Асинхронный 5 контактный двигатель как подключить в 22
Схема подключения 2 х скоростного асинхронного двигателя
11-15. Схема включения двухскоростного асинхронного двигателя
На рис. 11-22 показана схема управления пуском, двухскоростного асинхронного двигателя. Для получения меньшей скорости, когда число полюсов удвоено, нажимают кнопку Пуск М и обмотки статора присоединяются к сети зажимами , т. е. в треугольник. При этом включении обмотка статора создает большее число полюсов. Большая скорость получается при нажатии кнопки Пуск Б, когда включаются контакторы 1Б и 2Б и обмотки статора соединяются при параллельном соединении секций двойной звездой. При этом включении обмотка статора создает меньшее число полюсов. Переключение на большую скорость можно производить без предварительного нажатия кнопки Стоп, т. е. на ходу.
Рис. 11-22. Схема пуска двухскоростного асинхронного двигателя.
Перейти на главную страницу справочника.
Схема соединений двухскоростных обмоток. 2p=4/2, 1500/3000 об/мин., а=1/2, соединение фаз Δ/YY.
Схема соединений двухскоростных обмоток. 2p=4/2, 1500/3000 об/мин., а=1/2, соединение фаз Y/YY.
Схема подключения двухскоростного электродвигателя к сети. 2p=4/2, 1500/3000 об/мин., а=1/2, соединение фаз Δ/YY и Y/YY.
Смотрите также
- Стиль в интерьере прованс
- Бабочки из бумаги шаблоны
- Очистить воду из скважины от железа своими руками
- Как покрыть крышу гаража рубероидом своими руками
- Ремонт теплого пола
- Высота забора на даче по закону
- Люк под плитку своими руками
- Полотенцесушитель от горячей воды или отопления
- Установка гипсокартона на стену с каркасом
Коврик своими руками из помпонов мастер класс
Схемы соединений и подключения двухскоростных обмоток. 2p=2/4, 3000/1500 об/мин.
Схема соединений двухскоростных обмоток. 2p=2/4, 3000/1500 об/мин., а=1/2, соединение фаз Δ/YY.
Схема соединений двухскоростных обмоток. 2p=2/4, 3000/1500 об/мин., а=1/2, соединение фаз Y/YY.
Схема подключения двухскоростного электродвигателя к сети. 2p=2/4, 3000/1500 об/мин., а=1/2, соединение фаз Δ/YY и Y/YY.
Двухскоростные обмотки. 2p=4/2, 1500/3000 об/мин., а=1/2, соединение фаз Y-Δ/YY.
Схема соединений двухскоростных обмоток. 2p=4/2, 1500/3000 об/мин., а=1/2, соединение фаз Y-Δ/YY.
Схема подключения двухскоростного электродвигателя к сети. 2p=4/2, 1500/3000 об/мин., а=1/2, соединение фаз Y-Δ/YY.
Двухскоростные обмотки. 2p=4/2, 1500/3000 об/мин., а=1/2, соединение фаз Y-Δ/YY.
Схема соединений двухскоростных обмоток. 2p=4/2, 1500/3000 об/мин., а=1/2, соединение фаз Y-Δ/YY.
Схема подключения двухскоростного электродвигателя к сети. 2p=4/2, 1500/3000 об/мин., а=1/2, соединение фаз Y-Δ/YY.
Перейти на главную страницу справочника.
Как подключить многоскоростной трехфазный электродвигатель 21/01/2014
Схема присоединения многоскоростного асинхронного электродвигателя с короткозамкнутым ротором Треугольник(или звезда) двойная звезда —— Д/YY.
