Новости фрактал в природе

Смотрите 51 фото онлайн по теме фракталы в природе фото. Смотрите 65 фотографии онлайн по теме фракталы в природе животные. Автор пина:Katrine. Находите и прикалывайте свои пины в Pinterest! Понятие ФРАКТАЛЫ (fractus -состоящий из фрагментов) введено в научный обиход Бенуа Мандельбротом. Посмотрите потрясающие примеры фракталов в природе.

ГЕОМЕТРИЯ ПРИРОДЫ. ФРАКТАЛЫ.

Действительно, для реального, физического объекта мы не сможем бесконечно уменьшать масштаб измерений — рано или поздно мы дойдем до размеров атома. Однако из этого логичного рассуждения не следует невозможность существования фракталов — оно лишь показывает, что каждый объект обладает фрактальными свойствами лишь до определенного момента. И только математические объекты являются фракталами в полной мере и при любых измерениях. Из-за этой запутанности и сложности фракталов ученые обнаружили их как математический объект лишь во второй половине XX века. Хотя из примера с береговой линией очевидно, что они существовали и до этого, но только в 1975 году французский математик Бенуа Мандельброт написал книгу о фракталах и фактически основал теорию фракталов в недавно возникшей области науки — теории хаоса. Однако еще до выхода книги, в 1967 году в журнале Science была опубликована его статья «How Long Is the Coast of Britain? Statistical Self-Similarity and Fractional Dimension» о парадоксе береговой линии. В статье ни разу не встречается слово «фрактал», хотя именно она считается стартовой точкой для фрактальной геометрии. Мандельброт решает этот парадокс удивительным образом — он заявляет, что нельзя говорить о таком понятии, как «длина береговой линии», в привычном нам понимании. Чтобы доказать свое утверждение, он вводит ключевое для теории фракталов понятие фрактальной размерности.

Самое странное в ней то, что она не является целой! В математике размерностью обычно называют топологическую размерность, которая просто-напросто соответствует количеству измерений предмета. Так, куб имеет три измерения — длину, ширину и высоту, следовательно, его размерность равна трем. А линия на бумаге имеет только длину, и ее размерность равна единице. Поэтому на первый взгляд кажется невозможным представить предмет с нецелой размерностью. Какой объект может иметь размерность 1,26? А ведь его описали еще в 1904 году и более полувека попросту не обращали на него внимания, считая забавной игрушкой. Это снежинка Коха, представляющая собой замкнутую кривую с простейшим алгоритмом построения, из которого ясно, что ее длина в привычном нам понимании бесконечна. Математики ввели для такой нецелой размерности отдельный термин — размерность Хаусдорфа-Безиковича.

Также можно заметить схожесть этой снежинки с изрезанной береговой линией — каждый ее фрагмент в крупном масштабе подобен ее же более мелкому фрагменту. Это свойство называется самоподобием — оно ключевое для всех фракталов. Из аналогии с береговой линией мы можем получить интуитивное понимание нецелой размерности — ее можно описать как «степень изрезанности кривой». Губка Менгера. Иллюстрация: Niabot, www. Наиболее общее, предложенное Мандельбротом, гласит, что фракталом называют структуру, состоящую из частей, которые в каком-то смысле подобны целому.

При построении следующих поколений выполняется правило: самое первое слева звено заменяется на образующий элемент так, чтобы середина звена смещалась влево от направления движения, а при замене следующих звеньев, направления смещения середин отрезков должны чередоваться.

Предельная фрактальная кривая при n стремящемся к бесконечности называется драконом Хартера-Хейтуэя. Построение "дракона" Хартера-Хейтуэя Для построения треугольника Серпинского начальный элемент — треугольник со всеми внутренними точками. Образующий элемент исключает из него центральный треугольник. Фрактальное множество получается в пределе при бесконечно большом числе. Построение треугольника Серпинского Представленные примеры геометрических фракталов не являются единственными, существует огромное количество других, еще более сложных и интересных фракталов. Геометрические фракталы имеют огромное практическое значение. Применяя их в компьютерной графике, ученые научились получать сложные объекты, похожие на природные: изображения снежинок, горных вершин, искусственных облаков, деревьев, кустов, веток, береговой линии и так далее.

