротором

Статор этого электродвигателя ничем не отличается от обычного. А вот в его ротор добавлены обмотки трех фаз, соединенные в звезду, концы которых выведены на контактные кольца. По кольцам скользят щетки, с помощью которых обмотки подключаются к электрической цепи.

Фазный ротор

Асинхронный двигатель с короткозамкнутым ротором работает так:

  • ток в обмотках статора создает вращающийся магнитный поток внутри него;
  • изменяющийся во времени магнитный поток, пересекая витки обмотки ротора, наводит в них ЭДС;
  • поскольку обмотка ротора замкнута, за счет наведенной ЭДС в ней возникает ток;
  • проводники обмотки ротора с током взаимодействуют с вращающимся полем статора, создается вращающий момент.

Особенность асинхронного двигателя с фазным ротором: ток в роторе можно изменять, подключая последовательно с его обмотками резисторы. Чем больше сопротивление резистора, тем меньше ток в роторе. С уменьшением тока уменьшается и сила взаимодействия с вращающимся полем статора. Скорость вращения падает.

Читать еще:  Чип тюнинг двигателя шевроле круз плюсы и минусы

Наличие резисторов в цепи ротора увеличивает объем пускорегулирующей аппаратуры двигателя. Мощность, которая рассеивается на них, возрастает с мощностью электродвигателя. Но и для небольших моторов она существенна, что приводит к громоздким конструкциям магазинов сопротивлений и необходимости обеспечивать им постоянное охлаждение. Резисторы изготавливаются из материалов, имеющих высокое удельное сопротивление. Проводники их наматываются на каркасы или монтируются на изоляторы из фарфора. Конструкция помещается в кожух с жалюзийными отверстиями для охлаждения или закрываются сеткой.

Магазин резисторов для кранового электродвигателя с фазным ротором

Не всегда возможно разместить резисторы в помещениях. На кранах они находятся непосредственно на мосту, что приводит к массовому скоплению внутри них пыли и необходимости часто проводить техническое обслуживание.

Плавная регулировка скорости электродвигателя с фазным ротором не производится. Изменение сопротивления в цепи ротора производится фиксированными ступенями. Для этого резисторы разделяются на секции, соединенные последовательно, в цепях которых устанавливаются контакторы управления. При необходимости увеличить скорость вращения контакторы шунтируют часть резисторов, уменьшая их суммарное сопротивление. Для достижения максимальной скорости вращения шунтируются все резисторы, для минимальной – не шунтируется ничего.

Асинхронный электродвигатель с фазным ротором

А теперь рассмотрим несколько примеров построения схем управления асинхронным двигателем с фазным ротором.

Применение

На сегодняшний день, большая часть двигателей, выпускаемых в промышленных масштабах, относится к асинхронной разновидности.

Благодаря ряду преимуществ, которыми обладают машины с фазными роторами, они широко используются в разных сферах человеческой деятельности, в том числе для поддержания работы:

  1. Устройств автоматики и приборов из телемеханической области.
  2. Бытовых приборов.
  3. Медицинского оборудования.
  4. Оборудования, предназначенного для осуществления аудиозаписи.

Принцип действия.

Когда на обмотки статора подаются электрический ток, то в этих обмотках возникает электрический поток. Как вы помните, из выше написанных слов, фазы у нас смещены относительно друг друга на 120 градусов. И вот этот поток в обмотках начинает вращаться.

И при вращении магнитного потока статора, в обмотках ротора появляется электрический ток, и своё магнитное поле. Два этих магнитных поля начинают взаимодействовать и заставляют вращаться ротор электродвигателя. Это если ротор короткозамкнутый.

По принципу роботы вот посмотрите видео ролик.

Ну а с фазным ротором, по сути, принцип тот же. Напряжение подаётся на статор и на ротор. Появляются два магнитных поля, которые начинают взаимодействовать и вращать ротор.

Проверка электродвигателя с фазным ротором

Для проверки обмоток статора трехфазного АД на целостность, необходимо добраться до клемм их подключения. Затем нужно произвести замеры сопротивлений между фазными клеммами по отдельности, предварительно сняв перемычки. Если сопротивление какой-либо обмотки меньше, чем у других, это свидетельствует о замыкании между ее витками. В этом случае двигатель отдается на перемотку.

Для проверки обмоток ротора, необходимо отыскать выводы от контактных колец. Затем нужно убедиться, что сопротивления обмоток совпадают. Если конструкция электродвигателя предусматривает наличие системы отключения обмоток ротора, отсутствие контакта может быть обусловлено именно поломкой данного механизма, а не обрывом витков.

