Новости с точки зрения эволюционного учения бактерии являются

С точки зрения эволюции они являются , 1. образовательная образовательные ткани, или меристемы, являются эмбриональными тканями. долго сохраняющейся способности. Другие бактерии, например, цианобактерии и некоторые пурпурные бактерии, являются автотрофами, то есть получают углерод, фиксируя углекислый газ[86]. В основе всех эволюционных исследований лежат данные, позволяющие возможно более точно установить, насколько близкими друг к другу являются организмы. 28. Из предложенной информации выберите сведения о бактериях и грибах: 1. отсутствует. объясните,почему,корнем уравнения 2(x-7)=2x-14 является хоть какое число.

11. Бактерии. Эволюция или адаптация?

Планета бактерий Теории и практики фенотипической эволюции. Для начала условимся понимать под фенотипической эволюцией уменьшение внешнего сходства с увеличением генетического расстояния при расхождении (дивергенции) видов.
Бактерии | Наука | Fandom Новости Новости.
Роль бактерий в эволюции жизни на Земле - online presentation Колония таких бактерий не является многоклеточным организмом, а представляет собой клеточную массу — различимое невооружённым глазом скопление клеток.

Ученые говорят, что все живое произошло от бактерий. Как это можно объяснить?

С этой точки зрения, они взяли одну из широко распространенных моделей, так что никаких претензий. Бактериальные заболевания. Онтонио Веселко. какими организмами являются бактерии с точки зрения эволюции. Главной причиной необъяснимости случайного возникновения клетки теорией эволюции является «неупрощаемая комплексность» клетки. Эволюционное учение.

11. Бактерии. Эволюция или адаптация?

Основателями биосферы являются – бактерии и археи, вирусы. В основе всех эволюционных исследований лежат данные, позволяющие возможно более точно установить, насколько близкими друг к другу являются организмы. Правильный ответ на вопрос«Какими организмами являются бактерии с точки зрения эволюции » по предмету Биология.

Эволюция бактерий - Evolution of bacteria

На каком пути эволюционного развития находятся бактерии в настоящее время? - Универ soloBY Найдите правильный ответ на вопрос«Какими организмами являются бактерии с точки зрения эволюции » по предмету Биология, а если вы сомневаетесь в правильности ответов или ответ отсутствует.
Бактерии | Наука | Fandom Главной причиной необъяснимости случайного возникновения клетки теорией эволюции является «неупрощаемая комплексность» клетки.
БАКТЕРИИ | Энциклопедия Кругосвет История роли микроорганизмов в спорном вопросе о возникновении жизни регулярно описывается в большинстве учебников по микробиологии.
какими организмами являются бактерии с точки зрения эволюции - Есть ответ на Во-вторых, основным движущим фактором эволюции считается естественный отбор — процесс, в результате которого особи с более благоприятными с точки зрения окружающей среды мутациями имеют больше шансов на передачу своих генов будущим поколениям.

Почему, обладая примитивной организацией, бактерии сохранились в ходе эволюции?

COM - образовательный портал Наш сайт это площадка для образовательных консультаций, вопросов и ответов для школьников и студентов. Наша доска вопросов и ответов в первую очередь ориентирована на школьников и студентов из России и стран СНГ, а также носителей русского языка в других странах.

Но иногда происходит так, что остаются не нужные, а рандомно выбранные. Такое случается, например, при эффекте бутылочного горлышка — резкого и случайного сокращения популяции, например, из-за стихийных бедствий или необычной болезни. Если у нас есть популяция животных, которые никогда не сталкивались с чумой, то с большой вероятностью в живых, после того как чума отступит, останутся несколько особей. И совсем не факт, что их гены лучше или влияют на повышение репродуктивного успеха, просто им повезло.

Вторая проблема заключается в том, что эволюция — процесс исключительно долгий. Должны смениться поколения, чтобы какие-то признаки закрепились, а какие-то исчезли без следа. Эволюция большинства современных видов шла миллионы лет, и пронаблюдать ее, конечно, невозможно — слишком коротка человеческая жизнь. Что, впрочем, не означает, что человек не может увидеть эволюцию своими глазами. Младшей сестрой эволюции служит… селекция.

