Новости фотки черной дыры

Ниже мы публикуем изображение черной дыры, фото из космоса — это реальное доказательство ее существования. Первая фотография черной дыры, полученная с помощью системы радиотелескопов Event Horizon Telescope, стала главной новостью прошлой недели. Опубликована первая в истории изучения космоса фотография черной дыры.

Самые гигантские черные дыры во Вселенной – фото

«Фотография черной дыры» представляет собой светящееся кольцо вокруг горизонта событий черной дыры, и для того чтобы его увидеть, нужно иметь экстремальное угловое разрешение. Европейская южная обсерватория (ESO) совместно с Телескопом горизонта событий (Event Horizon Telescope, EHT) показали первую в истории фотографию сверхмассивной черной дыры в центре Млечного Пути. Фото чёрной дыры Чёрная дыра в центре M87 (слева) в поляризованном свете и Sgr A* (справа) в поляризованном свете. Чудовище в центре нашей Галактики: посмотрите на фото черной дыры в Млечном Пути.

Это вам не «Интерстеллар» — ученые представили первое в истории фото черной дыры

Тень чёрной дыры в галактике M87 и улучшенный вариант изображения в поляризованном свете / ESO. Астрономы Европейской южной обсерватории (ESO) объявили, им удалось получить первое изображение сверхмассивной чёрной дыры Стрелец A*. Фото чёрной дыры Чёрная дыра в центре M87 (слева) в поляризованном свете и Sgr A* (справа) в поляризованном свете. В течение трех лет Кэти Боуман вместе с командой из трех других ученых работала над созданием и разработкой алгоритмов, которые должны были обеспечить возможность получить изображение черной дыры. Европейская южная обсерватория (ESO) совместно с Телескопом горизонта событий (Event Horizon Telescope, EHT) показали первую в истории фотографию сверхмассивной черной дыры в центре Млечного Пути. Ученые представили первую в истории фотографию черной дыры в полном разрешении.

Первая фотография черной дыры

Сверхмассивная чёрная дыра с аккреционным диском и струёй плазмы («Наука и жизнь» №5, 2019). 12 мая 2022 года астрономы показали первое изображение сверхмассивной чёрной дыры Стрелец A* расположенной в центре Млечного Пути. Меньшая масса черный дыры Млечного Пути и, следовательно, меньший динамический масштаб Sgr A* значительно усложнили визуализацию и анализ данных EHT. Человечество впервые увидело единственную в своём роде фотографию сверхмассивной чёрной дыры в полном разрешении. Астрофизики из проекта Event Horizon Telescope опубликовали первое в мире фото чёрной дыры, которая находится в центре галактики Messier 87. «Эти замечательные фотографии черной дыры M87 доказывают, что Эйнштейн снова был прав», — говорит Мария Цубер, вице-президент MIT по исследованиям.

Астрономы опубликовали первую в истории фотографию черной дыры в центре Млечного пути

Как и другие черные дыры, она представляет собой объект огромной плотности если рассматривать ее центральную точку, а не весь объем сферы Шварцшильда и обладает настолько мощной гравитацией, что сворачивает вокруг себя пространственно-временной континуум. Искривление настолько велико, что образуется область, из которой наружу не ведет ни одна из возможных траекторий. Граница этой области называется горизонтом событий, и все, что проникает за него включая видимый свет и другие электромагнитные волны , обратно вернуться уже не может. Реконструкция изображения черной дыры Изображение: Jean-Pierre Luminet В последние десятилетия ученые не сомневались в существовании черных дыр, хотя сама природа этих объектов препятствует непосредственному их наблюдению. Исследователи применяли косвенные методы, в том числе наблюдение за объектами, которые вращаются вокруг пустых областей космоса, или измерение массы и размеров объектов, являющихся источниками интенсивного излучения. Но разглядеть черноту горизонта событий на ярком фоне звезд и газа до сих пор не удавалось никому. По кусочкам Чтобы сфотографировать черную дыру, необходим телескоп размером с Землю и еще один важный инструмент — алгоритм, который сведет данные в итоговое изображение.

