Новости оивт электронная среда

филиал Федерального государственного бюджетного образовательного учреждения высшего образования «Сибирский государственный университет водного транспорта».

Оивт электронная образовательная среда

Cегодня 10 апреля 2024 в работе у проблем мы не обнаружили. филиал ОИВТ РАН. Cегодня 10 апреля 2024 в работе у проблем мы не обнаружили. Положение об электронной информационно-образовательной среде в ФГБУ НМИЦ ГБ ольца Минздрава России. На портале-агрегаторе «Современная цифровая образовательная среда в РФ» в 2018 году организован доступ более чем к тысяче онлайн-курсов по десяткам направлений подготовки.

Отзывы о компании

  • Электронная информационно-образовательная среда ФГБОУ ВО Омский ГАУ (ОмГАУ_Moodle)
  • Префектура Северного административного округа города Москвы
  • Расписание Учебных Занятий
  • Электронная информационно-образовательная среда Якутского института водного транспорта
  • Информационное пространство "Технологии информационного общества"

ГУИТ Омской области

Поставка электронно-справочной информационной таблицы еева для нужд ОИВТ (филиал) ФГБОУ ВО «СГУВТ». номерами телефонов, адресами электронной почты, ICQ, паспортными. в Омском институте водного транспорта.

У нас выступали

  • Электронная информационно-образовательная среда ОИВТ (филиал) ФГБОУ ВО "СГУВТ"
  • РУЗ - Расписание Учебных Занятий
  • Омский институт водного транспорта - филиал ФБОУ ВПО «НГАВТ»
  • РУЗ - Расписание Учебных Занятий

Оивт электронная образовательная среда

Приведен обзор исследований и разработок ОИВТ РАН в области технологий водородной энергетики, подготовленный в связи с 50-летием Объединенного института высоких температур РАН. Установка учебная ОИВТ-7 «Низкоуровневый контроллер LAN (ethernet)». Cегодня 10 апреля 2024 в работе у проблем мы не обнаружили.

Томский госуниверситет стал правообладателем среды электронного обучения iDO

Омский институт ОИВТ Иван беседа 1986. Новосибе институт водного транспорта. В Омском институте водного транспорта процесс прохождения всех видов практик налажен чётко. Видео и презентация вебинара Высокоэнергетические процессы в конденсированных средах 4 октября 2023 (среда) с 16.00.

Фестиваль радиоэлектроники в НовГУ объединил около 500 участников

При этом потребление тепла в процессах десорбции водорода и мощность охлаждения при сорбции составляет около 1,5 кВт т , что в 1,5 раза меньше тепловых потерь в мембранно-электродном блоке. Это дает принципиальную возможность регенерации тепловых потерь и повышения полного КПД энергоустановки с ТПТЭ при использовании низкотемпературных металлогидридов. Создание эффективных автономных энергоустановок с интегрированными системами аккумулирования водорода и тепловой энергии является весьма сложной задачей в связи с наличием нелинейных связей между потоками энергии и массы в их отдельных элементах. Для таких систем необходима оптимизация как схемы автономной энергоустановки в целом, так и режимов работы ее агрегатов, исходя из графиков электрической и тепловой нагрузки конкретных потребителей. Понятно, что результатом оптимизации будет изменение как температурных уровней отвода подвода тепла от отдельных агрегатов, так и самих значений отводимых подводимых тепловых потоков. Это, в свою очередь, может привести к необходимости изменения режимов работы агрегатов и модификации их систем теплообмена, а также определяет необходимые физико-химические характеристики водородопоглощающих материалов. Разработка эффективных металлогидридных систем хранения и очистки водорода для энергоустановок на основе низкотемпературных топливных элементов связана с решением ряда новых научных и технических проблем.