О наличие какой-либо неисправности АД могут свидетельствовать следующие факторы:

  • Снижение скорости вращения при нагрузке. Характерно для высокого сопротивления в цепи ротора, слабого контакта в его обмотке, низкого напряжения электросети
  • Разворачивание АД, когда цепь ротора разомкнута – КЗ в обмотке ротора
  • Чрезмерное равномерное повышение температуры двигателя – длительная перегрузка АД или его недостаточное охлаждение
  • Нагрев статорной обмотки местного характера – двойное замыкание катушек статора на корпус или между фазами, КЗ между витками, неверное подключение катушек в фазе между собой
  • Нагрев стали статора местного характера – нарушение изоляции между листами стали, их оплавление и выгорание, замыкание
  • Посторонний шум при работе АД. Может быть вызван как выходом из строя подшипников, так и недостаточной запрессовкой активной стали. Определяется на слух по характеру постороннего шума
  • Перегорание в обмотке якоря предохранителей, отсутствие контакта в подводящей проводке, выход из строя реостата

Для самостоятельной диагностики и исправления неисправностей электродвигателя необходимыми являются хотя-бы минимальные познания в устройстве АД и электрических цепях в целом. Все же крайне не рекомендуется самостоятельно заниматься ремонтом электродвигателя с фазным ротором, так как это может привести к поражению электрическим током.

Онлайн помощник домашнего мастера

Однофазный электродвигатель: основные виды, принцип работы и инструкция по подключению и настройке. Обзор лучших производителей!

  • Электродвигатели

Современный технический прогресс не стоит на месте. Появляются всё более сложные и совершенные устройства, применяемые в быту и на производстве.

Появлению однофазных двигателей способствовала необходимость адаптации электрооборудования к часто используемой, наиболее доступной сети в 220 Вольт, обладающей значительно меньшей мощностью.

Бытовая техника, вентиляторы и насосы оснащены такого вида электромоторами. По техническим характеристикам, КПД они значительно уступают трехфазным. Тем не менее способность их к перегрузке значительно ниже, что обуславливает большую надежность в эксплуатации.

Краткое содержимое статьи:

Как устроен однофазный электродвигатель

Конструктивно электромотор, рассчитанный на применение в бытовых, не промышленных масштабах, мало чем отличается от своих “собратьев” (разве что размером), имеет те же элементы:

  • Корпус;
  • Статор (обмотки + сердечник);
  • Ротор;
  • Вал со шпоночными канавками спереди и под вентилятор сзади;
  • Герметичные крышки с подшипниками;
  • Клеммная коробка.
  • Индукционное устройство для запуска.

Ротор имеет короткозамкнутые витки. Как и сердечник статора, его корпус сделан из электротехнической стали высокого качества.

Рассматривая фото, можно заметить, что коллекторный однофазный электродвигатель отличается от асинхронного прямоугольной формой корпуса, наличием графитно-медных щеток.

Токоприемник, расположенный на валу скрыт кожухом. Поэтому идентифицировать, что это электромотор иного типа можно по щеткам, которые видны и прижаты к кольцам коллектора пружинами.

Строение его немного отличается от обычного асинхронного однофазного двигателя. Принцип работы – также. Напряжение подается на щетки, а через них – на якорь, который вращает вал в подшипниках. В асинхронных – наоборот: магнитное поле статора вращает ротор!

Скорость вращения можно регулировать при помощи специального устройства – реостата. В то время как асинхронный двигатель работает в пределах максимальных оборотов, которые трудно, порою невозможно, плавно, без рывков, контролировать – уменьшать, увеличивать после разгонки.

Классификация

Первоначально все электродвигатели, независимо от их типа, подразделяют по:

  • Особенностям конструкции (исполнению): асинхронные и коллекторные;
  • Способу установки;
  • Классу защиты.

Однофазные электродвигатели, подключаемые в сеть переменного тока с напряжением 220В разделяют на следующие основные типы:

  • CSIR, для пуска задействуется конденсатор. Работает через обмотку индуктивности;
  • CSCR. Запускается и работает через конденсатор;
  • RSIR. Для запуска используется реостат;
  • PSC. Присутствует постоянное разделение емкости.

Такие электромоторы также называют индукционными. Их существенный недостаток – недостаточное число оборотов (скорость), обусловленное малой мощностью.