Низшая скорость — Д(треугольник(или звезда Y ): 750 об мин 2U, 2V, 2W свободны, на 1U, 1V, 1W подается напряжение. Высшая скорость — YY. 1500 об мин. 1U, 1V, 1W замкнуты между собой, на 2U, 2V, 2W подается напряжение Двухскоростные двигатели имеют одну полюсопереключаемую обмотку с шестью выводными концами. Обмотка двигателей с соотношением частот вращения 1 : 2 выполняется по схеме Даландера и соединяется в треугольник Д (или в звезду Y) при низшей частоте вращения и в двойную звезду (YY) при высшей частоте вращения Схема соединения обмоток показана на рисунке. Средняя скорость. 1000 об мин. Обмотка на 1000 об мин подключается независимо от остальных своим пускателем, не участвующим в схеме Даландера. Запуск двухскоростного двигателя с переключающимися полюсами без инверсии вращения для схемы Даландера. Электрические характеристики элементов контроля и защиты необходимые для выполнения этого типа запуска, как минимум должны быть: Контактор К1, для включения и выключения двигателя на маленькой скорости (PV). Мощность должна быть такой же либо превышать In двигателя в треугольном соединении и с категорией обслуживания АС3. Контакторы К2 и К3, для включения и выключения двигателя на большой скорости (GV). Мощность этих контакторов должна быть такой же либо превышать In двигателя соединенного двойной звездой и категориеи обслуживания АС3. Термореле F3 и F4, для защиты от перегрузок на обоих скоростях. Каждый из них будет измерять In, употребляемый двигателем на защищаемой скорости. Предохранители F1 и F2, для защиты от К.З. должно быть типа аМ и мощностью такой же или превышающей максимальное In двигателя, в каждой из своих двух скоростей. Предохранитель F5, для защиты цепей контроля. Система кнопок, с простым прерывателем остановки S0 и двумя двойными прерывателями движения S1 и S2. Перейдем к описанию в краткой форме процесса запуска, как на малой скорости, так и на большой: а) запуск и остановка на маленькой скорости (PV). Запуск путем нажатия на S1. Замыкание контактора цепи К1 и запуск двигателя соединенного треугольником. Автопитание через (К1, 13–14). Открытие К1, которое действует как шторка для того, чтобы хотя запущен в движение S2, контакторы большой скорости К2 и К3 не были активизированы. Остановка путем нажатия на S0. б) запуск и остановка на большой скорости (GV). Запуск путем нажатия на S2. Замыкание контактора звезды К2, которое формирует звезду двигателя при коротком замыкании: U1, V1 и W1. Замыкание контактора К3 (К2, 21–22) таким образом, что двигатель работает соединением в двойную звезду. Автопитание через (К2, 13–14). Открытие (К2, 21–22) и (К3, 21–22), которые действуют как шторки для того, чтобы никогда не закрывался К1 в то время, как закрыты К2 или К3. Остановка путем нажатия на S0. Вспомогательные контакты системы кнопок (S1 и S2, 21–22)действуют как защитные двойные шторки системы кнопок в том случае, если на оба прерывателя попытаются нажать одновременно, чтобы никакой из контакторов не активизировался и эти контакты можно было бы убрать в том случае, если есть защитные шторки механического типа между К1 и К2.
Способы подключения
Электрические двигатели любой конструкции устроены одинаково. В статичной обмотке (статоре) осуществляется вращение ротора. В нём происходит возбуждение магнитного поля, отталкивающее его полюсы от статора. Бесперебойная работа этой конструкции обусловлена правильным подключением электродвигателя, зависящим от используемого вида.
Однофазный асинхронный
Этот двигатель получил такое название потому, что у него всего одна рабочая обмотка. Его мощность может составлять от пяти до десяти киловатт. Рабочая и пусковая обмотки располагаются между собой под прямым углом.
К цепи необходимо подключить фазовращающий элемент. Такая схема подключения однофазного электродвигателя с конденсатором отличается оптимальными пусковыми свойствами. Используя конденсатор, электрический двигатель может быть оснащен следующими видами этого двухполюсника:
- рабочим;
- пусковым;
- рабочим и пусковым.
На практике чаще всего применяется пусковой конденсатор. Применить этот вариант можно, используя реле времени или замкнув электрическую цепь через пусковую кнопку.
В случае выбора схемы подключения электродвигателя 220 В через конденсатор пусковые характеристики заметно ухудшаются. Третий вариант с пусковым и рабочим двухполюсником считается промежуточным.
Коллекторный вариант
Универсальность этого двигателя заключается в том, что он имеет возможность получать энергию от преобразователей переменной или постоянной разновидности тока. Он находит применение в швейных или стиральных машинах, бытовых электрических инструментах.
Однофазные коллекторные двигатели отличаются такими недостатками:
- Сложность ремонтных работ, невозможность их самостоятельного проведения.
- Высокий уровень шума.
- Сложное управление.
- Высокая стоимость.
Сначала необходимо убедиться, что параметры электрической сети соответствуют допустимым напряжению и частоте, указанным на корпусе электродвигателя. Система должна быть предварительно обесточена.
Для подключения коллекторного двигателя следует последовательно соединить статор и якорь. Клеммы 2 и 3 необходимо соединить, а 1 и 4 замкнуть в цепь 220 В. Включение без регулятора перепада давления может спровоцировать образование пускового тока значительной мощности, что приведёт к искрению в коллекторе.
Также стоит рассмотреть схему подключения электродвигателя через магнитный пускатель:
- Следует удостовериться, что контактная система пускателя выдержит эксплуатационные условия электрического двигателя. Есть восемь категорий величины нагрузочного тока от 6,3 А до 250 A. Величина в этом случае обозначает силу тока, которую в состоянии пропустить через рабочие контакты электромагнитный пускатель.
- Катушка управления может быть рассчитана на 36 В, 220 В, 380 В. Следует выбрать вариант 220 вольт.
- После сбора схемы электромагнитного пускателя следует подключить силовую часть. На выходе силовых контактов происходит включение электрического двигателя, параллельно присоединяется вход на 220 вольт.
- Затем следует подключить кнопки «Стоп» и «Пуск».
- На второй вывод электромагнитного пускателя необходимо присоединить «ноль».
Подключение «звездой»
Такой способ подходит для схемы подключения трёхфазного электродвигателя на 380 В. К началу обмоток (С 1, С 2, С 3) подсоединяются фазные проводники (А, В, С) через аппарат коммутации. Концы обмоток необходимо совместить в одной точке.