Выведение пород собак, кошек и скота ничем не отличается от стандартной эволюции, с той лишь разницей, что движущей силой здесь выступает не природа и естественные причины и требования окружающей среды, а человек. Селекцию мы можем наблюдать воочию, хотя она по сравнению со своей старшей сестрой менее выражена: мы вывели крупных мейн-кунов и маленьких коротколапых манчкинов, но это всё еще один и тот же вид. Лучше всего процесс селекции отслеживается на собаках: сложно осознать, что совсем недавно — в масштабах Вселенной — у чихуахуа и алабая был единый предок, однако это так. Человек специально отбирал из собак тех, кто подходил ему по каким-то параметрам. Такими параметрами могли быть, например, более короткие лапы и длинное тело, чтобы проникать в норы, или, наоборот, длинные ноги и обтекаемое тело, приспособленные к быстрому бегу.

Любопытно, что при искусственном отборе иногда проявляются не только искомые признаки, но и сцепленные с ними, случайно проявившиеся. Наглядный пример такого сцепления обнаружился в ходе эксперимента с домашними лисами. Опыт по их одомашниванию начался еще в 1959 году в Академгородке под Новосибирском. С тех пор появилось множество поколений, и ученые заметили, что, хотя главным критерием отбора лисиц было дружелюбие то есть стремление к контакту с человеком , вместе с дружелюбием они приобрели и другие качества. В частности, закрученный колечком хвост и свисающие уши — совсем как у собак!

Даже цвет шкуры стал светлее, а глаза у некоторых особей стали голубыми. Получается, что искусственный отбор сделал, по сути, из лисиц почти собак, причем совершенно случайно. Искусственный отбор — это любопытный процесс, но у подвергаемых ему видов нет времени, чтобы развиться в совершенно другие формы: ни разу еще при искусственном отборе не получался настоящий новый вид, отличающийся от предковой формы. Есть много разных пород и подвидов. Были даже попытки скрещивать разные виды, но их потомство в большинстве своем оказывалось нефертильным и дать начало новому таксону не могло.

Возможно, когда-нибудь, через тысячи лет, домашняя лиса станет совершенно не похожа на своего дикого предка, полностью поменяет внешний вид и даже количество хромосом. Но пока что в целом это та же самая лиса — слишком мало времени прошло. За всё это время она, хоть и изменилась, не «получила» совсем уж новых признаков — не стала, грубо говоря, травоядной и не отрастила перепонки на лапах. А можно ли хоть на ком-то увидеть жизненно важные изменения? Мировое поле экспериментов Нет ничего лучше для эволюции, чем что-то маленькое, активное и быстро размножающееся.

Речь, разумеется, о бактериях — в рамках эволюции они стали своеобразной экспериментальной установкой, а потому именно на них можно исследовать эволюционный процесс, причем буквально в лаборатории под собственным микроскопом! При достаточно благоприятных условиях окружающей среды бактерии способны делиться каждые 20—40 минут, то есть за одни сутки они могут «выдать» исследователям сразу несколько десятков поколений!

Кроме того, кишечная микрофлора подавляет размножение патогенных организмов за счёт конкурентного исключения. Полезные микроорганизмы кишечной микрофлоры часто продают в виде пробиотических пищевых добавок [166].

Бактерии вступают в сложные мутуалистические отношения с самыми разными животными. Например, в мезохиле [en] губок обитает множество бактерий, причём все исследованные к настоящему времени виды губок имеют симбиотические ассоциации с одним или более видами бактериальных симбионтов [167] [168] [169] [170]. Многие моллюски имеют особые светящиеся органы, которые светятся благодаря обитающим в них бактериям. Бактерии получают надёжную защиту и благоприятные условия для питания, а моллюскам свечение помогает в привлечении полового партнёра [171].