Двухмерные геометрические фракталы используются для создания объемных текстур. Алгебраические фракталы Эти фракталы могут быть описаны с помощью алгебраических уравнений или рекурсивных формул. Эти уравнения и формулы определяют правила, по которым точки или фигуры повторяются и изменяются на каждой итерации. Алгебраические фракталы могут иметь сложную и красивую геометрию, которая может быть воспроизведена и визуализирована с помощью компьютерной графики. Они могут быть двухмерными или трехмерными, и их формы могут быть симметричными или случайными. Алгебраические фракталы имеют множество применений в различных областях, включая компьютерную графику, науку, искусство и дизайн. Они могут быть использованы для создания красивых и сложных изображений, моделирования природных явлений, анализа данных и многого другого.

Почему мнимой? Комплексные числа можно складывать, вычитать, умножать, делить, возводить в степень и извлекать корень, нельзя только их сравнивать. Комплексное число можно изобразить как точку на плоскости, у которой координата х - это действительная часть a, а y - это коэффициент при мнимой части b. Расчет данной функции продолжается до выполнения определенного условия. И когда это условие выполнится - на экран выводится точка определенного цвета. Результатом оказывается странная фигура, в которой прямые линии переходят в кривые, появляются, хотя и не без деформаций, эффекты самоподобия на различных масштабных уровнях. При этом вся картина в целом является непредсказуемой и очень хаотичной.

Неожиданностью для математиков стала возможность с помощью примитивных алгоритмов порождать очень сложные нетривиальные структуры. Вот несколько примеров алгебраических фракталов: Множество Мандельброта — это один из самых известных алгебраических фракталов. Он создается путем итеративного применения простой математической формулы к каждой точке на комплексной плоскости.

Сначала вы видите большие ветви, растущие из ствола. Затем вы видите меньшие версии, растущие из каждой большой ветви. Когда вы продолжаете увеличивать изображение, появляются все более и более тонкие ветви, вплоть до самых маленьких веточек.

Другие примеры природных фракталов включают облака, реки, береговые линии и горы. В 1999 году моя группа использовала методы компьютерного анализа рисунков, чтобы показать, что картины Поллока столь же фрактальны, как и рисунки в естественных пейзажах. С тех пор более 10 различных групп выполнили различные формы фрактального анализа на его картинах. Способность Поллока выражать эстетику природы фрактала помогает объяснить непреходящую популярность его работы. Воздействие эстетики природы на удивление сильно. В 1980-х годах архитекторы обнаружили, что пациенты быстрее выздоравливали после операции, когда им давали больничные комнаты с окнами, выходящими на природу.

Другие исследования, проведенные с тех пор, показали, что только просмотр изображений природных сцен может изменить то, как вегетативная нервная система человека реагирует на стресс. Являются ли фракталы секретом некоторых успокаивающих природных сцен? Сотрудничая с психологами и нейробиологами, мы измерили реакцию людей на фракталы, найденные в природе используя фотографии природных сцен , искусство картины Поллока и математику компьютерные изображения , и обнаружили универсальный эффект, который мы назвали «беглость фрактала». Благодаря воздействию природных фрактальных пейзажей, зрительные системы людей легко адаптировались к эффективной обработке фракталов. Мы обнаружили, что эта адаптация происходит на многих этапах зрительной системы, от того, как движутся наши глаза, до того, какие области мозга активируются. Эта беглость помещает нас в зону комфорта, и поэтому нам нравится смотреть на фракталы.

Важно отметить, что мы использовали ЭЭГ для записи электрической активности мозга и методов проводимости кожи, чтобы показать, что этот эстетический опыт сопровождается снижением напряжения на 60 процентов - удивительно большой эффект для немедикаментозного лечения. Это физиологическое изменение даже ускоряет восстановление после операции.

Сначала мы выполнили построение одного отрезка в плоскости Оху, а затем проводили аффинные преобразования с изменением координат его концов, поворотом вокруг осей и изменением размера с определенным коэффициентом рис. Впоследствии количество уровней смогло увеличиться до 7. Мы достигли того, что было выполнено построение трехмерного изображения рис. Оказалось, что они нашли свое применение в радиотехнике, в теории информации, практическом сжатии информации, построении изображений, сжатии графической и аудиоинформации, в экологии, в биологии, в медицине, в экономике, в механике. Примеры применения можно перечислять бесконечно, отметим лишь некоторые из них.