Такая схема электродвигателя не позволит развить всю его мощность, потому что на каждой обмотке напряжение будет равняться 220 В. Возможность подключить электрический двигатель по схеме «звезда» подтверждается на табличке символом Y.
Эту схема подключения двигателя можно без труда различить в клеммной коробке из-за перемычки, расположенной посреди выводов обмоток.
Схема подключения электродвигателя
Нас окружает огромное количество электроприборов, почти две трети из них оборудованы электродвигателями с разными мощностными и электрическими характеристиками. После списания прибора в утиль в большинстве случаев электродвигатели сохраняют работоспособность и могут еще довольно долго послужить в виде самодельных электронасосов, точил, станков, вентиляторов и газонокосилок. Нужно только знать, какая схема подключения электродвигателя использована в данном конкретном приборе, и как правильно выполнить подключение асинхронного или коллекторного электропривода к сети.
Какие конструкции электродвигателя можно подключить своими руками
Из большого количества моделей и конструкций современных электромоторов в домашних условиях для самоделок можно выполнить подключение электродвигателя лишь нескольких схем:
- Асинхронного трехфазного электродвигателя с обмоткой звездой и треугольником;
- Асинхронного электродвигателя с однофазным питанием;
- Коллекторного электромотора со щеточной схемой возбуждения потока.
Для питания бытовых приборов и электродвигателей применяется подключение к однофазной сети с напряжением в 220 В. К такой сети можно подключить и трехфазный двигатель на 380 В. Но даже в таком варианте подключения «выдавить» из электродвигателя боле 2,5-3 кВт мощности без риска сжечь электропроводку практически невозможно. Поэтому в гаражах и столярных мастерских владельцы выполняют проводку трехфазного электропитания, позволяющего использовать мощные двигатели на 5-10 кВт и более.
Что нужно знать для подключения электродвигателя своими руками
Общий принцип работы электродвигателя известен всем еще со школы. Но на практике знания о вращающихся магнитных потоках и ЭДС, индукционных процессах и эквивалентах правильно выполнить даже простейшее подключение однофазного электродвигателя явно не помогут, поэтому для работы будет достаточно:
- Понимать суть конструкций двигателей;
- Знать предназначение обмоток и схему подключения;
- Ориентироваться во вспомогательных устройствах, таких как балластные сопротивления и пусковые конденсаторы.
Советская промышленность выпускала электродвигатели с обязательной металлической табличкой, приклепанной к корпусу, на которой был указан тип и модель, напряжение питания, и даже рисовалась схема подключения. Позже на табличке остались только модель, мощность, потребляемый ток и номер. Сегодня на современном электродвигателе с трудом можно найти маркировку модели, и не более.
Поэтому при выборе схемы подключения необходимо узнать из справочника тип и мощность, прозвонить мультиметром проводку относительно корпуса и между выводами на жгуте. Только после того, как будет достоверно установлено, что нет короткого замыкания на корпусе, определены контакты каждой из обмоток, можно приступать к подключению.
Типовые схемы подключения электродвигателя
Наиболее простым в подключении является коллекторный двигатель со щеточным возбуждением магнитного поля ротора. Коллекторным электродвигателем оснащаются электроинструменты, стиралки, кофемолки, электромясорубки и прочие приборы, где время работы мотора одного включения небольшое, но важно, чтобы двигатель был максимально компактным, высокооборотным и мощным.
Подключение к двигателю простейшее. От однофазной сети напряжение подается через замыкаемую кнопку «Пуск» на обмотки статора и ротора последовательного соединения. Пока кнопка в нажатом состоянии, двигатель работает. На статоре может выполняться две обмотки, в этом случае с помощью переключателя двигатель способен работать на пониженной скорости вращения.
Коллекторные двигатели имеют малый ресурс и крайне чувствительны к качеству угольно-графитовых щеток, которыми через медное кольцо подается питание на ротор.
Подключение однофазного асинхронника
Устройство асинхронного электродвигателя на 220 В приведено на схеме. По сути, это стальной корпус с уложенными внутри двумя обмотками – рабочей и пусковой. Коллектор представляет собой алюминиевую цилиндрическую болванку, насаженную на рабочий вал. Преподаватели и инженеры любят подчеркивать, что у такого прибора обмоток не две, а три, имея в виду цилиндр ротора. Но практики оперируют только пусковой и рабочей обмотками.
Из всех способов и схем подключения однофазного асинхронного электродвигателя на практике используют только три:
- С балластными сопротивлениями на пусковой обмотке;
- С кнопочным или релейным пускателем и стартовым конденсатором в цепи пусковой обмотки;
- С постоянно включенным рабочим конденсатором на пусковой обмотке.
Кроме того, используется комбинация последних двух, в этом случае, в дополнение к рабочему конденсатору, в схеме присутствует реле или тиристорный ключ, с помощью которых в момент пуска подключается дополнительная группа стартовых конденсаторов.