Асцидии вступают в симбиотические отношения с цианобактериями рода Prochloron [en] , который фиксирует CO2, а животное обеспечивает ему защищённое местообитание [172]. У жвачных животных в сложно устроенном желудочно-кишечном тракте обитает множество микроорганизмов, благодаря которым животные могут питаться почти что безбелковой пищей. Разрушать целлюлозу способны лишь некоторые бактерии, в результате деятельности которых образуются органические кислоты муравьиная , уксусная , пропионовая , масляная , которые и усваиваются животными. Выделяющиеся углекислый газ и водород обитающие тут же метаногены превращают в метан.

В одной из секций сложного желудка жвачных, рубце , обитают не только бактерии, разрушающие целлюлозу, но также бактерии, расщепляющие крахмал , пектин , полисахариды и пептиды , сбраживающие разнообразные сахара , спирты , аминокислоты и жирные кислоты [173]. Целлюлозоразрушающие бактерии также населяют заднюю кишку термитов , образуя ацетат , который и усваивается насекомым [174]. В почве бактерии, входящие в состав ризосферы , осуществляют фиксацию азота, превращая его в различные азотсодержащие соединения [175]. Они являются единственной усваиваемой формой азота для многих растений, которые сами не могут фиксировать азот.

Множество бактерий обнаруживается на поверхности и внутри семян [176]. Патогены[ править править код ] Раскрашенное изображение клеток Salmonella typhimurium красные в культуре клеток человека, полученное с помощью сканирующей электронной микроскопии Бактерии, паразитирующие на других организмах, называют патогенами. Патогенные бактерии являются причиной множества человеческих смертей и вызывают такие инфекции, как столбняк , брюшной тиф , дифтерия , сифилис , холера , пищевые отравления , проказа и туберкулёз. Патоген, вызывающий заболевание, может быть описан много лет спустя после описания самой болезни, как, например, произошло с Helicobacter pylori и язвенной болезнью желудка.

Бактерии ответственны за многие болезни культурных растений бактериозы , в числе которых пятнистость листьев [177] , ожог плодовых культур и увядание. Бактериальную основу имеют такие заболевания домашнего скота , как паратуберкулёз , мастит , сальмонеллёз и сибирская язва [178] [179]. Каждый патоген характеризуется особыми взаимодействиями с организмом хозяина. Некоторые возбудители, такие как виды родов Staphylococcus и Streptococcus, вызывают кожные инфекции, пневмонию, менингит и даже сепсис , системный воспалительный ответ, переходящий в шок , массивную вазодилатацию сосудов и заканчивающийся смертью [180].

При этом те же самые микроорганизмы входят в состав нормальной микрофлоры человека и зачастую обитают на коже и внутри полости носа , не вызывая никакого заболевания. Другие бактерии всегда вызывают болезнь, например, риккетсии , которые являются облигатными внутриклеточными паразитами и могут размножаться только внутри клеток организма-хозяина. Один вид риккетсий вызывает сыпной тиф , другой является возбудителем пятнистой лихорадки Скалистых гор. Другой род облигатных внутриклеточных паразитов, Chlamydia , включает возбудителей пневмонии, инфекций мочевыводящих путей и коронарной недостаточности [181].

Некоторые бактерии, такие как Pseudomonas aeruginosa , Burkholderia cenocepacia [en] и Mycobacterium avium , являются оппортунистическими патогенами и вызывают заболевания преимущественно у людей, страдающих от иммунодефицита или муковисцидоза [182] [183]. Бактериальные инфекции можно лечить антибиотиками, в числе которых выделяют бактерицидные препараты, которые убивают бактерии, и бактериостатики [en] , только подавляющие их рост. Существует несколько классов антибиотиков, которые действуют на процессы, которые есть у бактерии-патогена, но нет у организма-хозяина. Так, антибиотики хлорамфеникол и пуромицин подавляют работу бактериальной рибосомы, но не действуют на эукариотические рибосомы [184].