Кэти Боуман — одна из исследователей, работавших над этим алгоритмом, еще студенткой пыталась научить компьютеры распознавать образы на основе зашумленной информации. Вместе с научным руководителем Биллом Фриманом она разработала метод, позволяющий распознать объекты, «зашифрованные» в полутенях, которые отбрасывают углы зданий. В результате становилось возможным увидеть то, что находилось за этими углами. Event Horizon Telescope — это объединенная сеть из восьми обсерваторий по всему миру, чьи радиотелескопы синхронизированы по сверхточным атомным часам. Несмотря на то что они работают как один огромный телескоп диаметром 10 тысяч километров, такая система по количеству получаемой информации все-таки значительно уступает воображаемому радиотелескопу с тарелкой аналогичного размера. Это ограничение удается немного преодолеть из-за вращения Земли вокруг своей оси, благодаря чему можно собрать еще немного радиоволн.

Основная проблема в том, что итоговое изображение будет все равно сильно зашумленным.

Поэтому, говорит Сергей, изучение поведения вещества в окрестности черных дыр — очень интересная штука. Как обнаружить черную дыру В конце своей жизни массивные звезды могут превращаться в черные дыры. И на этапе, когда только пытались найти первые черные дыры, возник вопрос: как их можно обнаружить. Первая идея была такой: звезды, особенно массивные, нередко рождаются парами. Одна из таких звезд превращается в черную дыру, и мы перестаем ее видеть. При этом она продолжает существовать. Предполагалось, что мы сможем увидеть вращение соседней звезды вокруг этого невидимого объекта, при помощи вычислений измерить его массу и обнаружить, что в этом месте находится черная дыра. Сергей Попов рассказывает, что исторически это был первый предложенный способ поиска. С 60-х годов ученые пытались искать их по такому методу, но ничего не обнаружили.

Последние пару лет стали появляться возможные кандидаты на звание черных дыр, но ученые пока не уверены, что в паре с обычными звездами находятся именно они. Визуализация черной дыры Фото: NASA Если опять обратиться к черной дыре, которая соседствует со звездой, то вещество с обычной звезды может перетекать в дыру. Черная дыра своей гравитацией будет засасывать это вещество. Если представить, что в нее одновременно кинули два камня, они могут столкнуться над горизонтом на скорости почти равной скорости света. При таком столкновении выделится много энергии, которую можно заметить. Но в звездах не камни, а газ. Когда разные слои газа трутся друг о друга, они нагреваются до миллионов градусов, и это тепло можно увидеть. С помощью такого способа в конце 60-х — начале 70-х годов, когда стали запускать первые рентгеновские детекторы в космос, открыли и первые черные дыры. Визуализация черной дыры рядом со звездой Фото: NASA В начале 60-х годов стало ясно, что есть яркие астрономические объекты — квазары. Дословно— «похожий на звезду радиоисточник».

Это активные ядра галактик на начальном этапе развития, в центре которых находятся сверхмассивные черные дыры. Обнаружить их можно даже на очень отдаленных расстояниях. В ходе изучения квазаров стало ясно, что это небольшой источник, который находится в центре далекой галактики и при этом испускает много энергии. Попов рассказывает, что когда ученые открывают квазар, они уверены, что там «сидит» сверхмассивная черная дыра. Сейчас это самый массовый способ открытия черных дыр. Визуализация квазара Фото: NASA Почти все массивные звезды превращаются в черные дыры, но не все они находятся в двойных системах, или у них нет перетекания. В таком случае дыры ищут другим способом. Сергей рассказывает, что черная дыра сильно искажает пространство-время вокруг себя, но тут важна не столько масса, сколько компактность.