Асинхронные двигатели обладают невысоким стартовым моментом вращения, поэтому для запуска приходится прибегать к подключению по схеме дополнительных устройств в виде реле пускателя, балластного сопротивления или мощных конденсаторов.
Достаточно просто подключить однофазный асинхронный электромотор с помощью балластного сопротивления и пускателя, как на схеме.
В любых однофазных асинхронных двигателях имеется две обмотки. Они могут быть изготовлены по схеме с разделением на четыре вывода или на три вывода. В последнем случае один из выводов является общим. Чтобы определить, какие контакты к какой обмотке относятся, потребуется схема двигателя, или можно прозвонить выводы мультиметром. Пара, дающая максимальное сопротивление, означает, что измерение выполнено через две обмотки одновременно, как на схеме. Далее берем оставшийся третий вывод и через него меряем поочередно, как по схеме, сопротивления на первой и второй клемме. Рабочая обмотка асинхронного однофазного двигателя будет иметь минимальное сопротивление 10-13 Ом, сопротивление пусковой будет промежуточным 30-35 Ом.
Включение однофазных асинхронных моторов через пускатель очень простое, достаточно правильно выполнить соединение контактов с пускателем и сетевым кабелем по приведенной схеме. Управление запуском асинхронного двигателя простейшее, достаточно нажать кратковременно на кнопку пускателя, и мотор начнет работу. Выключение выполняется через обесточивание схемы. Управление асинхронными двигателями только с помощью пускателей является неэкономичным и не всегда эффективным способом раскрутить вал, особенно для высокооборотных моторов с небольшим моментом вращения.
Более экономичной является схема подключения электродвигателя 220 с конденсатором. Подключая через конденсаторы, как на приведенных схемах, получаем сдвиг фаз между двумя магнитным вращающимися потоками.
На практике отдают предпочтение схемам с одним конденсатором и комбинированной схеме с рабочим и пусковым конденсаторами. Кратковременным подключением пускового конденсатора на валу двигателя создается мощный стартовый вращающий момент, время запуска сокращается в разы.
Важно правильно подобрать емкость стартового конденсатора. Обычно для качественного запуска подключаемая к однофазному асинхроннику емкость конденсатора выбирается по схеме – на каждые 100 Вт мощности должно приходиться 7мкФ номинала.
Подключение трехфазных электродвигателей
В сравнении с однофазными трехфазные моторы обладают большей мощностью и пусковым моментом. Как правило, в домашних условиях такой электродвигатель применяется для деревообрабатывающих станков и приспособлений. При наличии трехфазной сети порядок подключения еще проще, чем у предыдущих асинхроников. Необходимо выполнить установку четырехконтактного пускателя и выполнить соединение по приведенной на корпусе схеме с контактами трехфазной сети. Такие электродвигатели допускают два вида подключений коммутацией – в виде звезды или треугольника.
Конкретные варианты соединения обмоток по схеме звезда, а чаще треугольника определяются паспортным напряжением и указаниями производителя. В случае необходимости такие электродвигатели могут также подключаться с помощью переходных конденсаторов к однофазной сети. Для этого выполняют подключение, как на схеме.
Для одного киловатта мощности необходим рабочий конденсатор емкостью в 70 мкФ и пусковой в 25 мкФ. Рабочее напряжение не менее 600 В.
Зачастую возникает проблема в определении, какие выводы относятся к обмоткам электродвигателя. Для этого можно собрать схему, приведенную на рисунке.
Ко второму зажиму подключают один из шести контактов обмоток. Вторым проводом сети, к которому подключена контрольная лампа на 220 В, поочередно касаются всех остальных контактов двигателя. При вспыхивании лампы определяют второй контакт обмотки. Проводку маркируют и убирают в сторону, а остальные контакты продолжают прозванивать по приведенной схеме. При прозвоне необходимо следить, чтобы контакты проводки не касались друг друга. Кроме того, нужно будет определить входные и выходные клеммы для каждой обмотки, прежде чем соединять их звездой или треугольником.
Заключение
Самостоятельное подключение трехфазных электродвигателей требует хороших знаний устройства и схем проверки работоспособности основных узлов. Однофазные варианты электродвигателей намного проще и не столь критичны, если допущены ошибки в определении полярности или емкости конденсатора. Но, в любом случае, при первом запуске стоит обращать внимание на нагрев корпуса и пусковых устройств, а также развиваемые электродвигателем обороты. Это поможет вовремя выявить и устранить ошибку до выхода из строя самого прибора.
Схема подключения реверсивного магнитного пускателя.
08 Апр 2014г | Раздел: Электрика
Здравствуйте, уважаемые читатели сайта sesaga.ru. Продолжаем разбираться с магнитным пускателем и сегодня мы рассмотрим еще одну классическую схему подключения магнитного пускателя, которая обеспечивает реверс вращения эл. двигателя.
Такая схема используется в основном, где нужно обеспечить вращение эл. двигателя в обе стороны, например, сверлильный станок, подъемный кран, лифт и т.д.