Антибиотики используются не только в медицине, но и в животноводстве для стимуляции роста животных, что стало причиной повсеместного распространения устойчивости к антибиотикам в популяциях бактерий [185]. Некоторые бактерии, например, молочнокислые бактерии Lactobacillus и Lactococcus [en] , наряду с дрожжами и плесневыми грибками в течение нескольких тысяч лет использовались людьми для приготовления продуктов брожения, в числе которых сыры, квашеная капуста , соевый соус , уксус , вино и йогурт [186] [187]. Способность бактерий разлагать разнообразные органические соединения находит применение в переработке отходов и биоремедиации. Бактерии, способные разрушать углеводороды нефти , часто используются для устранения разливов нефти [188].

То же самое в вытянутой с севера на юг Америке: майя, инки, ацтеки почти не общались друг с другом, потому что не могли пройти этот барьер — в новых природных условиях их убивали непривычные для их организма микробы. Антибиотики ведь не люди изобрели — это вещества, с помощью которых микробы общаются друг с другом. Ученые всегда изучали бактерий в чистой культуре определенного вида, но в природе такого не бывает: у любого места обитания свой микробиом, сообщество разных микробов, где все зависят друг от друга. У них сложные отношения, всё как у людей, хотя конечная цель каждого вида — победить, всё захватить. Но другие бактерии не дают — возникает какой-то баланс. Самая важная информация для бактерий — это есть ли еда, сколько вокруг других представителей твоего вида и других видов.

Определяют они это с помощью механизма, который по-английски называется quorum sensing, — некоторые переводят это как «чувство локтя». В небольшом объеме среды каждая бактерия выпускает наружу какое-то вещество, которое ее собратья могут почувствовать. Если бактерий много, то и вещества будет много — они поймут, что здесь тесно и, вместо того чтобы размножаться как бешеные, образуют споры или биопленку. Так, например, происходит в легких больного муковисцидозом — микробы говорят другу: «Нам здесь стало очень тесно» и образуют пленки, а больной при этом умирает. Для таких сообщений им и нужны антибиотики. В природе антибиотики, как правило, не достигают такой концентрации, при которой убивают.

А поскольку антибиотики были изобретены бактериями для общения между собой, то и гены устойчивости к антибиотикам возникли давным-давно, задолго до всяких врачей. Именно поэтому победить устойчивость к антибиотикам всё равно никогда не удастся. Гены устойчивости появились не потому, что злые бактерии вдруг решили наступить на горло нашей песне. Если вы возьмете образцы бактериальной ДНК из скважины, пробуренной в вечной мерзлоте, то, конечно, найдете гены устойчивости ко всем антибиотикам. Ведь бактерия, которая их производит, по определению к ним устойчива, то есть сама является источником антигенов. Война с микробами: антибиотики и бактериофаги [КШ] Что-то в последние десятилетия ничего не слышно о новых антибиотиках.

Во-первых, до недавнего времени антибиотики, которые были, и так работали хорошо. Во-вторых, новые найти очень непросто. Золотой век антибиотиков закончился. Вот я, например, работаю в Институте микробиологии Ваксмана [подразделение Университета Ратгерса — КШ] , а Ваксман — это человек, который получил Нобелевскую премию за стрептомицин, которым изначально лечили туберкулез. Так вот, он отправлял своих друзей и сотрудников по городам и весям за образцами земли, потому что большинство антибиотиков производится почвенными бактериями: их там слишком много живет — вынуждены общаться. В институте, построенном на его Нобелевскую премию, эти почвенные бактерии до сих пор болтаются — работать там невозможно, потому что они всё перезаразили.

Крупные фармкомпании тоже собирали образцы почвы по миру и потом из найденных в ней бактерий выделяли антибиотики. Выделяли-выделяли — так возникло большинство антибиотиков, но постепенно новые перестали появляться. Потому что количество культивируемых бактерий невелико. Для того чтобы выделять новые антибиотики, по-видимому, будет использоваться та самая геномика, которая позволяет смотреть генетическую информацию «темной материи» неизвестных бактерий. Биоинформатика может выделить кластеры генов, которые потенциально могут кодировать антибиотики, потом генные инженеры будут создавать специальные штаммы-продуценты. Собственно, этим и я занимаюсь — мы делаем предсказания: мол, такая-то бактерия, такие-то гены могут быть ответственны за производство таких-то веществ.