В обоих местах данные воспроизводились на высокоспециализированных суперкомпьютерах, называемых корреляторами, которые обрабатывали данные двумя потоками одновременно. Поскольку все телескопы в массиве EHT находились в разных местах, они имели немного разные представления об интересующем объекте — в данном случае, M87.

Данные, полученные двумя отдельными телескопами, включают в себя сигнал от черной дыры, но также содержат и шум, характерный для соответствующих телескопов. Суперкомпьютер-коррелятор попарно сравнивает данные со всех 8 телескопов EHT. По этим сравнениям он математически отсеивает шум и выбирает только сигнал от черной дыры. Этому способствуют и высокоточные атомные часы, установленные на каждом телескопе — они позволяют максимально точно сопоставить получаемые потоки данных. Затем команды как в Хейстек, так и в Радиоастрономическом институте Планка начали кропотливый процесс «совмещения» данных, выявления ряда проблем на различных телескопах, их исправления и повторного совмещения до тех пор, пока данные не стали идеально подходить друг к другу. Только после этого они были переданы четырем отдельным командам по всему миру, каждая из которых получила задание создать изображение из них с использованием независимых методов. Все четыре команды по обработке изображений ранее проверили свои алгоритмы на других астрофизических объектах, убедившись, что их методы позволят получить точную визуализацию радиоданных. Когда данные были получены, Акияма и его коллеги сразу же проверили их с помощью своих алгоритмов. Важно отметить, что каждая команда делала это независимо от других, чтобы избежать какого-либо группового отклонения в результатах. Изображения, полученные разными командами.

Его беспокойство было недолгим. Вскоре после этого все четыре команды встретились в рамках инициативы «Черная дыра» в Гарвардском университете, чтобы сравнить полученные изображения, и обнаружили, с некоторым облегчением, что все они создали одну и ту же кривую структуру, похожую на кольцо — первые прямые изображения черной дыры.

Пришлось объединить обсерватории в Чили, Испании, Калифорнии, в Аризоне, на Гавайских островах и даже на Южном полюсе, чтобы в результате получить виртуальную "тарелку" размером с планету Земля. Только так всему кластеру хватило чувствительности для наблюдения за абсолютно черным объектом. На самом деле то, что мы видим, — это не фотография. Это компьютерное изображение, полученное из огромного количества самых разнообразных данных, сложенных вместе.

Обсерватории поставляли по 350 терабайт данных ежедневно, наблюдения проводились в течение недели, и в результате на обработку всей информации ушло два года напряженной работы. Информации собрали так много, что было невозможно передать ее через интернет. В результате в аналитические центры в Бостоне и Бонне сотни жестких дисков свозили самолетами. Самые внимательные читатели уже подсчитали: весь проект был осуществлен еще два года назад, в 2017 году, и только сегодня компьютеры смогли сложить из разрозненных фрагментов одно изображение. Читайте также Вокруг черной дыры увидели "бублик" Черная дыра, изображение которой астрофизики предъявили миру, находится в созвездии Девы, в центре галактики Messier 87. Согласно существующей теории, черные дыры находятся в центре абсолютно всех галактик, в том числе и той, в которой находится наша планетная система.

До центра нашей родной галактики Млечный Путь всего-навсего 26 тысяч световых лет. Вам не кажется странным, что астрономы выбрали для наблюдения черную дыру за 500 квинтиллионов километров, в то время как буквально под боком есть собственная?

Впервые в истории ученые сфотографировали черную дыру

3. Представлено первое фото черной дыры в центре нашей Галактики / Наука / Независимая газета This new visualization of a black hole illustrates how its gravity distorts our view, warping its surroundings as if seen in a carnival mirror.
5 причин, почему фото черной дыры – это очень круто – Москва 24, 10.04.2019 Астрономы опубликовали первое фото тени сверхмассивной чёрной дыры в центре нашей Галактики.