На первый взгляд может показаться, что эта схема намного сложнее, чем схема с одним пускателем, но это только на первый взгляд.
В схему добавилась еще одна цепь управления, состоящая из кнопки SB3, магнитного пускателя КМ2, и немного видоизменилась силовая часть подачи питания на эл. двигатель. Названия кнопок SB2 и SB3 даны условно.
Для защиты от короткого замыкания в силовой цепи, перед катушками пускателей добавились два нормально-замкнутых контакта КМ1.2 и КМ2.2, взятые от контактных приставок, установленных на магнитных пускателях КМ1 и КМ2.
Для удобства понимания схемы, цепи управления и силовые контакты пускателей раскрашены в разные цвета. А чтобы визуально не усложнять схему, цифробуквенные обозначения пар силовых контактов пускателей не указываются. Ну а если возникнут вопросы или сомнения, прочитайте еще раз предыдущую часть статьи о подключении магнитного пускателя.
1. Исходное состояние схемы.
При включении автоматического выключателя QF1 фазы «А», «В», «С» поступают на верхние силовые контакты магнитных пускателей КМ1 и КМ2 и там остаются дежурить.
Фаза «А», питающая цепи управления, через автомат защиты цепей управления SF1 и кнопку SB1 «Стоп» поступает на контакт №3 кнопок SB2 и SB3, вспомогательный контакт 13НО пускателей КМ1 и КМ2, и остается дежурить на этих контактах. Схема готова к работе.
На рисунке ниже показана часть реверсивной схемы, а именно, монтажная схема цепей управления с реальными элементами.
2. Работа цепей управления при вращении двигателя влево.
При нажатии на кнопку SB2 фаза «А» через нормально-замкнутый контакт КМ2.2 поступает на катушку магнитного пускателя КМ1, пускатель срабатывает и его нормально-разомкнутые контакты замыкаются, а нормально-замкнутые размыкаются.
При замыкании контакта КМ1.1 пускатель встает на самоподхват, а при замыкании силовых контактов КМ1 фазы «А», «В», «С» поступают на соответствующие контакты обмоток эл. двигателя и двигатель начинает вращение, например, в левую сторону.
Здесь же, нормально-замкнутый контакт КМ1.2, расположенный в цепи питания катушки пускателя КМ2, размыкается и не дает включиться магнитному пускателю КМ2 пока в работе пускатель КМ1. Это так называемая «защита от дурака», и о ней чуть ниже.
На следующем рисунке показана часть схемы управления, отвечающая за команду «Влево». Схема показана с использованием реальных элементов.
3. Работа цепей управления при вращении двигателя вправо.
Чтобы задать двигателю вращение в противоположную сторону достаточно поменять местами любые две питающие фазы, например, «В» и «С». Вот этим, как раз, и занимается пускатель КМ2.
Но прежде чем нажать кнопку «Вправо» и задать двигателю вращение в обратную сторону, нужно кнопкой «Стоп» остановить прежнее вращение.
При этом разорвется цепь и управляющая фаза «А» перестанет поступать на катушку пускателя КМ1, возвратная пружина вернет сердечник с контактами в исходное положение, силовые контакты разомкнутся и отключат двигатель М от трехфазного питающего напряжения. Схема вернется в начальное состояние или ждущий режим:
Нажимаем кнопку SB3 и фаза «А» через нормально-замкнутый контакт КМ1.2 поступает на катушку магнитного пускателя КМ2, пускатель срабатывает и через свой контакт КМ2.1 встает на самоподхват.
Своими силовыми контактами КМ2 пускатель перебросит фазы «В» и «С» местами и двигатель М станет вращаться в другую сторону. При этом контакт КМ2.2, расположенный в цепи питания пускателя КМ1, разомкнется и не даст пускателю КМ1 включиться пока в работе пускатель КМ2.
4. Силовые цепи.
А теперь посмотрим на работу силовой части схемы, которая и отвечает за переброс питающих фаз для осуществления реверса вращения эл. двигателя.
Обвязка силовых контактов пускателя КМ1 выполнена так, что при их срабатывании фаза «А» поступает на обмотку №1, фаза «В» на обмотку №2, и фаза «С» на обмотку №3. Двигатель, как мы определились, получает вращение влево. Здесь переброс фаз не осуществляется.
Обвязка силовых контактов пускателя КМ2 выполнена таким-образом, что при его срабатывании фазы «В» и «С» меняются местами: фаза «В» через средний контакт подается на обмотку №3, а фаза «С» через крайний левый подается на обмотку №2. Фаза «А» остается без изменений.
А теперь рассмотрим нижний рисунок, где показан монтаж всей силовой части на реальных элементах.
Фаза «А» белым проводом заходит на вход левого контакта пускателя КМ1 и перемычкой заводится на вход левого контакта пускателя КМ2. Выхода обоих контактов пускателей также соединены перемычкой, и уже от пускателя КМ1 фаза «А» поступает на обмотку №1 двигателя М — здесь переброса фазы нет.