Потом мы это вещество должны получить, поймать, охарактеризовать, выявить его структуру, показать, что это вещество действует на клетку, понять, как именно действует, почему оно проходит в клетку, почему убивает клетки и при этом не убивает ту клетку, которая его производит, как вещество делается. Но мы изучаем их с точки зрения механизмов действия, а не с точки зрения практического применения. Понимаете, найти какое-то вещество, которое убивает бактерию, несложно, таких веществ десятки тысяч. Проблема в том, что антибиотик не должен вызывать в клетках человека никаких разрушений. Еще вы должны будете доказать, что, если он попадет в кровь, то будет поглощаться и доставляться к источнику инфекции в требуемой концентрации. Он должен быть достаточно стабилен, его нужно произвести в больших количествах, и это должно быть экономически выгодно.

С точки зрения промышленного производства всё это гораздо важнее, чем просто найти антибиотик. При среднем поцелуе партнеры обмениваются примерно 80 миллионами бактерий. Появляются новые болезни, бактерии быстро приобретают устойчивость к антибиотикам… [КС] Это, конечно, ужас, но не ужас-ужас-ужас. Прямо сейчас никто не вымирает. Новых болезней немного, а вот масса заболеваний, которые до недавних пор воспринимались как генетические или связанные с какими-либо дефектами, как выясняется, имеют бактериальную природу: от диабета до колитов и даже шизофрении — оказывается, чтобы завелись тараканы в голове, нужны кое-какие бактерии в животе. Взять те же антибиотики: если они очищают от микробов какую-то нишу, где те спокойно жили, там обязательно заводится кто-нибудь другой.

Все-таки жизнь существует уже 3,5 миллиарда лет и научилась приспосабливаться ко всяким разностям. Особенно учитывая, что бактерии постоянно обмениваются своими генами и вирусами. А мы — та среда, в которой происходит их отбор. Когда среда меняется, меняются и они. Бактериям в этом смысле жить гораздо тяжелее, чем нам. Поскольку каждый бактериофаг специфичен к той бактерии, на которой паразитирует, они могут быть эффективнее, чем антибиотики.

Бактериофаги открыли лет сто назад, и изначально именно их планировали использовать против бактерий. Но открытие антибиотиков позволило на время забыть про бактериофагов. Потом, правда, удрал, говорят, не поделил женщину с каким-то энкавэдэшником. Но институт остался, там же был завод, где делались таблетки, такие заводы и сейчас есть в Нижнем Новгороде и Перми. У советского солдата в личном пакетике всегда была таблетка интестифага. Кстати, большинство войн сегодня проигрывается, как и во времена Римской империи, не из-за поражений, а из-за поносов.

Но он сам по себе вызывает иммунный ответ организма. Еще одна проблема — конструирование новых бактерий: бактериофаги часто переносят ДНК от одной бактерии к другой. И масса новых патогенов — это обычные бактерии, которые просто подцепили вирус. Поэтому есть сильное подозрение, что широкое использование бактериофагов могло бы привести к развитию новых опасных патогенов.

Роль бактерий в эволюции жизни на Земле

Бактериальные заболевания. Одним из основных отличий клетки бактерий от клетки эукариот является отсутствие ядерной мембраны и, строго говоря, отсутствие вообще внутрицитоплазматических мембран, не являющихся производными ЦПМ. Заходи и смотри, ответил 1 человек: какими организмами являются бактерии с точки зрения эволюции — Знания Сайт. Как называется состояние зрения, при котором человек лучше видит предметы на удалении. Бактериальные заболевания. С этой точки зрения, они взяли одну из широко распространенных моделей, так что никаких претензий.

Почему, обладая примитивной организацией, бактерии сохранились в ходе эволюции?