NASA показала новую (и очень красивую!) визуализацию черной дыры

Объект, похожий на «оранжевый пончик», находится в центре галактики Мессье 87, на расстоянии 55 миллионов световых лет от Земли. В 2019 году астрономы смогли получить первое изображение этой черной дыры, но оно оказалось весьма размытым. В ходе нового исследования фотографию обработали с помощью системы искусственного интеллекта. Результаты показали, что центральная область дыры больше и темнее, чем считалось раньше. Также она окружена ярким, но довольно тонким кольцом аккрецирующего газа.

Объект, похожий на «оранжевый пончик», находится в центре галактики Мессье 87, на расстоянии 55 миллионов световых лет от Земли. В 2019 году астрономы смогли получить первое изображение этой черной дыры, но оно оказалось весьма размытым. В ходе нового исследования фотографию обработали с помощью системы искусственного интеллекта. Результаты показали, что центральная область дыры больше и темнее, чем считалось раньше. Также она окружена ярким, но довольно тонким кольцом аккрецирующего газа.

Яркое кривое кольцо на полученных фотографиях предлагает визуальное подтверждение этих эффектов: материал, движущийся в кольце в нашу сторону, оказывается более ярким, чем тот, который движется от нас. Из этих изображений астрофизики вычислили, что черная дыра примерно в 6. Небольшие различия между каждым из четырех полученных изображений также подтверждают, что материал рядом с черной дырой перемещается почти со скоростью света. На фото, полученных в течение недели, хорошо видно, как меняется внешний вид черной дыры. В будущем мы, возможно, сможем создать целый фильм о жизни черной деры. Сегодня же мы видим первые кадры». Природа была добра к нам Изображения были получены с помощью массива телескопов планетарного масштаба, называемого Event Horizon или EHT. Он состоит из восьми радиотелескопов, каждый из которых находится в отдаленной от городов высокогорной среде, включая горные вершины Гавайев, испанскую Сьерра-Невады, чилийскую пустыню и льды Антарктики. Схематичное расположение телескопов, создавших изображение черной дыры.

В любой день каждый телескоп работает независимо, наблюдая астрофизические объекты, которые излучают слабые радиоволны. Тем не менее, черная дыра бесконечно меньше и темнее, чем любой другой радиоисточник в небе. Чтобы ее четко видеть, астрономам необходимо использовать очень короткие волны — в данном случае 1. Создание фото черной дыры также требует серьезного увеличения углового разрешения, что в данном случае эквивалентно чтению текста на телефоне в Нью-Йорке из кафе в Париже. Угловое разрешение телескопа увеличивается пропорционально размеру приемной тарелки.

Разглядеть ее кажется просто фантастикой, с тем же успехом можно попытаться невооруженным глазом увидеть коробок спичек на Луне.

Чтобы наблюдать такую дыру, требуется по-настоящему огромный и очень мощный телескоп. И ученые создали такой инструмент. Это радиотелескоп Event Horizon. По сути, это сеть из восьми радиотелескопов, работающих по принципу радиоинтерферометрии со сверхдлинными базами. Они находятся на огромном расстоянии друг от друга: на Южном полюсе, во Франции, в Чили, на острове Гавайи. Работа над его созданием велась более 10 лет.

Наконец в апреле 2017 года сеть телескопов была синхронизирована с помощью атомных часов и устремила свой взор в далекий космос. Для фотографирования черных дыр создан уникальный радиотелескоп.

Что дала нам первая фотография черной дыры?

Фото чёрной дыры М87. Почему же мы увидели снимок далёкой М87 на три года раньше, чем фотографию находящегося практически по соседству Стрельца А*? астрофизики представили первое изображение чёрной дыры в центре Млечного Пути — сверхмассивного объекта в созвездии Стрельца с обозначением Sgr A*. Первые фотографии черной дыры: До сих пор черные дыры наблюдались учеными только опосредованно, через то влияние, которое эти черные дыры оказывали на ближние к ним галактики или отдельные звезды. Обнародована первая фотография черной дыры. Астрофизики впервые в истории представили изображение черной дыры. Причиной стало то, что тень Луны на поверхности Земли легла на территорию Америки и Канады. На фото с МКС тень выглядит угрожающе и больше напоминает черную дыру.