В этой связи важнейшими задачами становятся экспериментальные исследования процессов тепломассопереноса в реакторах и разработка эффективных методов их математического моделирования и инженерных методик оптимизации конструктивных решений. Другой, не менее важный класс научных и технических задач связан, как отмечено выше, с разработкой эффективных технологий системной интеграции металлогидридных устройств для хранения и очистки водорода с энергоустановкой на основе ТПТЭ с учетом требований потребителей энергии график потребления, требуемая электрическая и тепловая мощность , а также с источниками водорода электролизер и первичной энергии ветровые и солнечные энергоустановки. Экспериментальные исследования этих проблем возможны только с использованием модельных интегрированных систем, включающих основные новые элементы системы топливообеспечения автономных энергоустановок, топливные элементы киловаттного класса мощности и потребителей электроэнергии. Попробуйте сервис подбора литературы. Программа исследований процессов в металло-гидридных устройствах сформирована в ЛВЭТ ОИВТ РАН, исходя из задач создания систем очистки и хранения водорода, интегрированных с коммерческой энергоустановкой на основе низкотемпературного твердополимерного топливного элемента киловаттного класса мощности. В реальных условиях потребителем в соответствии с графиком потребления энергии задаются режимы работы преобразователя тока и топливного элемента, которыми определяются расходы и давление водорода на входе в ТЭ и необходимые режимы работы металло-гидридных реакторов хранения и очистки водорода, а следовательно - требуемые характеристики ИМС РСТ-диаграммы и систем теплообмена рис.

Схема работы твердофазной системы хранения и очистки водорода Fig. Flow chart of solid state hydrogen storage and purification system Рис. Комплексный экспериментальный стенд 12-04 ОИВТ РАН: 1 - металлический вентилируемый водородный бокс; 2 - 5 кВт энергоустановка на базе топливного элемента; 3 - система газоподачи; 4 - система контроля и диагностики. Внутри бокса 1: 5 - система предварительной очистки водорода; 6 - блок тонкой металлогидридной очистки; 7 - металлогидридный реактор РХО-3 в составе блока тонкой очистки; 8 - металлогидридный реактор хранения водорода РХ-1; 9 - газовый хроматограф Fig. Стенд полностью автоматизирован, система диагностики и управления экспериментом позволяет проводить измерения всех параметров, характеризующих работу как отдельных агрегатов, так и системы в целом: расходов и состава водорода, распределения температур в металлогидридной засыпке и давления водорода в реакторах, температуры и расхода охлаждающей и нагревающей воды на входе и выходе в узлах системы теплообмена, тока, напряжения и мощности в узлах электрической системы и т. Стенд позволяет проводить экспериментальное моделирование интегрированных систем энергообеспечения на основе ТЭ с металлогидридными реакторами различных типов, разработанными в ЛВЭТ, и с водородом различного состава - как чистым, так и содержащим примеси неабсорбируемых газов.

Исследования свойств водородопоглощающих материалов проводятся методом Сиверса на установке УС150, позволяющей выполнять измерения с различными объемами материалов - от 10 до 200 см3, то есть исследовать масштабные эффекты в свойствах поглощающих материалов. Измерения эффективной теплопроводности мелкодисперсной засыпки ИМС выполняются методом регулярного теплового режима при различных давлениях неабсорбируемых газов, заполняющих поровое пространство. Эти данные позволяют при разработке математических моделей тепловых процессов в ректорах свести к минимуму число подгоночных параметров, обеспечивающих соответствие результатов расчетов и экспериментов. Это позволяет установить зависимость распределения температур в ме-таллогидридной засыпке от времени и количества поглощенного водорода при различных режимах работы реактора, исследовать основные факторы, определяющие динамические характеристики реакторов, и оптимизировать их конструктивные решения для различных применений [61-64]. Впервые детально исследованы кризисные эффекты в тепломассообмене в металлогидридной засыпке - изменение закона теплообмена при увеличении температуры засыпки за счет теплового эффекта сорбции до значения, соответствующего равновесному при давлении водорода в реакторе [64, 65] рис. Металлогидридный реактор РХО-1: 1 - герметичный прочный корпус с жидкостным теплообменником; 2 - металлогидридный модуль с проницаемыми стенками; 3 - металлогидридный картридж; 4 - крышка; 5 - засыпка водородопоглощающего материала Fig.

Metal hydride hydrogen storage and purification reactor RSP-1: 1 - hermetic robust case with liquid heat exchanger; 2 - metal hydride module with permeable walls; 3 - metal hydride cartridge; 4 - cover; 5 - metal hydride bed Исследования тепловых процессов в засыпках водородопоглощающих материалов проводились на созданном в Лаборатории экспериментальном реакторе РХО-1 с внешней водяной рубашкой для охлаждения или нагрева, содержащем 4 кольцевых цилиндрических картриджа с пористыми стенками, заполненных 4,7 кг сплава рис. В реакторе предусмотрен большой свободный объем, что позволяет проводить измерения как с чистым водородом, так и в присутствии неабсорбируемых газовых примесей в широком интервале режимных параметров и составов газа, ограничиваемом предельным насыщением всего объема сплава водородом [58-60]. Оригинальная методика исследований тепловых Рис.

