Новости пластик для 3д принтера

Компания SEM — производитель пластика для 3D принтеров. Филамент Creality Ender PLA+ — это усовершенствованный PLA пластик от известного производителя 3D принтеров Creality 3D. Сравнение удельной прочности алюминия 6061 и пластиков ULTEM™ 9085, PEEK с углеволокном и PEEK (МПа – см3/г) © AON3D.

Производитель пластика - U3Print

Ряд пластиков находится в постоянном контакте с пищевыми продуктами. Рассказываем о характеристиках пластика, примерах применения в промышленности, оборудовании для 3d-печати PEEK. Поскольку это отрицательно сказывается на материале, храните нить для 3D-принтера в сухом прохладном месте. Компания PlastiQ открылась в августе 2018 года, мы занимаемся производством расходных материалов для 3D принтеров и 3D ручек, работающих по технологии FDM печати. Недостатки и преимущества прозрачного пластика для 3D принтера необходимо рассматривать с точки зрения внешнего вида, для какой категории производства он подойдет. Использованные капсулы из-под кофе могут стать сырьем для производства пластика для 3D-принтеров.

Подробный гид по выбору пластика для 3D-печати

1954 предложения - низкие цены, быстрая доставка от 1-2 часов, возможность оплаты в рассрочку для части товаров, кешбэк Яндекс Плюс - Яндекс Маркет. Натуральный PETG пластик Bestfilament для 3D-принтеров 1 кг (1,75 мм) Цвет натур. Пластик для 3D-принтеров. Antistatic – категория пластиков для 3D-печати, содержащих углеволокно и обладающих антистатическими свойствами.

Виды пластика для 3D принтера. Плюсы и минусы, советы по выбору

Поскольку это отрицательно сказывается на материале, храните нить для 3D-принтера в сухом прохладном месте. PETG, и PLA – это пластики полиэфирной группы. Как и большинство филаментов для 3D-печати по технологии FDM, они являются также термопластиками. Высококачественный композитный пластик для 3D печати методом FDM собственного производства. Пластик для 3D-принтеров, Bestfilament, ABS черный. После печати на 3D принтере модели из ABS пластика, её можно легко отшлифовать и покрасить аэрозольной или акриловой краской. Пластик очень неприхотлив в печати и подойдет для любого FDM принтера.

Please wait while your request is being verified...

Из-за невысокой стоимости сырья, является одним из самых доступных по цене пластиков. Преимущества: Хорошее сочетание прочности и упругости позволяет использовать его для изготовления механических изделий рассчитанных на долгий срок эксплуатации. Широкий диапазон используемых температур позволяет эксплуатировать изделия из него в технических целях.

Соответственно первый минус это отсутствие катушки, еще говорят бывает спутанным, но это пока не проверенно на личном опыте. Еще к небольшому минусы можно отнести отсутствие пакета с фиксацией, как например у ФД пласт, куда удобно складывать филамент и хранить. Первая печать же показала, такой же результат, как у фд пласт и первого комплектного пластика от аникубик. Единственный момент, была одна полоса на слое, как будто не додавил пластик, но я думаю это проблема механики, хотя мб и гуляет диаметр прутка.