Фаза «В» красным проводом заходит на вход среднего контакта пускателя КМ1 и перемычкой заводится на правый вход пускателя КМ2. С правого выхода КМ2 фаза перемычкой заводится на правый выход КМ1, и тем самым, встает на место фазы «С». И теперь на обмотку №3, при включении пускателя КМ2 будет подаваться фаза «В».
Фаза «С» синим проводом заходит на вход правого контакта пускателя КМ1 и перемычкой заводится на средний вход пускателя КМ2. С выхода среднего контакта КМ2 фаза перемычкой заводится на средний выход КМ1, и тем самым, встает на место фазы «В». Теперь на обмотку №2, при включении пускателя КМ2 будет подаваться фаза «С». Двигатель будет вращаться в правую сторону.
5. Защита силовых цепей от короткого замыкания или «защита от дурака».
Как мы уже знаем, что прежде чем изменить вращение двигателя, его нужно остановить. Но не всегда так получается, так как никто не застрахован от ошибок.
И вот представьте ситуацию, когда нет защиты.
Двигатель вращается в левую сторону, пускатель КМ1 в работе и с его выхода все три фазы поступают на обмотки, каждая на свою. Теперь не отключая пускатель КМ1 мы включаем пускатель КМ2. Фазы «В» и «С», которые мы поменяли местами для реверса, встретятся на выходе пускателя КМ1. Произойдет межфазное замыкание между фазами «В» и «С».
А чтобы этого не случилось, в схеме используют нормально-замкнутые контакты пускателей, которые устанавливают перед катушками этих же пускателей, и таким-образом исключается возможность включения одного магнитного пускателя пока не обесточится другой.
6. Заключение.
Конечно, все это с первого раза понять трудно, я и сам, когда начинал осваивать работу эл. приводов, не с первого раза понял принцип реверса. Одно дело прочитать и запомнить схему на бумаге, а другое дело, когда все это видишь в живую. Но если собрать макет и несколько дней посвятить изучению схемы, то успех будет гарантирован.
И уже по традиции посмотрите видеоролик о подключении реверсивного магнитного пускателя.
А у нас еще осталось разобраться с электротепловой защитой эл. двигателя и тема о магнитных пускателях может быть смело закрыта.
Продолжение следует.
Удачи!
Пособие для ремонтника
11-15. Схема включения двухскоростного асинхронного двигателя
На рис. 11-22 показана схема управления пуском, двухскоростного асинхронного двигателя. Для получения меньшей скорости, когда число полюсов удвоено, нажимают кнопку Пуск М и обмотки статора присоединяются к сети зажимами , т. е. в треугольник. При этом включении обмотка статора создает большее число полюсов. Большая скорость получается при нажатии кнопки Пуск Б, когда включаются контакторы 1Б и 2Б и обмотки статора соединяются при параллельном соединении секций двойной звездой. При этом включении обмотка статора создает меньшее число полюсов. Переключение на большую скорость можно производить без предварительного нажатия кнопки Стоп, т. е. на ходу.
Рис. 11-22. Схема пуска двухскоростного асинхронного двигателя.
Перейти на главную страницу справочника.
Схема соединений двухскоростных обмоток. 2p=4/2, 1500/3000 об/мин., а=1/2, соединение фаз Δ/YY.
Схема соединений двухскоростных обмоток. 2p=4/2, 1500/3000 об/мин., а=1/2, соединение фаз Y/YY.
Схема подключения двухскоростного электродвигателя к сети. 2p=4/2, 1500/3000 об/мин., а=1/2, соединение фаз Δ/YY и Y/YY.
Принцип работы конденсаторного асинхронного двигателя
Для привода барабана в стиральных машинах всегда применялись двухскоростные конденсаторные асинхронные двигатели. Конденсаторный двигатель — разновидность асинхронного двигателя, в обмотки которого включен конденсатор для создания сдвига фазы тока. Подключается в однофазную сеть посредством специальных схем. Работоспособная схема подключения такого двигателя содержит конденсатор (пусковой конденсатор), от чего и произошло название. Давайте рассмотрим простейшую схему подключения конденсаторного двигателя на примере Рис.4
Простая схема подключения асинхронного двигателя через конденсатор Рис.4
А теперь представьте, если бы в пусковой обмотке не было конденсатора. Тогда магнитное поле создаваемое статором, создавало бы такое же магнитное поле в роторе. При такой схеме подключения, двигатель можно представить лишь в качестве трансформатора и совпадающие по фазе токи не смогли бы создать вращающее круговое магнитное поле, а пусковой момент был бы настолько мал, что ротор оставался бы почти неподвижным.
Схемы соединений и подключения двухскоростных обмоток. 2p=2/4, 3000/1500 об/мин.
Схема соединений двухскоростных обмоток. 2p=2/4, 3000/1500 об/мин., а=1/2, соединение фаз Δ/YY.
Схема соединений двухскоростных обмоток. 2p=2/4, 3000/1500 об/мин., а=1/2, соединение фаз Y/YY.