Изобретение однофазных коллекторных двигателей, способных выдерживать существенную нагрузку, давать высокий крутящийся момент при запуске, регулировать скорость вращения и количество оборотов, нашло широкое применение и использование в качестве электропривода к стиральной машине, пылесосу и различному электроинструменту, которым необходима хорошая мощность для нормальной работы.

Высокий шум, искрение при соприкосновении графитных щеток с кольцами коллектора, постоянная чистка токосъемника – существенные их недостатки.

Читать еще:  Что такое синхронный двигатель и асинхронный двигатель отличия

Ко всему прочему, необходимо периодически проверять степень прилегаемости контактов для нормальной работы двигателя, чистить и заменять неисправные.

Запуск

Однофазный ток неспособен создать вихревое магнитное поле. Для этого нужны две обмотки, одна из которых смещена относительно другой. Поэтому запустить электромотор просто подключением его к сети 220 В не получится.

Нужен первоначальный толчок. Можно, конечно, механически раскрутить вал и включить. Но не нужно. Всё происходит автоматически с помощью специальных конструктивных особенностей, позволяющих включить в цепь фазосдвигающие устройства емкостного или индуктивного типа.

Двигатель по-факту имеет две фазы, одна из которых – пусковая, другая – рабочая.

Обмотка, дающая первоначальный толчок, расположена на неподвижной части агрегата и смещена относительно другой на девяносто градусов, что позволяет запустить рабочую обмотку и создать полноценное вихревое электромагнитное поле в статоре, вращающее вал с насаженным на него ротором.

Существует определенная схема подключения и запуска однофазного электродвигателя:

  • Магнитное поле, вращающее ротор (якорь), создается главной и дополнительной обмотками;
  • Чтобы двигатель начал работать, нужно удерживать кнопку пуска до тех пор, пока не разгонится ротор;
  • В это время электромотор работает в двухфазном режиме.
  • Важно не удерживать долго пусковой механизм (сразу отжать, как запустился ротор), чтобы обмотка возбуждения не перегрелась от долгого пребывания под нагрузкой.

Для защиты двигателя от перегрева и несвоевременного отключения напряжения на пусковую обмотку, используется теплореле и центробежный выключатель. Они обесточивают всю электроустановку, когда она перегревается или одну из фаз, когда ротор – разогнался, и необходимость в подаче напряжения – отсутствует.

Как подключить

Подключить однофазный электродвигатель можно в розетку с помощью специальных разъемов – штепсельной вилки. Нужно чтобы было напряжение 220 – 240 В и частота тока 50 Гц. Независимо от того какое это устройство – соковыжималка, миксер, электромясорубка или пылесос, разъемы подключаемого электроприбора и розетки – всегда совпадают!

Электродвигатель можно запустить с помощью правильно подобранного по емкости конденсатора, подсоединенного к пусковой обмотке, либо с помощью резистора.

Обычно все это уже предусмотрено в конструкции. Достаточно «всунуть вилку в розетку» и нажать кнопку «старт».

При этом, пусковой механизм может работать как кратковременно, так и быть постоянно включенным в цепь.

Таким образом, выбирая целенаправленно “моторчик” для однофазной сети важно правильно его запустить. Бытовые приборы уже имеют необходимые параметры настройки, достаточно просто нажать кнопку. В остальных случаях – нужно правильно подобрать пусковое устройство, чтобы запустился двигатель и выполнял свои поставленные задачи.

Устройство асинхронного двигателя АД

Трехфазный асинхронный двигатель (АД) традиционного исполнения представляет собой электрическую машину, состоящую из двух основных частей: неподвижного статора и ротора, вращающегося на валу двигателя.

Статор двигателя состоит из станины, в которую впрессовывают так называемое электромагнитное ядро статора, включающее магнитопровод и трехфазную распределенную обмотку статора. Назначение ядра — намагничивание машины или создание вращающегося магнитного поля.

Независимо от типа электродвигателя сердечники (магнитопровод) статора выполняют из листов электротехнической стали толщиной 0,5 мм (для машин небольшой мощности в ряде случаев толщиной 0,65 мм) рис. 1. Листы изолируют друг от друга либо оксидированием, либо лакировкой, либо используют сталь с электроизоляционным покрытием. Магнитопровод представляет собой малое магнитное сопротивление для магнитного потока, создаваемого обмоткой статора, и благодаря явлению намагничивания этот поток усиливает.