Использование фрактальной геометрии при проектировании антенных устройств совершило прорыв, поскольку антенные заданной фрактальной формы многократно увеличивали диапазон принимаемых волн. Фракталы широко применяются в компьютерной графике для построения изображений природных объектов, таких как деревья, кусты, горные ландшафты, поверхности морей и т.

ГЕОМЕТРИЯ ПРИРОДЫ. ФРАКТАЛЫ.

Природа зачастую создаёт удивительные и прекрасные фракталы, с идеальной геометрией и такой гармонией, что можно замереть от восхищения. дробленый) - термин, означающий геометрическую фигуру, обладающую свойством самоподобия, то есть составленную из нескольких частей, каждая из которых подобна всей фигуре целиком. Природа зачастую. Международная группа ученых обнаружила первую в природе молекулу, которая является регулярным фракталом.

Что такое фрактал, как он проявляется в природе и что еще о нем нужно знать

Открытие молекулярного фрактала в цианобактерии – это не просто научная сенсация, но и философский повод задуматься о роли случайности в возникновении порядка, о сложном взаимодействии хаоса и гармонии в природе. Фрактал – это геометрическая фигура, в которой один и тот же мотив повторяется в последовательно уменьшающемся масштабе. Давай лучше рассмотрим дизайн фракталов в природе и науке, чтобы вернуть себе веру в волшебство. Красота фракталов состоит в том, что их "бесконечная" сложность сформирована относительно простыми линиями.

14 Удивительные фракталы, обнаруженные в природе

Nature 2024. Ученые, изучая структуру цитратсинтазы, были поражены изображениями, полученными с помощью электронного микроскопа. Вместо ожидаемой регулярной решетки молекул они увидели завораживающий фрактальный узор. Секрет асимметрии Разгадка тайны фрактального белка кроется в его асимметрии. Обычно при самоорганизации белковых молекул каждая цепь занимает одинаковое положение относительно своих соседей. Это приводит к формированию симметричных, упорядоченных структур. Но в случае с цитратсинтазой все иначе.

Различные белковые цепи взаимодействуют друг с другом по-разному, создавая сложный и непредсказуемый узор, подобный треугольнику Серпинского. Эволюционная игра Зачем же цианобактерии понадобился фрактальный фермент? Удивительно, но, похоже, это всего лишь игра случая, эволюционный каприз. Ученые провели эксперимент, в котором генетически модифицировали цианобактерии, лишив их цитратсинтазу способности собираться во фрактальные структуры. Оказалось, что это никак не повлияло на жизнедеятельность бактерий.

Ну и добавлю еще одно соображение. Для сравнительно простых форм жизни, например, грибов или растений, фрактальная структура удобна еще одним своим свойством - самоподобием. Оно означает, что если в результате какого-либо события от, например, мицелия гриба будет оторвана большая часть, оставшаяся часть в целом будет подобна всему большому организму и будет функционировать. Конечно, это верно лишь для достаточно простых форм жизни.

Все природные объекты строго математичны, так как созданы не людьми, а Богом. А Пространство Творца описывается математическими законами и есть полное совершенство форм...

Такая особенность обуславливается тем, что различные белковые цепи в разных положениях по-разному взаимодействуют друг с другом. Это приводит к нарушению симметрии и препятствует формированию обычной регулярной решетки. Случайная мутация Исследователи провели эксперимент, создав генетически модифицированные бактерии, у которых цитратсинтаза не формировала фрактальные треугольники. Результаты показали, что жизнедеятельность этих бактерий не отличалась от обычных.

Морские раковины Nautilus является одним из наиболее известных примеров фрактала в природе.

Прекрасная иллюстрация последовательности Фибоначчи. Молнии ужасают и пугают и одновременно восхищают своей красотой. Фракталы, созданные молнией, не произвольны и не регулярны. Романессу - особый вид брокколи, крестоцветный и вкусный двоюродный брат капусты - является особенно симметричным фракталом. Папоротник является хорошим примером фрактала среди флоры. Каждое соцветие копируется точно таким же только меньше. Фото сделано снизу, чтобы разглядеть это во всей красе.

Что такое фрактал? Фракталы в природе

ФРАКТАЛ • Большая российская энциклопедия - электронная версия Для фрактальной бесконечной Вселенной с ее нулевой средней плотностью такой проблемы не существует.
Фракталы в природе - 65 фото Если посмотреть на фрактал с близкого или дальнего расстояния, можно увидеть, как повторяются одни и те же узоры.