Первая фотография Стрельца А*, сверхмассивной черной дыры в центре Млечного Пути

Впервые в истории опубликована фотография черной дыры галактики — 12.05.2022 — В мире на РЕН ТВ По словам участников проекта, получить фотографию черной дыры в Млечном Пути было намного сложнее, чем в галактике Messier 87, поскольку газ, вращающийся вокруг нее, совершает полный оборот всего за пару минут.
Впервые в истории ученые сфотографировали черную дыру. Новости. Первый канал Тень чёрной дыры в галактике M87 и улучшенный вариант изображения в поляризованном свете / ESO.
Самая важная вещь во вселенной. Снимок черной дыры стал научным прорывом? Получено первое фото черной дыры в сердце нашей Галактики.
Самая важная вещь во вселенной. Снимок черной дыры стал научным прорывом? Создание фото черной дыры также требует серьезного увеличения углового разрешения, что в данном случае эквивалентно чтению текста на телефоне в Нью-Йорке из кафе в Париже.

Впервые в истории ученые сфотографировали черную дыру

Первое фото черной дыры в центре нашей галактики: когда его сделали на самом деле Новые наблюдения за звездами, вращающимися вокруг сверхмассивной черной дыры Sgr A*, позволили уточнить ее массу и найти нового рекордсмена по скорости орбитального движения.
В чем сенсационность первой фотографии черных дыр - Российская газета Существует еще один вид черных дыр — сверхмассивные черные дыры, которые образуют ядра большинства галактик.
Первое фото черной дыры в центре нашей галактики: когда его сделали на самом деле Увидеть саму черную дыру невозможно так как она совершенно темная, но светящийся газ вокруг нее дает характерный признак: темную центральную область (называемую тенью), окруженную яркой кольцеобразной структурой.
Hubble сделал снимки чёрной дыры, которая формирует новые звезды Как оказалось, чёрные дыры могут не только уничтожать звезды, но и рождать новые.
Первая фотография Стрельца А*, сверхмассивной черной дыры в центре Млечного Пути | Эта черная дыра называется Мессье 87 или Дева А, она находится на расстоянии около 53 миллионов световых лет от Земли.

Фотография черной дыры

Их гравитация настолько велика, что не позволяет «убежать» даже свету. Однако даже сверхмассивные черные дыры с массами свыше 100 тысяч масс Солнца, обнаруженные в центрах многих галактик, в том числе и нашего Млечного пути, представляют собой сравнительно малые объекты, что до сих пор делало невозможным их прямое наблюдение. Изображение черной дыры: тень чёрной дыры и кольцеобразной структуры вокруг неё. EHT Collaboration Пути фотонов в окрестности черной дыры, объясняющие появление тени и кольцеобразной структуры вокруг неё. Nicolle R. Часто они порождают высокоскоростные струи плазмы — джеты, обладающие сильным излучением. Однако, когда черная дыра погружена в яркий диск светящегося газа, в месте её расположения должна быть видна темная область, напоминающая тень. Она образуется вследствие гравитационного искривления света и его захвата горизонтом событий. Это явление, предсказываемое общей теорией относительности Эйнштейна, никогда раньше не наблюдалось.

Получено долгожданное изображение сверхмассивного объекта в самом центре нашей Галактики. Учёные уже давно наблюдают звёзды, обращающиеся вокруг какого-то невидимого, компактного и очень массивного тела в центре Млечного Пути. Есть много свидетельств того, что этот объект, известный как Стрелец A — чёрная дыра, и публикуемое сегодня изображение даёт первое прямое визуальное доказательство этого.