В новой версии стала доступна функция "Мой формуляр". После входа формуляр читателя появится в правом верхнем углу. При нажатии строчки "Литература на руках" вы увидите список изданий с датой выдачи, а главное, с датой предполагаемого возврата.

Мы подготовили для вас статью на эту тему","employerReviews. Пожалуйста, дополните ваш отзыв","employerReviews. Попробуйте повторить операцию позднее","employerReviews. После модерации он появится на сайте Dreamjob. Отображается последний отзыв. Попросим работодателя открыть отзывы","employerReviews. Возможно, сама компания рассказала о них в вакансии — посмотрите описание.

Алексеенко рассказал, что в первую очередь станции планируется разместить на полуострове Камчатка и Курильских островах, в частности на острове Кунашир, также небольшие модульные станции будут построены в Томской области. В Институте теплофизики планируется создать исследовательский центр для отработки технологий. Геотермальные станции. Для получения геотермальной энергии используются электростанции на сухом паре, они применяются на источниках, где температура воды выше 120 градусов Цельсия. При относительно низких температурах, вплоть до 70 градусов Цельсия, применяют другой способ - так называемую технологию бинарного цикла, при которой по одному контуру циркулирует геотермальная вода, а по вторичному контуру - фреон, который кипит при низкой температуре или другие вещества с низкой температурой кипения. Пары фреона вращают уже другого типа турбину - фреоновую.

Личный кабинет :

  • Томский госуниверситет стал правообладателем среды электронного обучения iDO
  • РУЗ - Расписание Учебных Занятий
  • От моториста-рулевого до инженера-механика
  • Похожие новости

Оивт электронная образовательная среда - фотоподборка

Труды объединённой научной конференции "Интернет и современное общество".

После обновления программного обеспечения библиотеки вам доступна новая версия Электронного каталога библиотеки ОИВТ , как локально, так и удаленно. Через электронный каталог вы можете посмотреть наличие интересующей вас книги в фонде нашей библиотеки, а также в каком отделе она хранится. Работать в Электронном каталоге можно как зарегистрированному пользователю используя для входа штрих-код своего читательского билета , так и стороннему Войти как Гость.