Другие бактерии, например, цианобактерии и некоторые пурпурные бактерии, являются автотрофами, то есть получают углерод, фиксируя углекислый газ[86]. Исходя из концепции химической эволюции, рассмотрены возможные этапы появления бактерий, отмечены положительные стороны теории и ее недостатки. «Эксперимент Ленски является еще одним тычком в глаз антиэволюционистов», утверждает Джери Койн, эволюционный биолог в Чикагском Университете. Форма клеток бактерий может быть. С точки зрения эволюции они являются , 1. образовательная образовательные ткани, или меристемы, являются эмбриональными тканями. долго сохраняющейся способности. Мы поговорим ниже о построение дерева эволюции согласно Дарвину, посмотрим на сколько это справедливо и таки я в итоге дам полное дерево (в рамках имеющейся информации) эволюции бактерий на основании самых консервативных генов тРНК.

Ученые говорят, что все живое произошло от бактерий. Как это можно объяснить?

Фенотипическим признаком, например, можно считать способность или неспособность расти на тех или иных источниках углерода. Конечно, это не единственный класс фенотипических признаков микроорганизмов, однако такой метаболический «портрет» всегда определяет стиль жизни микробов и вносит весомый вклад в их общую приспособленность. Сейчас для исследования метаболических предпочтений бактерий совсем не обязательно выращивать их в лаборатории на всевозможных субстратах. Имея только геномные данные, можно довольно точно предсказать метаболический фенотип микроорганизма исключительно in silico. Так, для более чем 300 филогенетически очень разнообразных видов бактерий недавно построили полные модели метаболизма , опираясь только на последовательности геномов [2]. Для каждого вида определили спектр углеродных субстратов из 62 возможных , которые он может использовать для синтеза биомассы или производства АТФ — двух основных метаболических целей бактерий. На данный момент это, пожалуй, самое масштабное исследование фенотипической эволюции микроорганизмов и фенотипической эволюции вообще. Что же мы теперь знаем? Теории и практики фенотипической эволюции Для начала условимся понимать под фенотипической эволюцией уменьшение внешнего сходства с увеличением генетического расстояния при расхождении дивергенции видов.

Анализ реконструированных метаболических фенотипов более чем 300 видов бактерий говорит о том, что долговременная фенотипическая эволюция бактерий протекает в две стадии рис. Первые 50 миллионов лет пара видов бактерий очень быстро теряет фенотипическое сходство. Примечательно, что на втором этапе за единицу времени меняется примерно одно и то же число фенотипических признаков. Такая скорость сохраняется миллиарды лет. Рисунок 1. Изменение фенотипического сходства с ростом генетического расстояния между парой видов бактерий. Сверху показано филогенетическое разнообразие бактерий, для которых построены метаболические модели. Рисунок из [2].

Полученные закономерности попробовали подтвердить экспериментально. Для этого выбрали 40 видов бактерий и протестировали их способность расти на всё тех же 62 возможных углеродных субстратах.

Высказанная Г. Заварзиным мысль исключительна по своей глубине и значимости.

Однако она скорее описывает ситуацию после окончания грандиозной Архейской Экспансии. А до и во время нее гены переживали период своей самой бурной эволюции. Что вызвало Архейскую экспансию, какие события привели к столь радикальным переменам генов микробного мира? Конечно, точного ответа на этот вопрос нет.

Но авторы предложили свою версию. Они посмотрели, какие функциональные группы генов в этот период появлялись активнее всего, провели специальные вычисления, сравнивая темпы появления различных функциональных групп семейств генов до экспансии и во время экспансии. В результате этого анатомирования Архейской экспансии четко выявились лидеры экспансии рис. Семейства генов здесь сгруппированы по своим функциям, точнее по тем субстратам, с которыми они работают.

Группы показаны цветом. Высота каждого столбика гистограмм показывает отношение семейств генов определенной функциональной группы, появившихся во время архейской экспансии, к числу семейств этой группы, появившихся до экспансии. Шкала логарифмическая log2. То есть это своего рода анатомия Архейской экспансии.