Фракталы: бесконечность внутри нас

нечто невероятное – Самые лучшие и интересные новости по теме: Геометрия, идеально, красота на развлекательном портале Найдите нужное среди 30 986 стоковых фото, картинок и изображений роялти-фри на тему «Fractals In Nature» на iStock. Парк онлайн весной 2021. Фракталы в природе. Автор Мануйленко Никита. Это значит, что плоский фрактал в некотором смысле «проще» настоящей плоскости, но «сложнее» прямой. Фракталы также встречаются в природе.

Исследовательская работа: «Фракталы в нашей жизни».

Фракталы представляют собой довольно сложные для определения математические объекты, но в общих чертах их можно охарактеризовать как геометрические формы, состоящие из меньших структур, которые, в свою очередь, напоминают исходную целостную конфигурацию. Фото: Фракталы в природе молния. Фракталы — это математические модели, которые появляются снова и снова, повторяясь в разных размерах. Термин «фрактал» введён Бенуа Мандельбротом в 1975 году и получил широкую известность с выходом в 1977 году его книги «Фрактальная геометрия природы». Смотрите 51 фото онлайн по теме фракталы в природе фото. Фрактал – это геометрическая фигура, в которой один и тот же мотив повторяется в последовательно уменьшающемся масштабе.

9 Удивительных фракталов, найденных в природе

Mandelbulber несколько более функционален и быстр, но Mandelbulb3D чуть проще в использовании. По ссылке вы найдете множество других программ. Заключение Исследование фракталов началось в 1975 году. То есть фактически мы только приступили к изучению этой огромной и неизведанной территории. Фракталы выходят за рамки чистой математики, искусства, схожего с музыкой и поэзией, или практического инструмента решения прикладных задач. Они могут дать гораздо больше: например, объяснить явления, находящиеся вне нашего понимания при текущем развитии науки. Вся фрактальная космология строится на теории бесконечности пространства Вселенной и распределении в нем астрономических объектов по принципу фрактальной размерности в диапазоне от 2 до 3.

Геометрические же фракталы отличаются наглядной правильностью и повторяемостью в своем самоподобии рис. Кривая Коха снежинка Коха и кривая Леви рис. Треугольник Серпинского рис.

Дерево Пифагора рис. Нас заинтересовала такая геометрическая фигура, как дерево Пифагора, поскольку, она показалась наиболее удобной для реализации и наглядно показывающей свойство самоподобия. Второй этап - практический.

В его основу был положен анализ способов построения фрактальных деревьев.

Процессы хаотической синхронизации могут происходить не только в организме животных и человека, но и в более крупных структурах - биоценозах, общественных организациях, государствах, транспортных системах и др. Чем определяется возможность синхронизации?

Во-первых, поведением каждой отдельной подсистемы: чем она хаотичнее, "самостоятельнее" , тем труднее заставить ее "считаться" с другими элементами ансамбля. Во-вторых, суммарной силой связи между подсистемами: ее увеличение подавляет тенденцию к "самостоятельности" и может, в принципе, привести к упорядочению. При этом важно, чтобы связи были глобальными , то есть существовали не только между соседними, но и между отстоящими далеко друг от друга элементами.

В реальных системах, включающих большое число подсистем, связь осуществляется за счет материальных или информационных потоков. Чем они интенсивнее, тем больше шансов, что элементы будут вести себя согласованно, и наоборот. Например, в государстве роль связующих потоков играют транспорт, почта, телефонная связь и др.

Поэтому повышение тарифов на эти услуги в том случае, когда оно приводит к уменьшению соответствующих потоков, ослабляет целостность государства и способствует его разрушению. Из теории хаотической синхронизации следует, что согласованную работу отдельных частей сложной системы может обеспечивать один из ее элементов, называемый пейсмейке ром, или "ритмоводителем". Будучи связан односторонним образом со всеми компонентами системы, он "руководит" их движением, навязывая свой ритм.

Если при этом сделать так, что отдельные подсистемы не будут связаны друг с другом, а только с пейсмейкером, - получим случай предельно централизованной системы. В государстве, например, роль "ритмоводителя" выполняет центральная власть и... Сегодня это в особенности относится к электронным средствам массовой информации, поскольку по мобильности и общему информационному потоку они значительно превосходят остальные.