Вознаграждением за передачу Пользователем права использования Разработок является предоставление права использования и воспроизведения Разработок, размещаемых другими Пользователями, на безвозмездной основе. Пользователь предоставляет также Администрации Сайта неисключительное право использовать на безвозмездной основе размещенный на Сайте и принадлежащий ему на законных основаниях Контент в целях обеспечения Администрацией Сайта функционирования Сайта в объеме, определяемом функционалом и архитектурой Сайта. Указанное неисключительное право предоставляется на срок размещения Контента на Сайте. Администрация Сайта вправе передавать права, указанные в настоящем пункте через партнеров Администрации Сайта. Пользователь, получивший на безвозмездной основе контент, содержание которого по своему смыслу отвечает критериям Разработок, имеет право использовать данный контент исключительно в личных информационно-ознакомительных целях. Пользователь, получивший контент, содержание которого по своему смыслу отвечает критериям Разработок, не имеет права воспроизводить его с целью распространения и передачи третьим лицам. Пользователю, для получения дополнительных прав на использование контента необходимо заключить лицензионный договор с Правообладателем или Администрацией Сайта. Ответственность за нарушение исключительных прав. Пользователь несет личную ответственность за любой Контент или иную информацию, которые он загружает на сайт или иным образом доводит до всеобщего сведения публикует на Сайте или с его помощью. Пользователь не имеет права загружать, передавать или публиковать Контент на Сайте, если он не обладает соответствующими правами на совершение таких действий, приобретенными или переданными ему в соответствии с законодательством Российской Федерации. Функционирование unoi. Пользователи несут ответственность за собственные действия в связи с созданием и размещением информации на Сайте в соответствии с действующим законодательством Российской Федерации. Нарушение настоящего Соглашения и действующего законодательства Российской Федерации влечет за собой гражданско-правовую, административную и уголовную ответственность. Администрация Сайта предоставляет техническую возможность его использования Пользователями, не контролирует и не несет ответственности за действия или бездействие любых лиц в отношении использования Сайта. Администрация сохраняет за собой право в любое время изменять оформление Сайта, его содержание, список сервисов, изменять или дополнять используемые скрипты, программное обеспечение и другие объекты, используемые или хранящиеся на Сайте, любые серверные приложения в любое время с предварительным уведомлением или без такового. Администрация Сайта осуществляет последующую модерацию информации Пользователей, размещаемой на форуме. Администрация Сайта осуществляет предварительную и дальнейшую модерацию публикаций, размещаемых Пользователями на Сайте. Администрация Сайта не несет ответственности за нарушение Пользователем настоящего Соглашения и оставляет за собой право по своему собственному усмотрению, а также при получении информации от других пользователей либо третьих лиц о нарушении Пользователем настоящего Соглашения, изменять модерировать или удалять любую публикуемую Пользователем информацию, нарушающую установленные запреты, приостанавливать, ограничивать или прекращать доступ Пользователя ко всем или к любому из разделов или сервисов Сайта в любое время по любой причине или без объяснения причин, с предварительным уведомлением или без такового. Администрация Сайта реализует описанные выше меры в соответствии с применимым законодательством и не несет ответственности за возможные негативные последствия таких мер для Пользователя или третьих лиц. Администрация Сайта обеспечивает функционирование и работоспособность Сайта и обязуется оперативно восстанавливать его работоспособность в случае технических сбоев и перерывов. Администрация Сайта не несет ответственности за временные сбои и перерывы в работе Сайта и вызванные ими потерю информации. Администрация не несет ответственности за любой ущерб компьютеру Пользователя или иного лица, мобильным устройствам, любому другому оборудованию или программному обеспечению, вызванный или связанный с загрузкой материалов с Сайта или по ссылкам, размещенным на Сайте. Администрация Сайта имеет право направлять Пользователю информацию о развитии Сайта и его cервисов, а также рекламировать, соответствующие, товары и услуги. Ограничение ответственности Администрации Сайта: Вы используете сервисы unoi. Службы предоставляются «как есть». Заключительные положения 8. Настоящее Соглашение регулируется и толкуется в соответствии с законодательством Российской Федерации.

Мы подготовили для вас статью на эту тему","employerReviews. Пожалуйста, дополните ваш отзыв","employerReviews. Попробуйте повторить операцию позднее","employerReviews. После модерации он появится на сайте Dreamjob. Отображается последний отзыв. Попросим работодателя открыть отзывы","employerReviews. Возможно, сама компания рассказала о них в вакансии — посмотрите описание.

Томский госуниверситет стал правообладателем среды электронного обучения iDO

Новости сайта 27 февраля 2024 года в Омском институте водного транспорта (ОИВТ, филиал Сибирского государственного университета водного транспорта – СГУВТ) состоялась "Ярмарка рабочих мест – 2024".
ОИВТ РАН - YouTube АИС разработана АО «ИРТех», г. Самара © 2013-2024, Все права защищеныВерсия 3.13.0.34 remotes/origin/Net6 (67bbcfce).

Оивт электронная образовательная среда - фотоподборка

После обновления программного обеспечения библиотеки вам доступна новая версия Электронного каталога библиотеки ОИВТ , как локально, так и удаленно. Через электронный каталог вы можете посмотреть наличие интересующей вас книги в фонде нашей библиотеки, а также в каком отделе она хранится. Работать в Электронном каталоге можно как зарегистрированному пользователю используя для входа штрих-код своего читательского билета , так и стороннему Войти как Гость.

Информационная образовательная среда. Электронная информационная образовательная среда. Информационно-образовательная среда школы. Информационная среда образовательного учреждения. Омские курсанты. Командно инженерный Факультет ва МТО. МБОУ лицей Новомосковск.

Образование учителя. Обучение учителей. Цифровое образование. Каспийский институт морского и речного транспорта. Институт водного транспорта Астрахань. Каспийский морской университет Астрахани. Сибирский юридический институт МВД. Сибирский юридический институт Красноярск. Институт МВД Красноярск.

Инновационный колледж технологии и коммерции. Колледж цифровой экономики и технологий. Омский колледж инновационных технологий экономики и коммерции. Колледж инновационных технологий экономики и коммерции Омск фото. Что это РПА на тактике. Вычислительный центр РЖД. Главный вычислительный центр ГВЦ. Военная Академия материально технического обеспечения г Омск. Омский танковый инженерный институт физ подготовки.