В этом исследовании объектами были серии микростолбиков и нанорешёток. Затем гидрогелевые детали пропитывают водным раствором, содержащим ионы никеля. Наноразмерная решётка, полученная по новой методике, разработанной в лаборатории Джулии Р. Грир Julia R. Greer После насыщения металлическими ионами детали обжигают до полного выгорания гидрогеля, оставляя части в той же форме, что и оригинальные, но уменьшенные и состоящие полностью из металлических ионов, теперь окисленных связанных с атомами кислорода. На последнем этапе атомы кислорода химически удаляют из деталей, превращая металлический оксид обратно в металлическую форму. Вы видите дефекты, такие как поры и нерегулярности в атомной структуре, которые обычно считаются дефектами, уменьшающими прочность. Если бы вы строили что-то из стали, например блок двигателя, вы бы не хотели видеть такую микроструктуру, потому что она значительно ослабила бы материал», — рассказывает Джулия Р. Greer , профессор материаловедения, механики и медицинской инженерии Caltech и руководитель лаборатории, где проводилось исследование. Однако в данном случае эти дефекты, напротив, увеличивают прочность материала на наноуровне. Нерегулярная внутренняя структура никелевого микростолбика Процесс 3D-печати металлических структур на наноуровне, по словам Грир, может найти применение в создании множества полезных компонентов, включая катализаторы для водорода, электроды для хранения аммиака и других химикатов без углерода, а также важные части устройств, таких как сенсоры, микророботы и теплообменники. Аспирантка факультета машиностроения Вэньсинь Чжан Wenxin Zhang работает в лаборатории нанотехнологий Это открытие подчёркивает необычные свойства материи на наноуровне и предвещает революцию в создании нанотехнологических устройств. Это напоминает о том, что наука и технологии неустанно движутся вперёд, открывая новые возможности для применения наноматериалов в различных сферах, от медицины до космических исследований. Разработчики университета восполнили этот пробел, который поможет лечить обширные повреждения тканей без дорогостоящего оборудования. Технология проверена на животных и доказала свою эффективность. Источник изображений: НИТУ «МИСИС» Традиционно ткани для пересадки на обширные повреждённые участки кожи выращиваются «в пробирке» — на чашках Петри с последующей адаптацией, что требует громоздкого и дорогостоящего оборудования. В мире пока нет коммерческих биопринтеров, которые могли бы наносить тканевый материал прямо на раны, что значительно ускорило бы восстановление пациентов с попутным снижением затрат на подготовку к лечению и само лечение. Учёные университета решили этот вопрос оригинальным образом — они приспособили для этого рядовой роботизированный манипулятор, вооружив его системой подачи тканевых «чернил» и датчиками навигации. Программно-аппаратный комплекс биопринтера сканирует дефект, создает его трёхмерную модель, а затем заполняет участок гидрогелевой композицией с живыми клетками. Датчики на основе лазеров учитывают не только рельеф раны, но также движение тела пациента, например, в процессе дыхания, подстраивая необходимым образом печатающую головку. Пользовательский интерфейс с возможностью 3D-отображения траекторий написан на языке Python с использованием открытых библиотек Pyqt5 и OpenGL и открыт для всех желающих, кто готов совершенствовать проект. Судя по фотографиям, за основу биопринтера был взят один из манипуляторов белорусской компании Rozum Robotics. Программно-аппаратный комплекс платформы учёным помогали разрабатывать специалисты компании 3D Bioprinting solutions. Герцена и готов к дальнейшим этапам исследований. Проведённый через некоторое время анализ ран показал, что процесс заживления прошёл со значительным ускорением. По мнению специалистов, данная технология биопечати in situ, то есть непосредственно в дефект, в