Интуитивно понимая это, центральная власть старается держать СМИ под контролем, а также ограничивает влияние каждого из них в отдельности. В противном случае управлять государством будет уже не она. Здесь мы коснулись очень важного вопроса.

Поскольку средняя сила связей является суммарным параметром, в который входят как материальные связи, так и информационные, то это значит, что ослабление одних из них может быть компенсировано усилением других. Простейший пример - замена реальных товаров на бумажные или даже электронные деньги. В этом случае поставщику, по сути, вместо материального продукта поступает информация об изменении на его счете - и такой обмен его вполне устраивает.

Подобным же образом путем биржевых операций ежедневно приобретаются или теряются громадные суммы, которые, в конечном счете, кто-то должен компенсировать реальными продуктами или услугами. Как может происходить разрушение синхронизованного состояния? Об одной возможности мы уже упомянули.

Это ослабление связей. Другая причина - неадекватное воздействие "ритмоводителя" на ансамбль. Действительно, если "ритм", диктуемый пейсмейкером, будет слишком противоречить естественному поведению компонент системы, то даже при достаточной силе связи ему не удастся навязать ансамблю свою линию поведения.

Однако прежнее поведение также не сохранится. В результате синхронизация будет разрушена. Фрактальность и устойчивость Мы уже убедились, что теорию динамического хаоса можно применить ко многим системам, в том числе к государству и обществу в целом.

А какую роль играет при этом фрактальная структура хаоса? Ведь образ хаоса в фазовом пространстве - странный аттрактор - геометрически представляет собой фрактал. Несмотря на то, что каждая отдельная хаотическая траектория чрезвычайно чувствительна к малейшим возмущениям, странный аттрактор совокупность всех возможных траекторий является очень устойчивой структурой.

Таким образом, динамический хаос подобен двуликому Янусу: с одной стороны, он проявляет себя как модель беспорядка, а с другой - как стабильность и упорядоченность на разных масштабах. Если задуматься, то легко увидеть, что в обществе, как и в природе, многие системы построены по принципу фракталов: из малых элементов образуются некоторые комплексы, они в свою очередь служат элементами для более крупных комплексов и т. Как, например, организованы жизнеспособные экономические и производственные структуры?

Две крайние позиции: крупные транснациональные компании и "мелкий бизнес". Каждая из них в отдельности нежизнеспособна. Большие компании, обладая огромной экономической мощью, малоподвижны и не могут быстро реагировать на изменения в окружающей экономической среде.

Где же золотая середина? В средних по размеру предприятиях? Устойчивая экономическая инфраструктура обеспечивается при необходимой подкачке нужных ресурсов совокупностью разномасштабных вот он фрактал!

У основания ее находится множество мелких компаний и фирм, выше по пирамиде размер предприятий постепенно увеличивается, а их число, соответственно, сокращается, и, наконец, наверху находятся самые крупные компании. Такая структура характерна, например, для экономики США. При этом мелкие предприятия наиболее мобильны: они часто рождаются и умирают, являясь основными поставщиками новых идей и технологий.

Нововведения, получившие достаточное развитие, позволяют ряду предприятий вырасти до следующего уровня либо передать продать накопленные инновации более крупным компаниям. При достаточной восприимчивости среды такой механизм способен создать новые отрасли промышленности и экономики за несколько лет. Недаром в так называемой "новой экономике" основную массу даже крупных предприятий составляют компании, которые 15-20 лет назад либо вообще не существова ли, либо находились в разряде мелких.

Другой пример. Во времена перестройки много писалось и говорилось о "неправильном" устройстве СССР, в котором государство имело сложную иерархическую структуру, организованную по принципу матрешки. Что было предложено взамен?

Каждому народу свою туземную армию, свой язык, свою "элиту", своих племенных вождей. Звучит неплохо. С точки зрения теории устойчивости, идея однородного устройства российского государства - идея двоечника.

Принцип матрешки - это, по сути, фрактальный принцип, благодаря которому хаотическая система обретает структуру и устойчивость. СССР и Российская империя были построены по принципу фрактальных систем, и это обеспечивало их стабильность как государств. На разных уровнях в общую систему были вкраплены естественные государственные, этнические, территориальные и другие образования с отлаженными механизмами внутреннего функциониро вания, со своими правами и обязанностями.