График из обсуждаемой статьи в Nature Среди ведущих функциональных семейств оказались гены, связанные с работой электронтранспортной цепи синие столбики. Особенно важными оказались инновации, позволяющие связывать серу, железо и кислород. Их эволюция и становление происходили до этого периода. Зато вся ферментная машина, связанная с работой нуклеотидных последовательностей зеленые столбики , сформировалась до Архейской экспансии.

Это вполне очевидно: какими бы ни были условия на планете, живые организмы должны были уметь копировать себя, поэтому в первую очередь они обязаны были упрочить инструменты для репликации. Также примечательно, что ферменты, участвующие в собственно метаболизме, появлялись с равной скоростью и до и после экспансии. Кстати, именно они и составляют основу начального этапа эволюции генных семейств красная полоса до архейского пика. Таким образом, во время Архейской экспансии организмы осваивали различные способы и субстраты для получения энергии, совершенствуя варианты дыхательной электронтранспортной цепи.

Микроорганизмы встраивались в различные геохимические циклы. Этот процесс мог происходить как по ходу становления геохимических циклов, так и по мере эволюции бактерий. Какая из этих возможностей реализовывалась во время Архейской экспансии? Вот ключевой вопрос дальнейших исследований эволюции микромира.

Что же касается становления кислородной атмосферы на Земле, то этот процесс, по всей видимости, не связан напрямую с Архейской экспансией.

Кроме этого, имеются и другие серьезные особенности бактерий, которые наводят на размышления — а корректно ли вообще рассматривать примеры с «эволюцией бактерий» в качестве аналогии эволюции любых других живых существ? Прежде всего, бактерии радикальным образом отличаются от эукариот[179] строением своих клеток. Бактерии устроены гораздо проще и имеют массу отличий от эукариотических клеток, как биохимически, так и морфологически Рис. Слева схематичное строение бактериальной клетки.

Справа схематичное строение эукариотической клетки пропорции не соблюдены — эукариотические клетки обычно в 10—20 раз больше бактериальных клеток. Кроме того, бактерии разделяются еще и между собой, и тоже радикальным образом в биохимическом плане. Настолько, что это потребовало разделения всех бактерий на два отдельных домена — эубактерии и архебактерии, несмотря на их морфологическое сходство друг с другом. Различия между тремя только что озвученными группами живых существ настолько радикальны, что сейчас некоторые авторы предлагают вообще разделять всю существующую на Земле жизнь на три разных формы: эубактерии, архебактерии и эукариоты Шаталкин, 2004. Естественно, возникает вопрос, корректно ли переносить те механизмы эволюции, которые мы можем обнаружить у одной формы жизни — на другую форму жизни?

Например, уникальной чертой бактерий является их способность достаточно легко обмениваться между собой разными генами. То есть, осуществлять тот самый горизонтальный перенос генов, который у эукариот напрямую пока еще никто не наблюдал. Зато в мире бактерий горизонтальный перенос является наблюдаемым явлением. Бактерии могут поглощать куски ДНК других бактериальных клеток, например, в ходе процессов коньюгации или трансформации. При этом какие-то отдельные чужие гены вполне могут быть «усвоены» бактерией, поглотившей соответствующую молекулу ДНК, ранее принадлежавшую другой бактерии.

Крайне интригующим обстоятельством здесь является то, что поглощенные гены, в принципе, могут быть вообще не от родственной бактерии, а от какой-нибудь удаленной в таксономическом отношении. Получается, что гены вообще всех видов бактерий, обитающих на каком-нибудь общем участке, в принципе, можно считать единым «генетическим пулом» всех этих бактерий. Особенно те гены, которые находятся в плазмидах, то есть, в тех молекулах ДНК, которыми бактерии обмениваются чаще всего. Стоит ли говорить, что именно в плазмидах, например, нередко сосредоточены гены устойчивости к тем или иным антибиотикам? Но наверное, самой главной отличительной особенностью бактерий является потрясающая численность их «популяций», которую для подавляющего числа эукариотических организмов даже представить себе невозможно.