будущем может стать прогрессивным терапевтическим методом лечения ожогов, язв и обширных повреждений мягких тканей. В отличие от варианта с обработкой метала резанием, такой подход позволяет сократить время на изготовление детали и уменьшить расход материала. Источник изображения: Apple Как поясняет знакомый с планами Apple источник, если подход с изготовлением корпусов для умных часов при помощи трёхмерных принтеров себя оправдает, со временем компания расширит применение таких методов производства на другие категории продуктов. Первоначальную заготовку получают методом ковки, а потом из приближённого по размерам к готовому корпусу куска металла станок с числовым программным управлением вырезает изделие необходимой конфигурации. Альтернативная технология позволяет создавать более близкую по форме и размерам к конечным очертаниям корпуса металлическую заготовку из порошкового сырья, которая затем подвергается спеканию при высоких температуре и давлении для достижения необходимых прочностных характеристик. Обработка заготовки резанием предусмотрена на конечном этапе, но в отличие от традиционного техпроцесса, она занимает меньше времени и оставляет меньше отходов. Как отмечается, Apple и её партнёры работают над этой технологией производства на протяжении примерно трёх лет. В качестве эксперимента на протяжении последних нескольких месяцев они пробовали изготовить с помощью новой технологии стальные корпуса часов семейства Watch Series 9, которые должны дебютировать в середине сентября. Пока нет уверенности в том, что товарные экземпляры этих часов будут снабжаться корпусами, изготовленными новым методом. К 2024 году Apple рассчитывает применить новый метод производства с использованием титана для часов серии Ultra. Первоначальные затраты на перевооружение производства под новую технологию будут высокими, но со временем они позволят добиться экономии сырья. Сейчас себестоимость изготовления корпусов по обеим технологиям сопоставима. Основная часть выпускаемых компанией часов оснащается алюминиевыми корпусами, для их производства использовать трёхмерные принтеры пока не планируется. Отладив новый метод на мелкосерийных изделиях, Apple сможет масштабировать его на более массовые в производстве продукты, включая и смартфоны. Ожидается, что именно этот подход будет использован для изготовления некоторых механических деталей новых Apple Watch Ultra. Ожидается, что некоторые титановые детали для новых Apple Watch Ultra будут изготовлены с помощью этого метода. Несмотря на то, что на текущий момент механические детали, изготовленные методом 3D-печати, всё ещё проходят обработку на станках с ЧПУ, это способствует оптимизации времени производства и снижению себестоимости. Предполагается, что при успешном сотрудничестве, всё больше продуктов Apple будет изготовлено с применением технологии 3D-печати. Это не только позволит снизить затраты на производство и улучшить показатели « устойчивого развития » ESG в цепочке поставок Apple, но и принесет выгоду упомянутым поставщикам в рамках этой новой производственной тенденции. Внедрение технологии 3D-печати в производственный процесс Apple приведёт к значительной оптимизации времени производства и снижению себестоимости продукции компании. Это лишь некоторые преимущества, которые открывают новые возможности для развития и использования 3D-печати в электронной индустрии, и не только для Apple. Группа учёных смогла решить эту проблему в сфере 3D-печати живых тканей человека — она создала сложнейшее и дорогое оборудование из обычных наборов LEGO и готова поделиться опытом со всеми желающими. Самыми дорогими, по-видимому, оказались интеллектуальный блок Lego Mindstorms и лабораторный насос. LEGO-принтер печатает биогелем, в котором растворены клетки кожи человека. Сопло принтера создаёт трёхмерную модель тканей кожи в чашке Петри, укладывая в неё слой за слоем.

Прозрачность после обработки, возможность использования в светильниках. Широкий диапазон температур эксплуатации, морозостойкость. Простота постобработки как химическими, так и механическими методами. Относительно высокая температура печати, как и у PETG. Области применения: Элементы декора, уникальные дизайнерские решения, морозоустойчивые изделия, освещение, посуда, световые короба. PLA Wood пластик с добавлением деревянного порошка для 3D печати Деревянная нить для 3D-принтера изготавливается путем смешивания PLA полимолочной кислоты и древесной муки. Древесная мука добавляет к PLA волокнистую структуру и придает ему текстуру, напоминающую дерево. Это позволяет создавать объекты, которые выглядят и чувствуют себя как настоящее дерево. Деревянная нить также более экологически чистая, чем многие другие материалы, используемые для 3D-печати, так как PLA является биоразлагаемой пластмассой. Однако следует учитывать, что деревянная нить может быть менее прочной и гибкой, чем некоторые другие материалы для 3D-печати, и требует более аккуратного обращения при печати. Да, для достижения желаемого внешнего вида многие объекты, напечатанные из деревянной нити, могут потребовать дополнительной обработки. Это может включать в себя шлифовку, окрашивание или покрытие лаком. При шлифовке следует быть осторожным, чтобы не удалить слишком много материала, что может привести к потере текстуры, которую придает объекту деревянная нить. При окрашивании или покрытии лаком также следует быть осторожным, чтобы не закрыть текстуру и нежелательно изменить цвет и текстуру объекта. При правильном использовании древесной нити и удержании температуры на правильном уровне можно получить очень реалистичные объекты, которые выглядят и чувствуют себя как настоящее дерево. Использование деревянной нити для создания архитектурных моделей может дать впечатляющий и реалистичный результат. Выводить в печать макеты зданий, мостов и других сооружений, имеющих древесную текстуру, лучше всего на специальном принтере, способном печатать в крупном масштабе. Это позволяет увидеть все детали, включая текстуру и оттенки дерева, которые могут быть упущены при использовании более тонкой деревянной нити. Создание макета из деревянной нити может помочь архитекторам и инженерам увидеть, как здание будет выглядеть в реальности, и внести необходимые изменения в проект до начала строительства. Пластик с добавлением металлического порошка для 3D принтера Металлическая нить для 3D-принтера может дать очень красивые и эффектные результаты. Ее можно использовать как для создания предметов декора, так и для напечатания функциональных деталей, имеющих металлический вид. Также эта нить может использоваться для создания макетов ювелирных изделий, деталей автомобилей, инструментов и многого другого. Однако стоит заметить, что металлическая нить для 3D-принтера может быть более сложной в использовании, чем обычная нить из PLA или ABS. Это связано с тем, что металлический порошок, который содержится в нити, может приводить к засорению сопла принтера. Поэтому при использовании металлической нити необходимо чаще чистить и обслуживать 3D-принтер. Также необходимо правильно настроить параметры печати в зависимости от типа металла, используемого в составе нити. Это поможет достичь лучших результатов при напечатании объектов из металлической нити. Существует разнообразие металлических нитей, которые можно использовать для 3D-печати, включая бронзу, латунь, медь, алюминий и нержавеющую сталь. Они отличаются своей внешностью, могут быть полированными, устойчивыми к погодным условиям и сохранять свою яркость после печати. Хотя использование металлической нити может привести к износу форсунки, так как зерна металлического порошка могут быть абразивными, это не является серьезным ограничением. Важно просто заменять форсунку немного раньше, чем обычно. Металлические нити могут быть использованы для 3D-печати как для создания изделий эстетической, так и функциональной ценности. С металлическим принтом уникальные статуэтки, модели, игрушки и награды приобретают утонченный вид. Дополнительно, металл может использоваться для изготовления функциональных деталей, таких как инструменты, решетки и отделочные компоненты. Однако, при использовании металлической нити, необходимо учитывать, что детали могут оказаться под дополнительной нагрузкой, которые могут быть связаны с тем, что изделие должно выдерживать высокие температуры, или механическую нагрузку, поэтому необходимо соблюдать особую осторожность при расчетах. Биоразлагаемый bioFila пластик для 3D принтера Действительно, использование биоразлагаемых нитей для 3D-печати может существенно снизить воздействие на окружающую среду и способствовать более экологически чистому производству. Эти нити производятся из экологически чистых материалов, таких как кукурузный крахмал, пшеничный крахмал, рисовые отходы и другие биомассы, которые разлагаются при контакте с почвой, водой или солнечным светом, не представляя угрозу для окружающей среды. Кроме того, использование биоразлагаемых нитей дает возможность создавать более устойчивые и гибкие изделия, так как такие нити обладают лучшими свойствами гибкости, прочности на изгиб и износоустойчивости по сравнению со многими искусственными пластиками. Несомненно, биоразлагаемые нити являются отличным выбором для тех, кто заинтересован в создании экологически чистых изделий или кто хочет использовать 3D-принтер для производства на основе минимального воздействия на окружающую среду. Как правильно было отмечено, биоразлагаемые нити для 3D-принтеров могут быть несколько менее прочными и долговечными, чем их синтетические аналоги.

Можно ли перерабатывать нить для 3D принтера?

  • Особенности различных материалов, используемых для 3D-печати
  • Руководство покупателя пластиковой нити для 3D-принтера
  • Сравнение пластиков для 3D печати
  • Перерабатывающий пластик в нити для 3D-принтера прибор разработали томские школьники - Вести
  • Особенности различных материалов, используемых для 3D-печати

Чем печатать на FDM-принтере новичку?

FDM-печать ABS-пластик PLA-пластик (полилактид) PETG-пластик (полиэтилентерефталат-гликоль) SLA-печать Стандартная фотополимерная смола Заключение. PLA пластик для 3D принтера 5кг ЦВЕТ ИЗ АССОРТИМЕНТА –1.75мм 8 950 руб. Типов пластика для 3Д-печати гораздо больше, чем мы рассказали в данной статье. Настройка 3D-печати. Как вы могли заметить к продаваемому пластику для 3D принтеров имеется приписка его сорта (по сути состава), так что же она обозначает и чем отличается.

Переработка PETG/PLA: как перерабатывать отходы 3D-принтеров

SBS пластик – термопластичный материал для 3D-печати. Объемная 3D-Мастерская. Рынок пластиков (филаментов) для 3Д печати не стоит на месте.

Полилактид

  • Сравнение пластиков для 3D печати
  • Как выбрать пластик для 3Д-печати
  • PEEK - пластик, способный заменить металл. Все о высокотемпературной 3d-печати.
  • Гид по выбору термопластика для 3D-печати
  • Посмотреть онлайн
  • Производство изделий из пластика или резины на 3D принтере в Новосибирске

5 популярных пластиков для FDM-печати: особенности, применение, отличия

Имеет высокую размерную стабильность. Необходима сушка АБС-пластика в течение от 0,5 до 2 часов при температуре 70-80 градусов в зависимости от сушилки. Более экологичен и безопасен, чем другие материалы, поскольку для его синтеза используются ежегодно возобновляемые природные ресурсы например, кукурузный крахмал. Прочный и крепкий пластик, используемый при производстве таких изделий, как автомобильные бампера, кубики конструктора Lego и т. По лёгкости 3D печати это второй материал, после PLA пластика. Нужно быть внимательным при печати больших объектов, поскольку по мере остывание модели возможны деформации. После печати на 3D принтере модели из ABS пластика, её можно легко отшлифовать и покрасить аэрозольной или акриловой краской.

ABS производится из ископаемого топлива и не подвержен биологическому разложению.

Это также позволяет вам производить собственную нить, что снижает затраты на нить, если не учитывать стоимость изготовления собственного экструдера. Переработка пластиковых отходов в пригодные для использования нити требует двух шагов: измельчение пластика на мелкие кусочки, затем плавление и экструдирование с помощью экструдера для нитей. Существует множество решений для последнего шага: пластиковые экструдеры для хобби, такие как Filabot, доступны для продажи, а также конструкции для экструдеров для нити , которые вы можете построить сами. К сожалению, этап измельчения пластика остается немного сложным для среднего любителя. Измельчение больших кусков пластика создает большую нагрузку на типы двигателей, используемых в большинстве коммерческих приборов.

Промышленные шредеры, которые могут справиться с этим штаммом, слишком дороги для большинства людей, чтобы покупать их самостоятельно. Тем не менее, люди добились успеха, используя блендер или мясорубку для измельчения небольшого количества своих пластиковых отходов для экструзии нити. Советы по сокращению пластиковых отходов Несмотря на то, что приведенные выше рекомендации могут помочь вам сократить накопление пластиковых отходов, самый простой способ уменьшить количество отходов — это, в первую очередь, предотвратить их появление! Неудачные отпечатки и прототипы являются неизбежным источником отходов для любого любителя 3D-печати, но вот несколько быстрых советов по предотвращению накопления отходов: Максимально устраните опоры. Печать с поддержками приводит к большому количеству отходов пластика и затратам времени на его удаление из детали. По возможности старайтесь печатать свои модели без опор или проектировать минималистичные опоры в самой детали.

Печать с полями вместо подложки брим. Подложки — это хороший способ гарантировать, что деталь приклеится к рабочей поверхности вашего принтера. Однако, как и опоры, они используют много материала и требуют дополнительных шагов для удаления из детали. Если у вас проблемы с прилипанием к постели , попробуйте отрегулировать высоту первого слоя или печатать с полями вместо подложки. Поля также помогают деталям прилипать к кровати, но используют значительно меньше пластика, чем плот. Не печатайте слишком много деталей одновременно.

Вероятность сбоя при печати увеличивается, когда одновременно печатается слишком много деталей. Если при печати одного компонента произойдет сбой, его последствия, вероятно, перенесутся на другие компоненты на станине, что также может привести к их порче. Старайтесь разделять многокомпонентные проекты на несколько отпечатков, а не на один большой. Это займет больше времени, но, возможно, оно того стоит! Следите за обслуживанием принтера.

Методология Пластики для 3D принтеров обычно классифицируются по 3 категориям: механические характеристики, визуальное качество и пригодность к постобработке.

Далее мы разобьём эти категории, чтобы нарисовать более четкую картину свойств полимеров. Выбор материала зависит от того, что пользователь хочет напечатать, поэтому перечислим ключевые критерии, необходимые для выбора материала, кроме стоимости: Простота печати: Насколько легко печатать пластиком: адгезия между слоями, максимальная скорость печати, частота возможного брака, точность печати, удобство подачи в принтер и т. Визуальное качество: насколько хорошо выглядит готовая модель. Максимальные нагрузки: максимальное напряжение, которое может испытать объект, прежде чем сломаться при медленном натяжении. Растяжение на разрыв: максимальная длина объекта, растянутого до разрыва. Ударопрочность: энергия, необходимая для разрушения объекта при внезапном ударе.

Адгезия между слоями изотропия : насколько хороша адгезия между слоями материала. Это связано с «изотропией» однородностью во всех направлениях. Чем лучше адгезия слоя, тем более изотропным будет объект. Термостойкость: максимальная температура, которую объект может выдержать до размягчения и деформации. Данные свойства не являются ни «хорошими», ни «плохими» по сути; это просто свойства, которые подходят для своей области применения. Например, жесткость.

ABS пластик прекрасно растворяется в обыкновенном ацетоне это необходимо для химической обработки готовой модели. PLA пластик не растворяется в привычном ацетоне можно использовать только в специальных жидкостях: феноле, в limonen и в концентрированной серной кислоте. ABS — значительно долговечнее, не разлагается, из нефтепродуктов. PLA — делается из растительных материалов, разлагается за 2 года, долгоиграющие вещи из него делать бессмысленно, но зато он более гладкий, и именно из него печатают подшипники для моделей. Так же он максимально безопасен для детей, так как весь из растительности. Области применения ABS Области применения PLA - Крупные детали автомобилей приборные щитки, элементы ручного управления, радиаторная решётка - Экологически чистая биоразлагаемая упаковка, одноразовая посуды, средств личной гигиены. Биоразлагаемые пакеты из полилактида используются в некоторых супермаркетах.

Пластики для 3D принтера. Руководство по видам пластиков и их характеристики

Обработка после 3D-печати Обрабатывать изделия после печати можно разными способами. К наиболее распространенным относится шлифовка, которая помогает убрать следы от слоев материала. Выполнять ее лучше вручную — наждачной бумагой или специальными пастами, поскольку автоматическая шлифовка может привести к плавлению и комкованию модели. Еще один востребованный способ постобработки — химический, с использованием едких веществ, таких как дихлорэтан и диоксан. При помощи этих материалов можно устранить основные дефекты поверхности и сделать ее более гладкой.

Проблемы при печати пластиком PLA Иногда при печати полилактидом возникают проблемы, которые негативно влияют на качество готовых предметов. Чаще всего производители сталкиваются с такими неприятностями: Высокая температура экструзии — препятствует адгезии между слоями материала и делает модель более хрупкой. Если при использовании PLA температура печати превышает необходимые параметры, рекомендуется медленно отрегулировать ее до достижения оптимальных значений. Сниженная температура экструдера — проявляется отсутствием прилипания деталей к столу.

Для решения проблемы следует поднять температуру, но тут важно не переусердствовать, иначе под воздействием веса нижние слои материала будут формировать «слоновью лапу». Внешние факторы — оказывают незначительное влияние на печать, но иногда требуют решения.

Я посмотрела на сайте Авито если хвостовики еще можно где-то купить по 65-70 рублей, то комплект с накольником продают вовсе по 300.

Я думаю, что те русские люди, которые делают это на продажу по такой завышенной цене очень неправы. Им должно быть стыдно. Минору: конечно, бойцам нужен полный комплект, поэтому приходится печатать все.

Накольник состоит из 4-х деталей - низа, верха, предохранителя и обычного гвоздя. После печати я собираю все в готовое изделие. А хвостовики я научилась печатать в автоматическом режиме.

Минору: Хвостовик довольно высокий и папа помог мне найти чертеж, по которому принтер после печати скидывает его со стола и сразу же принимается за печать следующего. Таким образом я ставлю его печататься на ночь, а с утра собираю пару десятков готовых, раскиданных возле принтера. Минору: Папа, конечно, мне помогает, подсказывает, если что не так, но он до вечера работает, а в остальное время часто занят , поэтому печатаю в основном я.

Но снимать напечатанное и даже запускать принтер мне помогает вся семья — мама и младший брат. Это на самом деле не сложно, намного проще, чем кажется со стороны. Минору: пока только хвостовики.

Но на будущее у меня есть чертежи ампульниц, чехлов для шприцов нефопама, коробок для саперных взрывателей, чертежи для медицинских турникетов, для тактических наколенников. Еще собираюсь напечатать детали для сбросов, но там кроме пластика еще электронику надо паять. А я в этом несильна.

Опять-таки стоит помнить, что далеко не каждый производитель предлагает безопасный ПЭТГ, так как вопрос не только в базовом полимере, но и других добавках, например тех же красителях. Этот полимер более прочен и износостоек, выдерживает нагревание до более высоких температур, да к тому же обладает хорошим сопротивлением к ультрафиолетовому облучению и химикатам. Печатать ПЭТГ несколько сложнее, но не сильно. ПЭТГ экструдируется при чуть более высоких температурах, но с задачей справятся даже хотэнды на самых дешевых 3D-принтерах. Дополнительно можно столкнуться с чрезмерной адгезией и паутиной, но это достаточно легко решаемые проблемы, о которых поговорим чуть ниже. Превышать это значение не следует, так как модель может «поплыть» под собственным весом. Для обеспечения адгезии со столиком, особенно холодным, необходимо либо нанести на поверхность малярный скотч, либо использовать столик с полиэфиримидным покрытием, либо использовать клей, например Bubble glue.

С ПЭТГ могут возникнуть проблемы в виде так называемой «паутины» — тонких нитей, тянущихся за соплом при холостом перемещении головки. Серьезных проблем они не вызывают, так как после 3D-печати легко удаляются, но все же раздражают и ведут к перерасходу материала. При появлении паутины попробуйте либо увеличить длину ретракта, либо слегка понизить температуру экструзии, либо и то, и другое. При 3D-печати ПЭТГ также настоятельно рекомендуется использовать клеи, но не столько для повышения адгезии, сколько наоборот: дело в том, что ПЭТГ отлично схватывается со многими гладкими поверхностями, особенно стеклянными столиками. При отделении готовой модели можно даже вырвать куски стекла. В таких случаях тонкий слой клея поверх столика будет служить разделительным слоем, удерживающим адгезию на оптимальном уровне. Попробуйте клеи Bubble glue или Picaso , они созданы как раз с этой целью.

Доступный износостойкий материал. Не горючий. Инженерные высокотемпературные материалы: ePEEK — самый термостойкий материал во всей линейке с начальной температурой деформации 152 градуса. Инженерные атмосферостойкие материалы: Атмосферостойкие пластики — материалы, которые возможно использовать на улице. Устойчив к атмосферному воздействию и ультрафиолету.

Инженерные композитные материалы: ePC — поликарбонат. Уникальный материал для 3D-печати. Пластик высокопрочный, прозрачный, устойчивый к воспламенению. По своим свойствам может быть отнесен к атмосферостойким пластикам. Инженерные материалы материалы специального назначения : PVA — поливиниловый спирт.

Уникальный материал для принтеров с двумя печатными головками экструдерами.

Похожие новости:

Оцените статью
Добавить комментарий