Схема подключения двухскоростного электродвигателя к сети. 2p=2/4, 3000/1500 об/мин., а=1/2, соединение фаз Δ/YY и Y/YY.
Двухскоростные обмотки. 2p=4/2, 1500/3000 об/мин., а=1/2, соединение фаз Y-Δ/YY.
Схема соединений двухскоростных обмоток. 2p=4/2, 1500/3000 об/мин., а=1/2, соединение фаз Y-Δ/YY.
Схема подключения двухскоростного электродвигателя к сети. 2p=4/2, 1500/3000 об/мин., а=1/2, соединение фаз Y-Δ/YY.
Двухскоростные обмотки. 2p=4/2, 1500/3000 об/мин., а=1/2, соединение фаз Y-Δ/YY.
Схема соединений двухскоростных обмоток. 2p=4/2, 1500/3000 об/мин., а=1/2, соединение фаз Y-Δ/YY.
Схема подключения двухскоростного электродвигателя к сети. 2p=4/2, 1500/3000 об/мин., а=1/2, соединение фаз Y-Δ/YY.
Перейти на главную страницу справочника.
Как подключить многоскоростной трехфазный электродвигатель 21/01/2014
Схема присоединения многоскоростного асинхронного электродвигателя с короткозамкнутым ротором Треугольник(или звезда) двойная звезда —— Д/YY.
Низшая скорость — Д(треугольник(или звезда Y ): 750 об мин 2U, 2V, 2W свободны, на 1U, 1V, 1W подается напряжение. Высшая скорость — YY. 1500 об мин. 1U, 1V, 1W замкнуты между собой, на 2U, 2V, 2W подается напряжение Двухскоростные двигатели имеют одну полюсопереключаемую обмотку с шестью выводными концами. Обмотка двигателей с соотношением частот вращения 1 : 2 выполняется по схеме Даландера и соединяется в треугольник Д (или в звезду Y) при низшей частоте вращения и в двойную звезду (YY) при высшей частоте вращения Схема соединения обмоток показана на рисунке. Средняя скорость. 1000 об мин. Обмотка на 1000 об мин подключается независимо от остальных своим пускателем, не участвующим в схеме Даландера. Запуск двухскоростного двигателя с переключающимися полюсами без инверсии вращения для схемы Даландера. Электрические характеристики элементов контроля и защиты необходимые для выполнения этого типа запуска, как минимум должны быть: Контактор К1, для включения и выключения двигателя на маленькой скорости (PV). Мощность должна быть такой же либо превышать In двигателя в треугольном соединении и с категорией обслуживания АС3. Контакторы К2 и К3, для включения и выключения двигателя на большой скорости (GV). Мощность этих контакторов должна быть такой же либо превышать In двигателя соединенного двойной звездой и категориеи обслуживания АС3. Термореле F3 и F4, для защиты от перегрузок на обоих скоростях. Каждый из них будет измерять In, употребляемый двигателем на защищаемой скорости. Предохранители F1 и F2, для защиты от К.З. должно быть типа аМ и мощностью такой же или превышающей максимальное In двигателя, в каждой из своих двух скоростей. Предохранитель F5, для защиты цепей контроля. Система кнопок, с простым прерывателем остановки S0 и двумя двойными прерывателями движения S1 и S2. Перейдем к описанию в краткой форме процесса запуска, как на малой скорости, так и на большой: а) запуск и остановка на маленькой скорости (PV). Запуск путем нажатия на S1. Замыкание контактора цепи К1 и запуск двигателя соединенного треугольником. Автопитание через (К1, 13–14). Открытие К1, которое действует как шторка для того, чтобы хотя запущен в движение S2, контакторы большой скорости К2 и К3 не были активизированы. Остановка путем нажатия на S0. б) запуск и остановка на большой скорости (GV). Запуск путем нажатия на S2. Замыкание контактора звезды К2, которое формирует звезду двигателя при коротком замыкании: U1, V1 и W1. Замыкание контактора К3 (К2, 21–22) таким образом, что двигатель работает соединением в двойную звезду. Автопитание через (К2, 13–14). Открытие (К2, 21–22) и (К3, 21–22), которые действуют как шторки для того, чтобы никогда не закрывался К1 в то время, как закрыты К2 или К3. Остановка путем нажатия на S0. Вспомогательные контакты системы кнопок (S1 и S2, 21–22)действуют как защитные двойные шторки системы кнопок в том случае, если на оба прерывателя попытаются нажать одновременно, чтобы никакой из контакторов не активизировался и эти контакты можно было бы убрать в том случае, если есть защитные шторки механического типа между К1 и К2.
Как правильно подсоединить электродвигатель
От правильности включения обмоток электродвигателя зависит как ток потребления, так и направление вращения. Ток потребления вырастает, если двигатель, у которого на данное напряжение сети обмотки должны быть соединены «звездой», переключить на «треугольник». Такой режим работы является аварийным и приведет к выходу из строя.
Из теории трехфазного тока известно, что направление вращения электрической машины можно изменить, поменяв любые две фазы из трех местами. На этом основана схема реверсирования трехфазных асинхронных электродвигателей.