Поэтому она и называется черной. Интересно, что в них не верил даже великий Эйнштейн, а ведь на его теории основана теория черных дыр. Эти объекты, пожалуй, одни из самых экзотических во Вселенной. Из уравнений Эйнштейна следует, что при приближении к ним перестают действовать законы физики, в них останавливается время, бесследно исчезают любая материя и свет. Gov До сих пор никому не удавалось получить прямое изображение черной дыры, хотя есть немало данных, которые косвенно подтверждают их существование. Прежде всего это выпадение на нее вещества находящегося рядом небесного тела, когда оно поглощается дырой.

Поглощение идет с выделением огромной энергии. Но запечатлеть явление не удавалось, поэтому оно не является непосредственным доказательством существования дыр. И вот сейчас впервые в истории ученые решили продемонстрировать реальное фото сразу двух черных дыр.

Яркое кривое кольцо на полученных фотографиях предлагает визуальное подтверждение этих эффектов: материал, движущийся в кольце в нашу сторону, оказывается более ярким, чем тот, который движется от нас. Из этих изображений астрофизики вычислили, что черная дыра примерно в 6. Небольшие различия между каждым из четырех полученных изображений также подтверждают, что материал рядом с черной дырой перемещается почти со скоростью света. На фото, полученных в течение недели, хорошо видно, как меняется внешний вид черной дыры. В будущем мы, возможно, сможем создать целый фильм о жизни черной деры. Сегодня же мы видим первые кадры». Природа была добра к нам Изображения были получены с помощью массива телескопов планетарного масштаба, называемого Event Horizon или EHT. Он состоит из восьми радиотелескопов, каждый из которых находится в отдаленной от городов высокогорной среде, включая горные вершины Гавайев, испанскую Сьерра-Невады, чилийскую пустыню и льды Антарктики. Схематичное расположение телескопов, создавших изображение черной дыры. В любой день каждый телескоп работает независимо, наблюдая астрофизические объекты, которые излучают слабые радиоволны. Тем не менее, черная дыра бесконечно меньше и темнее, чем любой другой радиоисточник в небе. Чтобы ее четко видеть, астрономам необходимо использовать очень короткие волны — в данном случае 1. Создание фото черной дыры также требует серьезного увеличения углового разрешения, что в данном случае эквивалентно чтению текста на телефоне в Нью-Йорке из кафе в Париже. Угловое разрешение телескопа увеличивается пропорционально размеру приемной тарелки.

Впервые в истории ученые сфотографировали черную дыру

Именно на ней и основывается современная теория астрофизических чёрных дыр. Wikimedia Впервые теоретическую возможность существования таких объектов описал в 1915 г. Долгое время их называли коллапсарами, поскольку они возникают, как правило, в результате схлопывания коллапса массивных звезд. Название «черная дыра» стало популярным уже во второй половине ХХ века.

Однако нашей родной галактике ничего подобного не угрожает по крайней мере в краткосрочной перспективе. Большинство объектов Млечного Пути, включая Солнечную систему, находится слишком далеко от черной дыры, чтобы ощутить ее притяжение. Кроме того, «наша» черная дыра не втягивает весь материал, как пылесос, а выступает лишь гравитационном якорем для группы звезд, находящихся на орбите вокруг нее — как Солнце для планет. Впрочем, даже если мы когда-нибудь и попадем за горизонт событий черной дыры то, скорее всего, даже не заметим этого. Что будет, если «упасть» в черную дыру? Объект, притянутый черной дырой, скорее всего, не сможет оттуда вернуться. Чтобы преодолеть гравитацию черной дыры, нужно развить скорость выше скорости света, но человечество пока не знает, как это можно сделать.