Рис. 1 Магнитопровод статора

В пазы магнитопровода укладывается распределенная трехфазная обмотка статора. Обмотка в простейшем случае состоит из трех фазных катушек, оси которых сдвинуты в пространстве по отношению друг к другу на 120°. Фазные катушки соединяют между собой по схемам звезда, либо треугольник (рис. 2).

Рис 2. Схемы соединения фазных обмоток трехфазного асинхронного двигателя в звезду и в треугольник

Ротор двигателя состоит из магнитопровода, также набранного из штампованных листов стали, с выполненными в нем пазами, в которых располагается обмотка ротора. Различают два вида обмоток ротора: фазную и короткозамкнутую.

При фазном роторе в пазы укладывается обычно трехфазная обмотка, которая соединяется по схеме звезды или треугольника и выводится к трем контактным кольцам, расположенным на валу электродвигателя. Контактные кольца с насаженными на них щетками служат для включения пускорегулирующего реостата. Это позволяет, изменяя сопротивление ротора, регулировать скорость вращения двигателя и ограничивать пусковые токи.

Наибольшее применение получила короткозамкнутая обмотка типа «беличьей клетки». Обмотка ротора крупных двигателей включает латунные или медные стержни, которые вбивают в пазы, а по торцам устанавливают короткозамыкающие кольца, к которым припаивают или приваривают стержни. Для серийных асинхронных двигателей малой и средней мощности обмотку ротора изготавливают путем литья под давлением алюминиевого сплава. При этом в пакете ротора 1 заодно отливаются стержни 2 и короткозамыкающие кольца 4 с крылышками вентиляторов для улучшения условий охлаждения двигателя, затем пакет напрессовывается на вал 3. (рис. 3). Короткозамкнутые роторы электродвигателей с повышенным пусковым моментом выполняют с двойной беличьей клеткой, а также глубокопазными. На разрезе, выполненном на этом рисунке, видны профили пазов, зубцов и стержней ротора.

Рис. 3. Ротор асинхронного двигателя с короткозамкнутой обмоткой

Ответственным конструктивным элементом асинхронных электродвигателей является зазор между статором и ротором. Величина зазора влияет на энергетические и виброакустические показатели, использование активных материалов и надежность электродвигателей При уменьшении зазора понижается реактивная составляющая тока холостого хода и, следовательно, повышается коэффициент мощности электродвигателя; вместе с тем увеличивается магнитное рассеяние, а следовательно, индуктивное сопротивление электродвигателя; увеличиваются добавочные потери, уменьшается фактический кпд электродвигателя и увеличивается нагрев обмоток; увеличивается уровень шума и вибрации магнитного присоединения, возрастает нагрузка на вал и подшипники от силы магнитного притяжения; возникает опасность касания ротора о статор и тем самым понижается надежность электродвигателя. В асинхронных электродвигателях величина воздушного зазора колеблется в пределах от 0,2 до 2 мм.

Общий вид асинхронного двигателя серии 4А представлен на рис. 4. Ротор 5 напрессовывается на вал 2 и устанавливается на подшипниках 1 и 11 в расточке статора в подшипниковых щитах 3 и 9, которые прикрепляются к торцам статора 6 с двух сторон. К свободному концу вала 2 присоединяют нагрузку. На другом конце вала укрепляют вентилятор 10 (двигатель закрытого обдуваемого исполнения), который закрывается колпаком 12. Вентилятор обеспечивает более интенсивное отведение тепла от двигателя для достижения соответствующей нагрузочной способности. Для лучшей теплоотдачи станину отливают с ребрами 13 практически по всей поверхности станины. Для прикрепления двигателя к фундаменту, раме или непосредственно к приводимому в движение механизму на станине предусмотрены лапы 14 с отверстиями для крепления. Выпускаются также двигатели фланцевого исполнения. У таких машин на одном из подшипниковых щитов (обычно со стороны вала) выполняют фланец, обеспечивающий присоединение двигателя к рабочему механизму.

Рис. 4. Общий вид асинхронного двигателя серии 4А

Выпускаются также двигатели, имеющие и лапы, и фланец. Установочные размеры двигателей (расстояние между отверстиями на лапах или фланцах), а также их высоты оси вращения нормируются. Высота оси вращения — это расстояние от плоскости, на которой расположен двигатель, до оси вращения вала ротора. Высоты осей вращения двигателей небольшой мощности: 50, 56, 63, 71, 80, 90, 100 мм.

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector