Холодный ядерный синтез новости последние

Данные из Wiki: Холодный ядерный синтез — предполагаемая возможность осуществления ядерной реакции синтеза в химических (атомно-молекулярных) системах без значительного нагрева рабочего вещества. Физики из Университета Осаки продемонстрировали реакцию холодного ядерного синтеза, сообщает ресурс New Energy Times. По утверждениям ученых, им удалось при комнатной температуре "заставить" два ядра дейтерия превратиться в ядро гелия. Научный прорыв: холодный ядерный синтез стал управляем. В российской и мировой ядерной физике осуществлён долгожданный научный прорыв. Двигатель внутреннего сгорания уходит в прошлое, как некогда ушла тягловая лошадь. Напомним читателям, что в ряде работ Катар называл время прорыва в технологии холодного ядерного синтеза 2018—2019 год.

Битва за термояд

Запомним этот печальный день, уважаемое сообщество АШ. Сегодня, 10 января 2019 г., мы хороним красивую и простую до гениальности идею Холодного Ядерного Синтеза (ХЯС). Увы, простота есть необходимое, но недостаточное условие гениальности. Но в любом случае, то, что в исследованиях лаборатории «Протон-21» мы имеем дело именно с холодным синтезом, не вызывает сомнений. Также не вызывает сомнений, что в деле конструирования сверхтяжелых элементов холодный синтез значительно обошел «горячий». Это движение, по большей части, является воскрешением холодного синтеза – недолго существовавшего в 1980-х явления, связанного с получением ядерного синтеза в простом настольном электролитическом устройстве, которое учёные быстро отмели. Холодный синтез: самое известное физическое мошенничество. 23 марта 1989 года Университет Юты сообщил в пресс-релизе, что «двое ученых запустили самоподдерживающуюся реакцию ядерного синтеза при комнатной температуре».

Холодный ядерный синтез: мы сразу пошли своим путём

Физический факультет Московского государственного университета имени Ломоносова. В российской и мировой ядерной физике осуществлен долгожданный научный прорыв. Впервые реализована управляемая реакция ядерного синтеза при комнатной температуре. Запомним этот печальный день, уважаемое сообщество АШ. Сегодня, 10 января 2019 г., мы хороним красивую и простую до гениальности идею Холодного Ядерного Синтеза (ХЯС). Увы, простота есть необходимое, но недостаточное условие гениальности. Так как предполагается, что технология холодного синтеза станет не просто прорывной, а революционной, способной изменить социально-экономический уклад всех стран мира, ИА REGNUM публикует выдержки из интервью трёх ведущих ученых — участников этого проекта.

Японские физики заявили об осуществлении реакции холодного ядерного синтеза

Физический факультет Московского государственного университета имени Ломоносова. В российской и мировой ядерной физике осуществлен долгожданный научный прорыв. Впервые реализована управляемая реакция ядерного синтеза при комнатной температуре. Почему научные группы, финансируемые Google и фондами США и Канады, не смогли получить реакции холодного ядерного синтеза ни одним из известных способов. Холодный ядерный синтез (ХЯС) — предполагаемая возможность осуществления ядерной реакции синтеза в химических (атомно-молекулярных) системах без значительного нагрева рабочего вещества. описание экспериментов и полученных результатов. ХЯС, LENR, НЭЯР, Low Energy Nuclear Reaction. ЭНЕРГОНИВА - Вачаев А.В. Шаровая молния, опыты с плазмой, плазменное горение. На сегодняшний день, примерно через семь лет после публичного раскрытия компанией Lockheed проекта холодного синтеза, компания уже трудится над своим новым испытательным реактором "T4B".

Вы точно человек?

Иногда датчики фиксировали эффект, но его никому не предъявишь, потому что уже в следующем эксперименте никакого эффекта нет. А даже если и есть, то в другой лаборатории он, в точности повторенный, не воспроизводится. На протяжении десятков лет холодный синтез проявлял поразительную капризность и упорно продолжал мучить своих исследователей неповторяемостью экспериментов. Многие уставали и уходили, на их место приходили немногие — ни денег, ни славы, а взамен — перспектива стать отверженным, получить клеймо «маргинального ученого». Привлечение средств на исследования для многих ученых стало даже более важным, чем сами исследования. Центр по исследованию горячего ядерного синтеза при МТИ, финансируемый из госбюджета, стал одним из самых громких голосов против холодного синтеза.

Иронично, но при повторном рассмотрении результатов, полученных МТИ была обнаружена странная непоследовательность, а промежуточные записи эксперимента, как оказалось, содержали информацию о выделении черезмерного количества тепла. Но в окончательной версии отчета, представленной институтом, эффект был подкорректирован, чтобы скрыть этот факт. После этой истории большинство серьезных исследователей прекратили работы по поиску путей осуществления холодного ядерного синтеза. Иван Степанович мечтал на какой-либо территории провести свой эксперимент и понизить содержание радиоактивных веществ если не до уровня, который был на земле издревле, то хотя бы наполовину. Правда, такой эксперимент пришлось бы строго засекретить, иначе на эту территорию ринулись бы тысячи и тысячи паломников в надежде продлить себе жизнь.

За «место под солнцем» они бы наверняка перетоптали друг друга. По словам учёного, сильные мира сего уже тогда предлагали ему оборудовать чудо-установками специальные подземные города, закрытые для всех, кроме них, и жить там вечно.

Холодный ядерный синтез не только возможен, но и осуществлён!!! Так, в 2005 году исследователям из Калифорнийского университета в Лос-Анджелесе удалось запустить подобную реакцию в контейнере с дейтерием, внутри которого было создано электростатическое поле. Пиковый нейтронный поток составил порядка 900 нейтронов в секунду в несколько сотен раз выше типичного фонового значения.

Авторы не сообщили никаких данных о деталях своих опытов, в том числе не предоставили для анализа методику измерений [6].

Арата ещё в 2004 г. История вызвала всплеск интереса СМИ. В январе 2011 года Росси заявил, что он имеет чёткое понимание о задействованном механизме, но отказывается публично его раскрывать, пока не будет получен патент [30]. Он ещё имеет нескольких уверенных сторонников, но, наиболее вероятно, вскоре канет во мрак патологической науки, к которому он и принадлежит [31]. В 2014 году группа профессора физики Болонского университета Джузеппе Леви исследовала параметры процесса, описанного Росси. Япония, 2017—2020 годы[ править править код ] В университете Тохоку в серии экспериментов зафиксировано увеличение температуры в тонких пленках из никеля и палладия, насыщенных водородом и дейтерием.

В одном из экспериментов из-за недостаточного напряжения не удалось получить напыление, в результате оба опыта дали одинаковые результаты. Проведенная масс-спектрометрия не обнаружила ядерную реакцию [34] [35].

На самом деле учёные считают, что, возможно, другие типы металлов будут иметь ещё более низкий кулоновский барьер. У исследователей Мартина Флейшманна и Стэнли Понса однажды возникла подобная идея. И они выбрали палладий в качестве металла-катализатора. И это сработало! Исследователи сообщили всему миру о производстве избыточного тепла.

И даже некоторых побочных продуктов синтеза! К сожалению, ни одна другая лаборатория не смогла воспроизвести этот эксперимент. И это погасило бушующее пламя сенсации — холодного синтеза с положительным выходом энергии. Никто так и не смог объяснить, почему один раз это сработало, а в другие — нет. Отбросьте глупые амбиции! После стольких лет неудачных исследований холодный синтез начал приобретать плохую репутацию. Как для себя, так и для всех, кто им занимался.

Это направление исследований стали рассматривать как лженауку. Как что-то, что никогда не может быть достигнуто. Что-то, что никогда не будет надёжным источником энергии. Это создало своеобразную репутационную ловушку. Которая привела к застою в этой области и всеобщему преследованию её сторонников. В попытке немного «почистить ауру» и сделать название более привлекательным, исследователи стали называть холодный синтез «низкоэнергетическими ядерными реакциями». Но прорыва после этого так и не последовало.

В последнее время стали появляться сообщения, что некоторые неровности на поверхности металла ответственны за появление горячих точек ядерной активности. И что именно в этом причина несоответствия проводимых экспериментов.

Холодный термоядерный синтез в обыкновенной кружке

Холодный ЯДЕРНЫЙ синтез ПРИЗНАЛИ учёные !!! - YouTube ХОЛОДНОЕ (при комнатной температуре) расщепление атомов -технология необозримых возможностей, о которой мечтали алхимики. Это, правда, ещё не совсем холодный ядерный синтез, когда из всякого химического элемента можно получить любой другой.
И снова холодный ядерный синтез 23 марта 1989 года Университет Юты сообщил в пресс-релизе, что «двое ученых запустили самоподдерживающуюся реакцию ядерного синтеза при комнатной температуре».
В России создали «антигравитационный двигатель» и «холодный ядерный синтез» ХОЛОДНЫЙ ЯДЕРНЫЙ СИНТЕЗ – таково правильное название этой реакции! В отличии от ТЕРМО-ядерного синтеза – то есть высокотемпературного синтеза. Поэтому неверно называть ХОЛОДНЫЙ ЯДЕРНЫЙ СИНТЕЗ – холодным ТЕРМО-ядерным синтезом.
Telegram: Contact @pan_atamann В основе реакций радиационного захвата ядром нейтрона и безрадиационных реакций холодного ядерного синтеза лежит одно и то же резонансное интерференционное обменное взаимодействие.

Последние новости — Обзор состояния холодного ядерного синтеза в России в эксклюзивном материале

Репутация у «холодного синтеза» такая с 1989 года, когда подобное сегодняшнему заявление на поверку оказалось просто результатом неверных измерений, вычислений и, если разобраться, полной чушью. Тогда, в 1989 году, появилась надежда на получение колоссального количества энергии в простом приборе для электролиза воды: электроды были изготовлены из палладия, используемая вода была «тяжёлой». В ходе электролиза этой тяжёлой воды с помощью электродов из палладия ядра дейтерия, якобы, сливались, образуя изотопы трития и гелия. Экспериментаторы, опять же якобы, зафиксировали потоки нейтронов и добились выделения тепла, не предусмотренного законами электролиза. После скандального разоблачения о синтезе говорить всерьёз человеку, считающему себя специалистом, стало неприлично.

Тем не менее, в течение последних десяти лет в разных концах света не очень крупные и не очень финансируемые лаборатории продолжали предпринимать попытки произвести «холодный термоядерный синтез», который противопоставляется традиционному радиоактивному расщеплению — в английском это выглядит как «cold fusion» и «hot fission». В отличие от «горячей», «холодная» подразумевает принципиально иную реакцию и использование совершенно иного исходного материала. Расщепление требует применения элементов, подобных урану, которые являются труднодоступными — если, конечно, не добывать их на Луне. В настоящее время уран для проведения реакции необходимо очищать, обогащать плюс ко всему — никуда не деться от радиоактивных отходов, которые продолжают наносить вред в течение столетий.

А термоядерный синтез подразумевает использование водорода, которого на планете в изобилии в разных соединениях, он доступен и безвреден. Но технически, для того, чтобы осуществить реакцию — слияние двух атомов водорода с последующим появлением нового вещества и с выделением энергии в качестве побочного продукта — необходимо создание особых условий: сверхдавление на атомы водорода при сверхвысоких температурах. Ядерная физика полагает, что так называемый сплав в иных условиях получить невозможно. Рузи — возмутитель спокойствия справа Что, похоже, и было опровергнуто.

Предполагается, что в этом году ГХК должен получить лицензию на размещение. По плану, к 2027 году надо будет получить лицензию на строительство и завершить его к 2031 году. Из него планируют изготовить топливный в более привычной терминологии — первый контур, включая корпус, трубопроводы, теплотехническое оборудование. В принципе останавливать реактор для дозагрузки нет необходимости, но это предмет расчетно-аналитического и экспериментального обоснования. Предположительно, реактор будет построен в подгорной части ГХК. Скальный массив — дополнительная изоляция от внешней среды. Кроме того, топливный контур и некоторое иное оборудование будет размещаться в герметичной капсуле, являющейся барьером безопасности.

Чтобы защитить персонал, большинство работ по обслуживанию РУ ИЖСР планируется выполнять с помощью роботизированных механизмов, которые сейчас также разрабатываются. Несколько слов о топливе Топливо для ИЖСР и методы его переработки разрабатывает Высокотехнологический научно-исследовательский институт неорганических материалов им.

Целевой отсек Национальной установки зажигания в Ливерморской национальной лаборатории Лоуренса в Ливерморе, Калифорния. В установке есть лазер, состоящий из 192 лучей, сходящихся вместе, чтобы заставить крошечную капсулу с водородным топливом взорваться и запустить процесс ядерного синтеза. Почему это важно Сторонники термоядерного синтеза надеются, что однажды он сможет заменить ископаемое топливо и другие традиционные источники энергии.

Как было показано Флейшманом и Понсом, а затем в Индийском атомном центре P. Iyengar et al. Непонятно, почему авторы статьи в Nature, получив большие средства, не использовали эти чувствительные и надежные методы идентификации продуктов ядерного синтеза. В экспериментах по облучению палладиевой проволоки дейтериевой плазмой сохранить тритий в тонкой проволоке крайне трудно, так как он практически полностью улетучивается в газовую фазу. Это объясняет, почему авторы статьи в Nature не обнаружили тритий в cвоих экспериментах. Тритий может частично сохраняться в более толстых мишенях, что, по-видимому, имело место в опытах T. Claytor at al. Tritium production from a low voltage deuterium discharge on palladium and other metals. Low energy nuclear reactions conference, Monaco, 1995 , которые авторы статьи безуспешно пытались воспроизвести. В то же время они наблюдали выход нейтронов, что является прямым свидетельством ядерных реакций, однако более подробных количественных данных не было приведено.

В опытах с порошком никеля в атмосфере водорода экспериментаторы, проводившие проверку, не указали размер частиц, состав элементов-примесей и даже температуру опытов. Все эти факторы имеют принципиальное значение для ядерной реакции и выхода тепла. Очень важно, что в продуктах длительных опытов обнаружено изменение отношения изотопов никеля в десятки раз, что однозначно подтверждает ядерную природу выделяемой энергии. В опытах Александра Пархомова, проведенных по способу А.

Холодный ядерный синтез. L E N R

Переход на замкнутый ядерно-топливный цикл — это стратегическое направление развития атомной отрасли, а в нашей стране его флагманом является Белоярская АЭС, расположенная в Свердловской области. Назначение и принцип действия. Жидкосолевой реактор – это ядерный реактор, где топливо растворено в солевой среде фторидов металлов (теплоносителе), а суммарно соль и топливо формируют гомогенную активную зону. до выхода технологии на госэкспертизу было проведено 500 независимых проверок технологии в различных научных центрах; технология апробирована в Чернобыле на разных изотопах, то есть может быть настроена на любой состав изотопов конкретных жидких ядерных отходов.

Холодный ядерный синтез. L E N R

И там, в момент наибольшего сжатия, возникали бы условия для «зажигания» небольшой части смеси дейтерия и трития в центре мишени — от 2 до 5 процентов общей массы, которые разогревали бы оставшееся тело мишени. Но достичь успеха удалось не сразу. Любые неравномерности в обжатии мишени разрушали ее задолго до момента схлопывания к нужному размеру и достижения нужной плотности и температуры. Ученые подыскивали способы эффективнее обжимать топливные капсулы. Изначальная концепция нагрева и сжатия капсулы лазерами потребовала бы порядка 100 мегаджоулей, но физики придумали вариант, где разгоняющиеся внешние плотные слои из топливного льда сжимают газовую топливную смесь, разогревая ее ударной волной сжатия — такая концепция требовала уже 2-3 мегаджоуля, в 30 раз меньше! Параллельно ученые в попытке добиться инерциального конфайнмента пробовали и увеличить «массу молотка», то есть энергии, которая «вкачивалась» в мишень за один выстрел начав с единиц килоджоулей, физики к 1980-м пришли к энергиям в десятки, а то и сотню килоджоулей за выстрел , так и поменять саму схему эксперимента. В середине 1970-х годов физики решили поставить между лазерным излучением и мишенью посредника, то есть попробовать метод «непрямого воздействия». В этом варианте топливная капсула размером в миллиметр подвешивалась в центре небольшого золотого или свинцового сосуда, который получил название хольраум от немецкого Hohlraum, «пустое пространство, полость», термин взят из работ Макса Планка , посвященных излучению абсолютно черного тела.

Детали их производства оставались в секрете до 1994 года. Под действием излучения лазера внутренняя поверхность сосуда становилась источником рентгеновского излучения, которое и попадало в мишень, запуская термоядерную реакцию. В рентген должно было превращаться от 70 до 80 процентов энергии лазерного излучения. В этом варианте поток излучения гораздо более равномерен и капсула, в теории, должна была сжиматься ровно, без искажения формы. Впрочем, на практике путь к этому оказался долгим. Рождения героя После нескольких промежуточных установок поменьше, в 1997 году США запустили строительство гигантской лазерной установки NIF стоимостью около 2 миллиардов долларов, которая должна была продемонстрировать работоспособность концепции и так называемый breakeven — равенство или превышение выхода термоядерной энергии над энергией лазеров, которая по проекту должна была составить 1,8 мегаджоуля. Проблемы NIF, как прототипа термоядерной электростанции, были видны еще до начала строительства — даже если бы 1,8 мегаджоуля термоядерной энергии получалось бы в каждом выстреле, затраты энергии «из розетки» все равно составляли бы скорее 500 мегаджоулей, а количество выстрелов не превышало бы 2-3 в сутки.

Кроме того, мишени для NIF представляли собой произведение криогенного ювелирного искусства: капсула миллиметрового размера и сверхточной формы наполняется топливом при температуре 15 кельвин и поддерживается при этой температуре в процессе помещения в установку и до момента эксперимента. Ну и разумеется, никакой энергоустановки в проекте предусмотрено не было, термоядерное тепло просто рассеивалось через градирни. В реальности все оказалось еще скромнее. Установка произвела первые полноценные выстрелы в 2010 году и вместо мегаджоулей термоядерной энергии ученые увидели сотни джоулей. Три года непрерывных усилий по совершенствованию установки привели к первому breakeven — выходу около 15 килоджоулей термоядерной энергии, что было больше, чем сообщали рентгеновского тепла стенки сосуда с капсулой. Однако это было далеко от того, что обещали до начала строительства NIF. Впрочем, основного заказчика этой установки все устраивало.

Дело в том, что условия, создающиеся в топливной капсуле и хольрауме очень похожи на то, что происходит в термоядерном боеприпасе в момент срабатывания. И изначально NIF создавался как большой стенд для верификации нового поколения программ, симулирующих поведение ядерного оружия, а энергетическое направление было приятным бонусом, на который выделялось меньше трети фондирования. Но команда термоядерщиков LLNL продолжала совершенствовать режимы работы лазеров, конструкцию хольраума и капсулы. Вместе это позволило поднять симметричность и стабильность сжатия капсулы, побороть лазерно-плазменные неустойчивости на хольрауме, увеличить эффективность передачи энергии от лазеров на хольраум и от хольраума на сжатие капсулы.

Об этом испытании уже писали. В этой же статье содержится ссылка на доклад «Исследование аналога высокотемпературного теплогенератора Росси» физика Пархомова Александра Георгиевича. Доклад подготовлен для всероссийского физического семинара «Холодный ядерный синтез и шаровая молния», который прошел 25 сентября 2014 года в Российском университете дружбы народов. В докладе автор представил свою версию реактора Росси, данные по его внутреннему устройству и проведенным испытаниям. Главным вывод: реактор действительно выделяет больше энергии, чем потребляет.

Отношение выделенного тепла к потребленной энергии составило 2. Более того, около 8 минут реактор проработал вообще без подачи входной мощности, после того, как питающий провод перегорел, производя при этом около киловата тепловой мощности на выходе. Был проведен ряд калибровочных тестов с электронагревательными приборами и реактором без топлива. В этом случае, как и следовало ожидать, выделяемая тепловая мощность равна подводимой электрической мощности. Основная проблема на данный момент - это локальный перегрев реактора, из-за чего нагревательная спираль перегорает и даже сам реактор может прогореть насквозь хотя температура плавления корундовой керамики, из которой он сделан, составляет свыше 2000С. Это пока не позволяет провести достаточно длительные испытания. Пархомову удалось сделать длительно работающий реактор с замером давления. С 23:30 16 марта температура держится до сих пор. Фото реактора.

Наконец, удалось сделать длительно работающий реактор. Температура 1200оС достигнута в 23:30 16 марта после 12- часового постепенного нагрева и держится до сих пор. Впервые успешно удалось вмонтировать в установку манометр. При медленном нагреве максимальное давление 5 бар было достигнуто при 200оС, потом давление снижалось и при температуре около 1000оС стало отрицательным. Наиболее сильный вакуум около 0,5 бар был при температуре 1150оС. При длительной непрерывной работе нет возможности круглосуточно подливать воду. Поэтому пришлось отказаться от использованной в предыдущих экспериментах калориметрии, основанной на измерении массы испарившейся воды. Определение теплового коэффициента в этом эксперименте проводится путем сравнения потребляемой электронагревателем мощности при наличии и отсутствии топливной смеси. Без топлива температура 1200оС достигается при мощности около 1070 Вт.

Объяснение А. Пархомова, более точное значение СОР требует более детального расчета Мои поздравления! К 2050 году на Земле появится суперстанция АЭС, которая сможет вырабатывать в 3,5 раза больше энергии при меньшем объеме ядерного топлива. Такой мегамощный реактор уже строят во Франции, множество стран вкладывают деньги в его производство, а, к примеру, Россия «жертвует» туда по 5 млрд рублей в год. Ученые планируют заменить новой АЭС часть зависимости от нефти и газа. Нужно заметить, что это экспериментальный термоядерный реактор, который будет производить электроэнергию за счет соединения атомов, а не их распада, как это происходит на современных АЭС. Новый реактор будет представлять собой вакуумную камеру диаметром 30 метров. Температура внутри реактора будет около 150 млн градусов на Солнце, для сравнения, температура - 15 млн градусов , а для охлаждения этой махины будет требоваться 33 тысячи кубометров воды в день. Такое «обжигающее» изобретение будет мощнее обычной АЭС в 3,5 раза - это расчеты физиков, но есть и другие точки зрения, утверждающие, что новый реактор будет лучше в сто раз.

Однако никто не посчитал во сколько раз увеличится опасность для человечества от такого изобретения. Ниже в этой статье можно будет прочесть, в чем заключается угроза даже самой безопасной АЭС Земли, и почему холодный ядерный синтез Росси может стать выходом из положения. Для справки: чем отличается горячий ядерный синтез от холодного. Горячий термояд - это то, что происходит на Солнце ежесекундно, а также реакция, наблюдаемая при взрыве ядерной бомбы. Ядерная бомба размером с Землю уже более 4 млрд лет непрерывно взрывается в центре Солнца, образуя бешеную, опасную и горячую ядерную энергию. Холодный ядерный синтез, в отличие от горячего, предполагает возможность осуществления ядерной реакции синтеза в системах без значительного нагрева рабочего вещества, а значит, и отсутствия выброса радиации. Кто такой Андреа Росси, и в чем суть его реактора Итальянец Андреа Росси - «герой нашего времени» по части ядерного синтеза. Кто-то называет его мошенником, а кто-то изобретателем. Впрочем, первого кто упомянул о лампочке Ильича тоже посчитали идиотом.

Ученые разных стран уже давно решают вопрос о замене горячего ядерного синтеза холодным, и были вполне удачные исследования. Однако процесс безтемпературного соединения атомов считается волшебным и необъяснимым. Может быть, иногда стоит поверить в волшебство и признать, что человек не настолько совершенен, чтобы познать устройство некоторых земных процессов, ради спасения миллионов жизней? Итак, холодный ядерный синтез, несмотря на отношение официальной науки, все-таки есть. Это доказали сама природа, так как подобный процесс происходит в клетках живого организма, и итальянский изобретатель - своим реактором Росси, названным E-Cat. Окончательные демонстрационные опыты проводились в течение 32-х дней, и удалось доказать безопасность и небывалую экономичность изобретения. Только представьте, согласно опытам, устройство размером чуть больше карандаша сможет заменить электроэнергию и тепло в большом доме из нескольких этажей, а также навсегда позволит забыть о заправке машин и самолетов бензином. Реактор работает в автономном режиме, для его заправки используется мизерное количество никеля и водорода, а энергии на выходе в миллион раз больше, чем в бензине. Реакторы E-Cat, без сомнения, станут серьезной конкуренцией для традиционных источников энергии, ведь установки уже производятся и продаются.

Иван Степанович Филимоненко - легендарный ученый Советского Союза , первооткрыватель холодного ядерного синтеза. Этот удивительный человек не ограничился лишь одним культовым изобретением, но, пожалуй, холодный термояд стал поистине главным в этом списке. Многие из его работ до сих пор засекречены по соображениям «ненужности» обществу. Приблизительно в одно время 1927—1935 , советский ученый Филимоненко и пара австралийских ученых Friedich Paneth и Kurt Peters проводят опыты по применению холодного синтеза. Однако австралийцы вскоре быстро отказываются от своей идеи по непонятным причинам и невозможности объяснения физики происходящего процесса Андреа Росси также не может до конца охарактеризовать действие, происходящее в его реакторе. Тем временем Филимоненко все же создает свой реактор, который по исходным составляющим то же самое, что и изобретение Росси: порошок никеля плюс водород. В чем же причина того, что открытие советского человека так и осталось ненужным, тогда как итальянец показал его всему миру? Всплывают интересные факты. Возможно, в холодном термояде была скрыта «вечная жизнь» путем подавления радиации в атмосфере.

Победой, которую мы бездарно уступили сначала США, а потом и Китаю. В 40—50-е была ещё не менее Великая битва между ведущими в то время технологическими державами — т. Победу временно одержали США, но СССР достаточно быстро сумел достичь паритета, критически важного для обеспечения обороноспособности страны. С создания компактной термоядерной бомбы в 1953 г. СССР предложил оригинальный и до сих пор считающийся наиболее перспективным принцип удержания разогретой в десятки миллионов градусов в магнитном поле тороидальной камеры — «токамак».

Но если временной лаг между атомной бомбой и атомным реактором составил несколько лет, то укрощение термояда «холодный ядерный синтез», ХЯС потребовало десятилетия напряженных исследований и триллионных вложений. В декабре 2022 года исследователи из Национального комплекса лазерных термоядерных реакций США достигли того, что многие в индустрии термоядерного синтеза не без пафоса называют моментом «Братьев Райт» намекая на то, что полет братьев Райт, длившийся всего 12 секунд, открыл эру авиации. Этот процесс называется термоядерным зажиганием и это триумф, которого ждали с 1970-х годов. Технология термоядерного синтеза, которая всегда находилась в отдалённой перспективе примерно, как полет на Марс , внезапно стала ближе.

Миф или лженаука? В подборке автора: Физика 1,8K прочитали 34 Холодный синтез — это мечта, над исполнением которой некоторые учёные трудятся уже несколько десятилетий. И которую, в то же время, многие из них вполне серьёзно считают дурацкой затеей. Но если это и вправду никчёмная и бесперспективная идея, то почему люди всё равно пытаются её реализовать? Да просто потому, что если всё получится, наша цивилизация получит доступ к практически неограниченному количеству чистой энергии! Но прежде чем углубляться в суть вопроса, давайте вспомним, что такое ядерный синтез. Как получить холодный синтез? Если говорить очень упрощённо, реакция ядерного синтеза происходит так: два атома сталкиваются и сливаются. При этом высвобождается огромное количество энергии. Трудность здесь заключается в том, что нужно сблизить два ядра достаточно близко, чтобы произошло это слияние. Протоны и нейтроны окружены облаком электронов. И когда атомы находятся слишком близко, эти отрицательно заряженные электронные облака просто начинают отталкивать друг друга. Это явление известно как кулоновский барьер. И чтобы преодолеть его, требуется огромное количество энергии. Тем не менее, если температура достаточно высока для того, чтобы ядра приблизились достаточно близко друг к другу, сильное ядерное взаимодействие компенсирует электростатическое отталкивание. И теперь атомы могут слиться. Да, сильное ядерное взаимодействие сильнее. В 137 раз сильнее, чем электромагнетизм! Теперь пришло время уточнить, что «холодный синтез» не является, на самом деле, холодным. В том смысле, что он происходит не при отрицательных температурах. Этот термин означает лишь, что он должен происходить при гораздо более низких температурах, чем происходит в природе.

Холодный ядерный синтез: почему у Google ничего не получилось?

Холодный термоядерный синтез в обыкновенной кружке Чтобы преодолеть его, нужны температуры и давления, которые делают термоядерную энергетику непрактичной. В рамках концепции холодного термоядерного синтеза возможны условия, когда ядра атомов сливаются, несмотря на кулоновское отталкивание.
- смотреть последние видео И снова холодный ядерный синтез. В октябре Ученый совет института физической химии РАН заслушал доклад А. Липсона и Б.Ф. Ляхова "Прямое наблюдение низкоэнергетических ядерных реакций, индуцированных кристаллической решеткой в дейтеридах металлов".
И снова холодный ядерный синтез Оранжевая стрелка указывает на комплекс зданий СФ НИКИЭТ, надписью «ХЯС» отмечен корпус, в котором группа Сергея Цветкова начала работы разработке реактора холодного ядерного синтеза в апреле 1989 года.
Промышленные ведомости - Холодный ядерный синтез и экологически чистые реакторы для АЭС Холо́дный я́дерный си́нтез — предполагаемая возможность осуществления ядерной реакции синтеза в химических (атомно-молекулярных).

Горячие проблемы «холодного» ядерного синтеза

Возможен ли холодный ядерный синтез? Холодный синтез, который также называют низкоэнергетическими ядерными реакциями, представляет собой гипотетический тип ядерных превращений при температуре, близкой к комнатной, и в отличие от «горячего» синтеза, который протекает в недрах звезд и при взрыве термоядерной бомбы при высоких давлениях и температурах в миллионы кельвинов. До сих пор предположения о возможности запуска холодного ядерного синтеза не смогли найти своего подтверждения, несмотря на более ранние заявления некоторых ученых, которые в конечном итоге были отвергнутые наукой. Например, еще в марте 1989 года два американских химика, Стэнли Понс и Мартин Флейшманн, заявили, что зафиксировали признаки ядерного синтеза в эксперименте палладиевыми пластинами, помещенными в воду, насыщенную дейтерием тяжелый изотоп водорода , по которым пустили ток. В 1991 году американские физики Хан Ухм и Уильям Ли заявили, что генерировали аномальные уровни трития — другого тяжелого изотопа водорода — бомбардировкой палладия импульсами горячих ионов дейтерия. Также было высказано предположение о появлении в среде с высоким содержанием водорода избыточного тепла в ходе нагрева металлических порошков. В 2015 году холодным ядерным синтезом заинтересовалась копания Google.

Флейшман и Понс уверовали, что внутри кристаллической решетки этого металла атомы дейтерия столь сильно сближаются, что их ядра сливаются в ядра основного изотопа гелия. Этот процесс идет с выделением энергии, которая, согласно их гипотезе, нагревала электролит. Объяснение подкупало простотой и вполне убеждало политиков, журналистов и даже химиков. Физики вносят ясность Однако физики-ядерщики и специалисты по физике плазмы не спешили бить в литавры. Они-то прекрасно знали, что два дейтрона в принципе могут дать начало ядру гелия-4 и высокоэнергичному гамма-кванту, но шансы подобного исхода крайне малы. Даже если дейтроны вступают в ядерную реакцию, она почти наверняка завершается рождением ядра трития и протона или же возникновением нейтрона и ядра гелия-3, причем вероятности этих превращений примерно одинаковы. Если внутри палладия действительно идет ядерный синтез, то он должен порождать большое число нейтронов вполне определенной энергии около 2,45 МэВ. Их нетрудно обнаружить либо непосредственно с помощью нейтронных детекторов , либо косвенно поскольку при столкновении такого нейтрона с ядром тяжелого водорода должен возникнуть гамма-квант с энергией 2,22 МэВ, который опять-таки поддается регистрации.

В общем, гипотезу Флейшмана и Понса можно было бы подтвердить с помощью стандартной радиометрической аппаратуры. Однако из этого ничего не вышло.

Nat Fisch, занимается Физикой Плазмы в Принстонском университете высказался: «То, что я видел, производит впечатление безграмотного и неряшливого отчёта» [25]. Два других сотрудника Окриджской лаборатории повторили эксперимент на той же аппаратуре с другим детектором и не обнаружили поток нейтронов, который наблюдал Талеярхан [24] [25]. Критики также указывают, что температура и энергия в центре схлопывающихся пузырьков газа на три порядка ниже, чем нужно для слияния ядер дейтерия [24] [26] [27].

Япония, 2008 год[ править править код ] В 2008 году отставной японский учёный Ёсиаки Арата [en] из Осакского университета совместно с китайским коллегой Юэчан Чжан из Шанхайского университета сообщили о выделении энергии в эксперименте с палладием, оксидом циркония и дейтерием под высоким давлением, и заявили, что они наблюдали реакцию холодного ядерного синтеза с выделением гелия. Авторы не сообщили никаких данных о деталях своих опытов, в том числе не предоставили для анализа методику измерений [6]. Арата ещё в 2004 г. История вызвала всплеск интереса СМИ. В январе 2011 года Росси заявил, что он имеет чёткое понимание о задействованном механизме, но отказывается публично его раскрывать, пока не будет получен патент [30].

Он ещё имеет нескольких уверенных сторонников, но, наиболее вероятно, вскоре канет во мрак патологической науки, к которому он и принадлежит [31].

Соавтор открытия Стэнли Понс возглавлял химический факультет Университета Юты. Пироэлектрический холодный синтез Следует понимать, что холодный ядерный синтез на настольных аппаратах не только возможен, но и осуществлен, причем в нескольких версиях. Так, в 2005 году исследователи из Калифорнийского университета в Лос-Анджелесе сообщили в Nature, что им удалось запустить подобную реакцию в контейнере с дейтерием, внутри которого было создано электростатическое поле. Его источником служило острие вольфрамовой иглы, подсоединенной к пироэлектрическому кристаллу танталата лития, при охлаждении и последующем нагревании которого создавалась разность потенциалов порядка 100-120 кВ. Измеренный пиковый нейтронный поток при этом составил порядка 900 нейтронов в секунду что в несколько сотен раз превышает типичное фоновое значение. Хотя такая система имеет определенные перспективы в качестве генератора нейтронов, однако говорить о ней как об источнике энергии не имеет никакого смысла. Это на 11 порядков меньше, чем нужно, чтобы нагреть стакан воды на 1 градус Цельсия.

Источник дешевой энергии Флейшман и Понс утверждали, что они заставили ядра дейтерия сливаться друг с другом при обычных температурах и давлениях. Их «реактор холодного синтеза» представлял собой калориметр с водным раствором соли, через который пропускали электрический ток. Правда, вода была не простой, а тяжелой, D2O, катод был сделан из палладия, а в состав растворенной соли входили литий и дейтерий. Через раствор месяцами безостановочно пропускали постоянный ток, так что на аноде выделялся кислород, а на катоде — тяжелый водород. Флейшман и Понс якобы обнаружили, что температура электролита периодически возрастала на десятки градусов, а иногда и больше, хотя источник питания давал стабильную мощность. Они объяснили это поступлением внутриядерной энергии, выделяющейся при слиянии ядер дейтерия.

Холодный синтез: самое известное физическое мошенничество

Это было бы настоящей революцией в энергетике. Жизнь человечества изменилась бы до неузнаваемости. В 1989 году Стэнли Понс Stanley Pons и Мартин Флейшман Martin Fleischmann из Университета Юты опубликовали статью, в которой утверждали, что наблюдают ядерный синтез при комнатной температуре. Аномальное тепло выделялось при электролизе тяжелой воды с катализатором из палладия. Предполагалось, что атомы водорода захватываются катализатором, и каким-то образом создаются условия для ядерного синтеза. Этот эффект и назвали холодным ядерным синтезом. Статья Понса и Флейшмана наделала много шума.

Еще бы — решена проблема энергетики! Естественно, многие другие ученые попытались воспроизвести их результаты. Однако ни у кого ничего не получилось.

Часть установки, в которой была запущена реакция синтеза В рамках эксперимента самая мощная в мире лазерная установка, включающая 192 лазера, доставила до крошечной капсулы с топливом 2,05 МДж энергии, а в результате реакции учёные получили 3,15 МДж энергии. То есть на выходе оказалось более чем в полтора раза больше энергии, чем было затрачено. Термоядерный синтез — это реакция, при которой два лёгких атомных ядра объединяются в одно более тяжелое, при этом генерируя большой объём энергии. То же самое происходит внутри звёзд. Американские учёные ещё в 60-е годы прошлого века предположили, что для запуска реакции синтеза можно использовать лазеры, с помощью которых получится создать огромное давление и температуру, необходимые для запуска реакции. Этот метод был назван управляемым термоядерным синтезом с инерционным удержанием, и спустя множество десятилетий работы его удалось воплотить в лабораторных условиях.

Далее на основании этого способа была разработана заявка «Реактор ядерного синтеза».

В этой заявке уже предлагалось систему «титан — дейтерий» помещать под ядерный реактор под поток нейтронов, чтобы интенсифицировать реакции синтеза и получить больше тепла. В списке авторов реферата первой статьи, подготовленной к публикации, была представлена команда, которая начинала этим заниматься: Буньков В. Реферат статьи «Экспериментальная идентификация реакции низкотемпературного синтеза в системе Ti-D» 1989 года Вопреки заверениям специалистов по термоядерному синтезу, что участники этого исследования должны были переоблучиться нейтронами, многие из этих людей живы до сих пор и активно работают, и лишь некоторые из них умерли в преклонном возрасте, при этом один из них был ликвидатором Чернобыльской аварии. Затем мы сделали работу по определению инициирования реакций ядерного синтеза в дейтериде титана при воздействии лазерного излучения. Для этого была разработана следующая схема. Был сделан реактор с кварцевым окошком, в этот реактор помещался образец дейтерида титана. Затем из реактора откачивался воздух и создавалась атмосфера дейтерия с давлением 14 атмосфер. Через кварцевое окошко импульсным лазером воздействовали на торец образца внутри реактора, при этом регистрировали нейтроны и гамма-излучение. В сентябре 1991 года результаты этой работы были опубликованы в журнале Американского ядерного общества Fusion Technology. В то время редактором этого журнала был Джордж Майли, который нам и предложил опубликовать статью.

Обложка сентябрьского номера журнала Fusion Technology и первая страница статьи «Laser-induced cold nuclear fusion in Ti-H2-D2-T2 compositions» В конце этой статьи сделаны расчеты создания на основе гамма-излучения, которое мы регистрировали в эксперименте, гамма-лазера. Имею специализацию «Физика ядерных реакторов». Закончил физико-технический факультет Уральского политехнического института в Свердловске в 1982 году. У меня был защищен диплом по теме «Исследование термического разложения облученных и необлученных полиимидов». Имею две специализации: физика ядерных реакторов и разделение изотопов. Начал работать в Свердловском филиале Научно-исследовательского и конструкторского Института энерготехники в п. Заречный, Свердловской области. Там же были проведены первые работы по холодному ядерному синтезу. А потом жизнь так распорядилась, что началась перестройка, начались разные до сих пор до конца непонятные события. Нам они конкретно профинансировали работы по взаимодействию церата стронция с дейтерием.

В результате этой работы нами была подана заявка на международный патент «Методы и устройства для получения нейтронов из твердотельных протонных проводников». Алексей Николаевич Барабошкин вместе с тогда ещё член-корреспондентом Борисом Владимировичем Дерягиным пытались ещё в 1990—1991 годах организовывать и запустить Всесоюзную научно-исследовательскую программу по холодному ядерному синтезу. Она была достаточно детально разработана. В то время они оценили эту программу в 15 млн рублей и плюс 3 млн валютных рублей и планировали её выполнить за четыре года. В 1993 году академик А. Барабошкин провёл совещание по этой программе, чтобы попытаться её провести через Отделение химии РАН. Мы там выступали с докладами. Я тогда приезжал с доктором химических наук Кабиром Ахметовичем Калиевым, и мы пытались в ФИАНе сделать демонстрацию его работ по вольфрамовым бронзам. Они вместе с академиком А. Барабошкиным тогда ещё попробовали такой вариант.

Они использовали вольфрам-натриевые бронзы, из них посредством электролиза при высокой температуре в вакууме убирался натрий, в результате чего образовывались каналы. Потом при комнатной температуре напускался дейтерий. При этом регистрировались нейтроны и повышение тепла. Эту работу они опубликовали в Physics Letters A в 1993 году. В 1995 году академик А. Барабошкин умер, после чего наша команда распалась, началось «брожение». В 1996 году у меня была небольшая командировка в Объединенный институт ядерных исследований в Дубне, где мы с Кабиром Калиевым повторили его эксперименты. С помощью качественного датчика нейтронов мы регистрировали импульсы нейтронов. Отработали технологию получения вольфрам-натриевых бронз, чтобы получать стабильные результаты, потому что в этих экспериментах сначала наблюдалась нестабильность, которая, как выяснилось, была связана со структурой этих бронз. Надо было очень скрупулёзно эти бронзы выращивать.

До этого все подобные эксперименты всегда характеризовались затратами, превышающими полученную энергию. Официального объявления ещё не было. Ожидается, что это будет сделано завтра.

Если учёным действительно удалось провести реакцию ядерного синтеза с указанными выше условиями, это сулит революцию в энергетике.

Основная проблема термояда

  • Навигация по записям
  • Что такое Холодный ядерный синтез?
  • Холодный ядерный синтез: почему у Google ничего не получилось?
  • Это прорыв: проведена термоядерная реакция с положительным КПД - Hi-Tech
  • Новости - Холодный ядерный синтез не только возможен, но и осуществлён !!!

Холодный ядерный синтез: мы сразу пошли своим путём

Отличное видео, в котором рассказывается о текущем положении вещей на рынке холодного ядерного синтеза. Отличное видео, в котором рассказывается о текущем положении вещей на рынке холодного ядерного синтеза. до выхода технологии на госэкспертизу было проведено 500 независимых проверок технологии в различных научных центрах; технология апробирована в Чернобыле на разных изотопах, то есть может быть настроена на любой состав изотопов конкретных жидких ядерных отходов. Ученым Ливерморской национальной лаборатории Лоуренса (LLNL, Калифорния) удалось получить в реакции управлямого термоядерного синтеза 3,15 мегаджоуля (МДж) энергии, затратив на разогрев плазмы 2,05 мегаджоуля. Самые актуальные новости о космосе, науке, современных технологиях. Последние выпуски.

Похожие новости:

Оцените статью
Добавить комментарий