Важно! Схема реверсирования должна обеспечивать невозможность переключения фаз до момента остановки двигателя (прекращения подачи питания). В противном случае произойдет короткое замыкание сети.
Как подключить с 3 или 6 проводами
В большинстве случаев соединение двигателя с питающей сетью производится при помощи трех проводов. Даже если на клеммную колодку выведено шесть проводов, что соответствует трем парам обмотки, то путем соединения в нужную схему для подключения к питанию используется три провода.
Для мощных устройств учитывается, что асинхронный двигатель в момент запуска потребляет в несколько раз больший ток, поэтому используется сложная схема запуска, в которой в момент пуска обмотки подключаются «звездой», а после того как ротор наберет необходимые минимальные обороты, обмотки переключаются в «треугольник».
Шестипроводная схема включения
Важно! Для таких схем включения нужно подсоединять все шесть проводов обмоток электрической машины.
Вам это будет интересно Принцип действия генератора постоянного напряжения
Схема подключения асинхронного электродвигателя
Асинхронные двигатели бывают не только трехфазные. Разработаны конструкции, которые могут подключаться в бытовую однофазную сеть. Схема электродвигателя для подключения к однофазной сети состоит из двух обмоток — рабочей и пусковой. Пусковая обмотка предназначена для формирования внутри статора вращающегося магнитного сдвига в момент пуска. Это необходимо для обеспечения начала вращения ротора. Фазный сдвиг осуществляется за счет включения пусковой обмотки через конденсатор.
Подключение однофазного двигателя
После того как ротор наберет обороты, пусковая обмотка уже не нужна. Маломощный однофазный привод будет работать нормально в таком режиме, но мощность двигателя возрастет, если оставить в работе пусковую обмотку, включенную через рабочий конденсатор.
Обратите внимание! Емкость рабочего конденсатора меньше, чем у пускового, так как нет необходимости сильного сдвига фазы. При высокой емкости через пусковую обмотку будет проходить большой ток, что приведет к ее перегреву.
В трехфазную электрическую сеть электромоторы включаются согласно их характеристикам и напряжению сети. Здесь главное — правильно выполнить необходимые соединения обмоток в соответствии с напряжением питания.
Нестандартная схема подключения трехфазного асинхронного электродвигателя применяется при использовании промышленных устройств в быту.
Подсоединение производят по нескольким вариантам:
- с использованием частотного преобразователя;
- через конденсатор.
Электронный частотный преобразователь (инвертор) позволяет не только сохранить мощность, но и улучшить целый ряд характеристик, недостижимых при включении по стандартной схеме. Это:
- Плавный пуск.
- Регулирование мощности.
- Регулирование оборотов.
Частотный преобразователь преобразует однофазное питание в полноценную трехфазную сеть, в которой можно менять частоту, амплитуду, выполнять стабилизацию тока и напряжения в фазных проводах.
Обратите внимание! Большой недостаток частотных инверторов — их высокая стоимость.
Схема с конденсатором разработана таким образом, чтобы получить на одной из трех обмоток сдвиг фазы, достаточный для работы двигателя. Конденсаторная электросхема работоспособна как для «треугольника», так и для «звезды». Включение электромотора через конденсатор является наиболее простым решением проблемы, но имеет несколько недостатков:
- максимальная мощность двигателя снижается до 50 %;
- емкость фазосдвигающего конденсатора сильно зависит от нагрузки на электродвигатель.
Вам это будет интересно Соединение транзисторов
То есть при работе на холостом ходу емкость должна быть минимальна и достигать максимума на полной мощности двигателя. Наиболее высокий ток потребления у асинхронного двигателя в момент запуска.
Подключение в однофазную сеть
Обратите внимание! На практике используют усредненное значение емкости для наиболее ожидаемого режима работы, поскольку малое значение не даст необходимую мощность, а высокое приведет к перегреву обмоток.
Правильный расчет емкости учитывает напряжение сети, схему включения обмоток и мощность двигателя. Конденсаторная схема включения должна предусматривать запуск двигателя через отдельный пусковой конденсатор, емкость которого должна быть выше рабочей в 2-3 раза.
Принципиальный момент — реверс обеспечивается подключение конденсатора к любой другой обмотке.
Однолинейная схема подключения электродвигателя
В энергетике часто применяются однолинейные схемы, в которых все линии питания вне зависимости от количества проводов и фаз обозначаются одной линией. Однолинейный чертеж не перегружен мелкими деталями, и это упрощает его чтение.
По однолинейной схеме удобно получать общее представление о работе и устройстве электроустановки. Трехфазные электродвигатели также обозначаются на однолинейных схемах. Важно учитывать при этом, что при разных способах коммутации фаз необходимо на чертеже указывать каждую фазу во избежание путаницы.
Чтобы подключать электрический двигатель к сети важно правильное определение назначения выводов обмоток и уже на основании имеющихся данных количество фаз, напряжение, мощность. Немаловажно выбрать наиболее подходящую схему включения.