Хаос порождает информацию Мы уже установили, что поведение хаотических систем не может быть предсказано на большие интервалы времени. По мере удаления от начальных условий положение траектории становится все более и более неопределенн ым. С точки зрения теории информации это означает, что система сама порождает информацию, причем скорость этого процесса тем выше, чем больше степень хаотичности.

Отсюда, согласно теории хаотической синхрониза ции, рассмотренной ранее, следует интересный вывод: чем интенсивнее система генерирует информацию, тем труднее ее синхронизировать, заставить вести себя как-то иначе. Это правило, видимо, справедливо для любых систем, производящих информацию. Например, если некий творческий коллектив генерирует достаточное количество идей и а активно работает над способами их реализации, ему труднее навязать извне какую-то линию поведения, неадекватную его собственным воззрениям.

И наоборот, если при наличии тех же материальных потоков и ресурсов коллектив ведет себя пассивно в информационном смысле, не создает идей или не проводит их в жизнь - иными словами, следует принципу "... Хаотические компьютеры Чего нам не хватает в современных компьютерах? Если живой организм для существования в изменчивой среде должен обладать элементами хаотического поведения, то можно предположить, что и искусственные системы, способные адекватно взаимодей ствовать с меняющимся окружением, должны быть в той или иной степени хаотичными.

Современные компьютеры таковыми не являются. Они представляют собой замкнутые системы с очень большим, но конечным числом состояний. Возможно, в будущем на основе динамического хаоса создадут компьютеры нового типа - открытые с термодина мической точки зрения системы, способные адаптироваться к условиям внешней среды.

Однако уже сегодня хаотические алгоритмы могут успешно применять ся в компьютер ных технологиях для хранения, поиска и защиты информации. При решении некоторых задач они оказываются более эффективными по сравнению с традиционными методами. Это относится, в частности, к работе с мультимедийными данными.

В отличие от текстов и программ мультимедийная информация требует иного способа организации памяти. Голубая мечта пользователей - возможность поиска мелодии, видеосюжета или нужных фотографий не по их атрибутам названию директории и файла, дате создания и т. Оказывается, такой ассоциативный поиск можно осуществить с помощью технологий на основе детерминированного хаоса.

Каким образом? Мы уже обсуждали генерацию информации хаотическими системами. Теперь зададимся вопросом: а нельзя ли поставить в соответствие траектории конкретные данные, записанные в виде определенной последовательностей символов?

Тогда часть траекторий системы находилась бы во взаимно однозначном соответствии с нашими информаци онными последовательностями.

Но на молекулярном уровне, в мире белков и атомов, фракталы казались невозможными. До сих пор.

Встреча с треугольником Серпинского Цитратсинтаза — фермент, участвующий в жизненно важных процессах обмена веществ у цианобактерий. Казалось бы, что может быть прозаичнее? Но исследователи из Института Макса Планка и Университета Филиппа в Марбурге обнаружили, что молекулы этого фермента способны на удивительное: они самоорганизуются, образуя узор, известный как треугольник Серпинского.

Этот фрактал представляет собой бесконечную последовательность треугольников, вложенных друг в друга, с пустыми пространствами, напоминающими звездное небо. На рисунках изображена сборка известных белков CS. Комплексы 6mer не давали обзоров сверху.

Таким образом, для представления был использован изолированный 6mer из среднего по классу 18mer. Схемы изображений справа. Данные представлены в виде средних значений трех различных положений сетки, а столбцы погрешности соответствуют s.

Эксперимент проводили, начиная с самой высокой концентрации, а затем последовательно разбавляя белок.

Фракталы в природе (53 фото)

Тема фракталов достаточно молода, но одно знаем точно, что ее глубина и охват — это «черная дыра» с огромным количеством идей и возможный векторов применения. Первое, что мы можем выделить — это подобие графиков движения цены, вне зависимости от инструмента, таймфрема временного масштаба. Разумеется, что найти абсолютно похожие участки крайне сложно, но ключевое свойство фрактала — это самоподобие, а не идентичность. А найти регулярные и подобные структуры в колебаниях цены — это уже более реальная задача. Получается, что рынок, как минимум, имеет фрактальные свойства. Само наличие закономерностей в движении говорит об этом. Волны Элиота — также определенная фрактальная закономерность в движении цены Каждая часть графика делится по определенной закономерность на самоподобные части.