В одной колонии бактерий может насчитываться миллиарды, десятки или даже сотни миллиардов отдельных особей. Разве можно сравнивать подобную численность с группами каких-нибудь горных горилл Gorilla beringei beringei , которые настолько редки, что занесены в Международную Красную книгу? Корректно ли переносить механизмы эволюции, которые теоретически возможны в отношении миллиардных колоний бактерий — на эволюцию горилл? Но и это еще не всё. Бактерии еще и размножаются очень быстро.

В благоприятных условиях у бактерий смена поколений может происходить в течение всего одного часа. Так можно ли сравнивать возможные механизмы эволюции у бактерий, с возможными механизмами эволюции, например, слонов? Если знать, что смена поколений у слонов происходит примерно раз в 17 лет. Итак, с одной стороны у бактерий колоссальная численность особей и фантастическая скорость размножения… а с другой стороны у эукариот , популяции меньшего размера сразу на несколько порядков , с гораздо меньшей скоростью смены поколений. Имеем ли мы право ставить знак равенства между этими двумя формами жизни в отношении их возможных механизмов изменений?

Рассмотрим теоретический пример. Допустим, в окружающей среде бактерий возникло такое изменение, которое убьет всех этих бактерий, если у какой-нибудь бактерии срочно не произойдет одной конкретной точечной мутации, которая защищает от этого катастрофического изменения среды. Частота точечных мутаций у бактерий, допустим, одна на миллиард.

Особенно трудно это сделать для многоклеточных организмов из-за огромного числа фенотипических признаков.

У микроорганизмов же всё немного проще. Фенотипическим признаком, например, можно считать способность или неспособность расти на тех или иных источниках углерода. Конечно, это не единственный класс фенотипических признаков микроорганизмов, однако такой метаболический «портрет» всегда определяет стиль жизни микробов и вносит весомый вклад в их общую приспособленность. Сейчас для исследования метаболических предпочтений бактерий совсем не обязательно выращивать их в лаборатории на всевозможных субстратах.

Имея только геномные данные, можно довольно точно предсказать метаболический фенотип микроорганизма исключительно in silico. Так, для более чем 300 филогенетически очень разнообразных видов бактерий недавно построили полные модели метаболизма , опираясь только на последовательности геномов [2]. Для каждого вида определили спектр углеродных субстратов из 62 возможных , которые он может использовать для синтеза биомассы или производства АТФ — двух основных метаболических целей бактерий. На данный момент это, пожалуй, самое масштабное исследование фенотипической эволюции микроорганизмов и фенотипической эволюции вообще.

Что же мы теперь знаем? Теории и практики фенотипической эволюции Для начала условимся понимать под фенотипической эволюцией уменьшение внешнего сходства с увеличением генетического расстояния при расхождении дивергенции видов. Анализ реконструированных метаболических фенотипов более чем 300 видов бактерий говорит о том, что долговременная фенотипическая эволюция бактерий протекает в две стадии рис. Первые 50 миллионов лет пара видов бактерий очень быстро теряет фенотипическое сходство.

Примечательно, что на втором этапе за единицу времени меняется примерно одно и то же число фенотипических признаков. Такая скорость сохраняется миллиарды лет. Рисунок 1. Изменение фенотипического сходства с ростом генетического расстояния между парой видов бактерий.

Сверху показано филогенетическое разнообразие бактерий, для которых построены метаболические модели. Рисунок из [2].

Задание Учи.ру

Какими организмами являются бактерии с точки зрения эволюции. Теории и практики фенотипической эволюции. Для начала условимся понимать под фенотипической эволюцией уменьшение внешнего сходства с увеличением генетического расстояния при расхождении (дивергенции) видов. Согласно третьей точке зрения, это был химерный организм, образовавшийся в результате слияния клеток нескольких разных архей и бактерий. Бактерии как и все организмы прошли эволюционный путь развития с точки зрения эволюции они являются. а)высокоорганизованными б) организмами способными дать начало новой группе организмов в)примитивными г)не способными изменяться. пж дайте ответ.

Похожие новости:

Оцените статью
Добавить комментарий