Гравитационное поле вокруг черной дыры очень сильно и неоднородно, поэтому все объекты рядом с ней меняют форму и структуру. Та сторона предмета, которая находится ближе к горизонту событий, притягивается с большей силой и падает с большим ускорением, поэтому весь предмет растягивается, становясь похожим на макаронину. Это явление описал в своей книге «Краткая история времени» знаменитый физик-теоретик Стивен Хокинг. Еще до Хокинга астрофизики назвали это явление спагеттификацией. Если описывать спагеттификацию с точки зрения космонавта, который подлетел к черной дыре ногами вперед, то гравитационное поле будет затягивать его ноги, а затем растянет и разорвет тело, превратив его в поток субатомных частиц. Со стороны увидеть падение в черную дыру невозможно, так как она поглощает свет. Сторонний наблюдатель увидит лишь, что приближающийся к черной дыре объект постепенно замедляется, а затем и вовсе останавливается.

Снимок стал результатом работы проекта Event Horizon Telescope. В его рамках работают восемь мощных радиотелескопов, которые установлены в различных государствах.

Черная дыра находится в галактике, которая расположена в 55 миллионах световых лет от нашей планеты. Ее радиус превышает 13 миллионов километров.

Черной дырой в конце жизни становятся массивные звезды: за миллиарды лет в них меняется состав газов, температура, что приводит к нарушению равновесия между гравитацией звезды и давлением раскаленных газов.

Тогда происходит коллапс звезды: ее объем уменьшается, но, поскольку масса не меняется, растет плотность. Типичная черная дыра звездной массы имеет радиус 30 километров и плотность вещества более 200 млн тонн на кубический сантиметр. Для сравнения: чтобы Земля стала черной дырой, ее радиус должен составить 9 миллиметров.

Существует еще один вид черных дыр — сверхмассивные черные дыры, которые образуют ядра большинства галактик. Их масса в миллиард раз больше массы звездных черных дыр. Происхождение сверхмассивных черных дыр неизвестно, есть гипотеза, что когда-то они были черными дырами звездной массы, которые росли, поглощая другие звезды.

Есть также спорная идея о существовании первичных черных дыр, которые могли появиться от сжатия любой массы в начале существования Вселенной. Кроме того, существует предположение, что очень маленькие черные дыры с массой, близкой массе элементарных частиц, образуются на Большом адронном коллайдере. Однако подтверждения этой версии пока нет.

Черная дыра поглотит нашу галактику? Ее масса в четыре миллиона раз больше массы Солнца, а размер — 25 миллионов километров — примерно равен диаметру 18 солнц. Подобные масштабы заставляют некоторых задаваться вопросом: а не угрожает ли черная дыра всей нашей галактике?

Основания для таких предположений есть не только у фантастов: несколько лет назад ученые сообщили о галактике W2246—0526, которая находится в 12,5 млрд световых лет от нашей планеты.

Что еще почитать

  • Юрий Ковалев
  • Впервые в истории ученые сфотографировали черную дыру
  • ВЗГЛЯД / Опубликовано первое в истории фото черной дыры :: Фоторепортажи
  • Фото черных дыр Хаббл (с множеством захватывающих изображений) -

Опубликована первая в истории изучения космоса фотография черной дыры

Она подтвердила наблюдением существование сверхмассивной черной дыры в центре Млечного Пути, став четвертой женщиной в истории, получившей эту награду. Как оказалось, чёрные дыры могут не только уничтожать звезды, но и рождать новые. По словам участников проекта, получить фотографию черной дыры в Млечном Пути было намного сложнее, чем в галактике Messier 87, поскольку газ, вращающийся вокруг нее, совершает полный оборот всего за пару минут. Ученые использовали глобальную сеть телескопов, названную Event Horizon Telescope, для изучения сверхмассивной черной дыры, располагающейся в созвездии Стрельца на расстоянии 26 тысяч световых лет от Земли. Фотография чёрной дыры, сделанная в рамках проекта Event Horizon Telescope (EHT) — одно из значимых научных достижений в астрономии и космологии.

Похожие новости:

Оцените статью
Добавить комментарий