Что еще интересного можно найти на основе модели Мандельброта? К примеру, можно взглянуть на соотношение частей этого фрактала: Фрактальную теорию тесно связывают с принципом золотого сечения и числами Фибоначчи. Опять же, не будем вдаваться в сложные математические вычисления и доказательства.

Фракталом в прессе и научно-популярной литературе могут называть фигуры, обладающие какими-либо из перечисленных ниже свойств: Обладает нетривиальной структурой на всех масштабах. В этом отличие от регулярных фигур таких, как окружность, эллипс, график гладкой функции : если мы рассмотрим небольшой фрагмент регулярной фигуры в очень крупном масштабе, он будет похож на фрагмент прямой. Для фрактала увеличение масштаба не ведёт к упрощению структуры, на всех шкалах мы увидим одинаково сложную картину.

Является самоподобной или приближённо самоподобной. Обладает дробной метрической размерностью или метрической размерностью, превосходящей топологическую. Многие объекты в природе обладают фрактальными свойствами, например, побережья, облака, кроны деревьев, снежинки, кровеносная система и система альвеол человека или животных. Фракталы, особенно на плоскости, популярны благодаря сочетанию красоты с простотой построения при помощи компьютера. В движении Фракталы бесподобны!

Ну и добавлю еще одно соображение. Для сравнительно простых форм жизни, например, грибов или растений, фрактальная структура удобна еще одним своим свойством - самоподобием. Оно означает, что если в результате какого-либо события от, например, мицелия гриба будет оторвана большая часть, оставшаяся часть в целом будет подобна всему большому организму и будет функционировать. Конечно, это верно лишь для достаточно простых форм жизни. Все природные объекты строго математичны, так как созданы не людьми, а Богом.

А Пространство Творца описывается математическими законами и есть полное совершенство форм...

Историческая справка, или Как все начиналось На рубеже 19-20 веков изучение природы фракталов носило эпизодический характер. Это объясняется тем, что математики предпочитали изучать объекты, поддающиеся исследованию, на основе общих теорий и методов. В 1872 году немецким математиком К.

Вейерштрассом был построен пример непрерывной функции, нигде не дифференцируемой. Однако это построение оказалась целиком абстрактным и трудным для восприятия. Дальше пошел швед Хельге фон Кох, который в 1904 году построил непрерывную кривую, не имеющую нигде касательной. Ее довольно легко нарисовать, и, как оказалось, она характеризуется фрактальными свойствами.

Один из вариантов данной кривой назвали в честь ее автора — «снежинка Коха». Далее идею самоподобия фигур развивал будущий наставник Б. Мандельброта француз Поль Леви. В 1938 году он опубликовал статью «Плоские и пространственные кривые и поверхности, состоящие из частей, подобных целому».

В ней он описал новый вид — С-кривую Леви. Все вышеперечисленные фигуры условно относятся к такому виду, как геометрические фракталы. Динамические, или алгебраические фракталы К данному классу относится множество Мандельброта. Первыми исследователями этого направления стали французские математики Пьер Фату и Гастон Жюлиа.

В 1918 году Жюлиа опубликовал работу, в основе которой лежало изучение итераций рациональных комплексных функций. Здесь он описал семейство фракталов, которые близко связаны с множеством Мандельброта. Невзирая на то что данная работа прославила автора среди математиков, о ней быстро забыли. И только спустя полвека благодаря компьютерам труд Жюлиа получил вторую жизнь.

ЭВМ позволили сделать видимым для каждого человека ту красоту и богатство мира фракталов, которые могли «видеть» математики, отображая их через функции. Мандельброт стал первым, кто использовал компьютер для проведения вычислений вручную такой объем невозможно провести , позволивших построить изображение этих фигур. Человек с пространственным воображением Мандельброт начинал свою научную карьеру в исследовательском центре IBM. Изучая возможности передачи данных на большие расстояния, ученые столкнулись с фактом больших потерь, которые возникали из-за шумовых помех.

Бенуа искал пути решения этой проблемы. Просматривая результаты измерений, он обратил внимание на странную закономерность, а именно: графики шумов выглядели одинаково в разном масштабе времени. Аналогичная картина наблюдалась как для периода в один день, так и для семи дней или для часа. Сам Бенуа Мандельброт часто повторял, что он работает не с формулами, а играет с картинками.

Этот ученый отличался образным мышлением, любую алгебраическую задачу он переводил в геометрическую область, где правильный ответ очевиден. Так что неудивительно, что такой человек, отличающийся богатым пространственным мышлением, и стал отцом фрактальной геометрии. Ведь осознание данной фигуры может прийти только тогда, когда изучаешь рисунки и вдумываешься в смысл этих странных завихрений, образующих узор. Фрактальные рисунки не имеют идентичных элементов, однако обладают подобностью при любом масштабе.

Фрактальные закономерности в природе

На самом деле они изменяются — облака движутся, пламя мерцает, лист увядает. Your browser does not support the video tag. Цикл книг «Фракталы и Хаос».

Он представляет собой систему функций из некоторого фиксированного класса функций, отображающих одно многомерное множество на другое. Сначала мы выполнили построение одного отрезка в плоскости Оху, а затем проводили аффинные преобразования с изменением координат его концов, поворотом вокруг осей и изменением размера с определенным коэффициентом рис.

Впоследствии количество уровней смогло увеличиться до 7. Мы достигли того, что было выполнено построение трехмерного изображения рис. Оказалось, что они нашли свое применение в радиотехнике, в теории информации, практическом сжатии информации, построении изображений, сжатии графической и аудиоинформации, в экологии, в биологии, в медицине, в экономике, в механике. Примеры применения можно перечислять бесконечно, отметим лишь некоторые из них.

Использование фрактальной геометрии при проектировании антенных устройств совершило прорыв, поскольку антенные заданной фрактальной формы многократно увеличивали диапазон принимаемых волн.

С точки зрения математики фракталы являются особенными фигурами, так как обладают дробной размерностью. Это значит, что плоский фрактал в некотором смысле «проще» настоящей плоскости, но «сложнее» прямой. Фракталы также встречаются в природе. В частности, изрезанные береговые линии можно описать с помощью этих фигур, а кочан цветной капусты сорта Романеско, контуры облаков и ветвящаяся форма молний обладают свойством самоподбия.

В новой работе физики обнаружили фракталы в лазерах.

Благодаря фрактальному строению коронарной системы, обеспечивающей кровоснабжение сердечной мышцы, во многих случаях удаётся избежать инфаркта миокарда. К тому же именно фрактальное строение сердечных мышечных волокон при повреждении какой-либо её части инфаркт миокарда зачастую позволяет сердцу продолжать свою работу. Фрактальное строение сердечной мышцы и коронарных сосудов. Дыхательная система Дыхательная система ещё один яркий пример фрактала.

Её структурными элементами являются трахея, бронхи, бронхиолы, которые в совокупности образуют бронхиальное дерево; а также альвеолы, соединяющиеся в пирамидальные дольки, из которых и состоит лёгкое. Удивительно, но благодаря фрактальному принципу строения лёгких, в человеческой грудной клетке возможно разместить площадь теннисного корта. Именно столько занимает дыхательная поверхность лёгких. Сами же дыхательные пути искусно пронизаны артериями и венами в виде лабиринтов. Строением бронхиальное дерево напоминает H-фрактал, о котором мы говорили в предыдущей части «Что такое фракталы?

Мир вокруг нас. Часть первая»: Рис. Изображение Н-фрактала и бронхиального дерева На рисунке 14 мы видим переплетение двух фрактальных систем — лёгочной слева и кровеносной справа. Говорить про фрактальное строение человеческого организма можно много. Мы приведем еще несколько примеров.

В тканях пищеварительного тракта одна волокнистая поверхность встроена в другую. Фрактальные ответвления или складки значительно увеличивают площадь поверхности, необходимой для всасывания в тонком кишечнике. Желчные протоки в печени и мочеполовая система, иммунная система и вестибулярный аппарат, сетчатка глаза, а также почки — всё это является фрактальными структурами, которые прекрасно организованы и хорошо подготовлены к различного рода повреждениям. На сегодняшний день накоплено немало научных данных, свидетельствующих о фрактальности структур и функций головного мозга и нервной системы. Интересный факт: при визуальном поиске глаз человека вычерчивает фрактальную траекторию!

Возьмём физическое тело человека целиком. Наблюдая за ростом и развитием его от рождения до смерти, мы сможем увидеть различные масштабные копии одного объекта.

Похожие новости:

Оцените статью
Добавить комментарий