Школьники КХ. Учитель информатики в Чебоксарах в школе 41 Михаил Сергеевич. Чарон школьник. ВГИ филиал Волгу. Волжский университет Волгу,. Волжский филиал Волгоградского государственного университета. Колледж Волгу Волжский. Техникум водного транспорта Красноярск. ЯИВТ командиры.

Омский институт информационных технологий. Сибирский институт бизнеса и информационных технологий в Абакане. Сибит институт. Сибит Омск колледж. Автоматизированные системы диспетчерского контроля РЖД. Информационные технологии на Железнодорожном транспорте. Диспетчерское управление поездов. Тренажер поездного диспетчера. Институт искусств и информационных технологий.

Институт искусств и информационных технологий Зеленоград. Омск МВД институт. Молодые российские ученые. Научно-исследовательская лаборатория. Научная исследовательская лаборатория. Университет Лобачевского химический Факультет. Химфак МГУ преподаватели. Химфак МГУ студенты. Аудитория п5 экономический Факультет МГУ.

Hydrogen-oxygen steam generator 100K Рис. Экспериментальные результаты огневых испытаний парогенератора 25М Fig. В отличие от модели 10М в опытах с парогенератором модели 25М использованы как струйно-струйные смесительные элементы, так и соосно-струйные специальной конструкции и распределенный впрыск воды два каскада , что позволило разработать конструктивные решения, обеспечивающие высокую полноту сгорания топлива и уменьшение влияния эффектов закалки состава.

Исследования с различными типами смесительных элементов 4 варианта позволили разработать технические решения, обеспечивающие как тепловую устойчивость элементов конструкции, так и высокую полноту сгорания в длительных опытах. Время выхода на номинальный режим из холодного состояния для этой установки составило менее 10 с. Короткие времена выхода на режим водородных парогенераторов и турбоустановок делают их весьма перспективными для покрытия остропиковых нагрузок в системах энергообеспечения и создания резервных и аварийных источников энергии для АЭС и ТЭС.

Учитывая необходимость создания и введения в эксплуатацию к 2030 г. Поэтому выход на рынок при обеспечении необходимого финансирования ОКР и успешном завершении работ можно прогнозировать на 20-е годы текущего столетия, а организацию опытно-промышленного мелкосерийного производства - на уровне 2014-2015 гг. Металлогидридные технологии водородного аккумулирования энергии в автономных системах энергообеспечения Одной из основных трудностей в создании энергетических установок для решения задач энергообеспечения автономных потребителей теплом и электроэнергией за счет возобновляемых энергоресурсов является несогласованность графиков подвода и потребления энергии.

Неравномерный характер режимов работы ветровых и солнечных энергоустановок требует создания системы аккумулирования энергии, позволяющей удовлетворять нужды потребителя по необходимому ему графику нагрузки. Одним из перспективных путей решения этой задачи является использование водородных систем аккумулирования [51-53]. В этом случае водород производится электролизом воды за счет электроэнергии от ВИЭ, аккумулируется в системе хранения и используется для производства электроэнергии по необходимому потребителю графику в топливных элементах или других энергоустановках например, дизельгенераторах.

При использовании в автономных системах низкотемпературных топливных элементов может оказаться необходимой доочистка водорода. Среди разрабатываемых новых технологий и устройств очистки и хранения водорода для автономной энергетики наиболее экономически приемлемыми и безопасными могут стать устройства и системы, основанные на использовании обратимых металлогидридов - интерметаллических соединений ИМС , способных избирательно и обратимо поглощать водород [15, 54, 55]. При этом основная масса водорода в системе находится в связанном твердофазном состоянии, что обеспечивает повышенную безопасность при эксплуатации.

Это позволяет обеспечить проведение процессов поглощения и выделения водорода за счет имеющихся в системе энергообеспечения ресурсов горячей и холодной воды и осуществить безмашинное компримирование газообразного водорода за счет использования низкопотенциального тепла. По низшей теплоте сгорания водорода плотность аккумулированной энергии составляет более 2,5 МВт-ч в 1 м3 среды хранения. Для стационарных автономных систем энергообеспечения компактность устройств, простота эксплуатации и безопасность часто имеют более важное значение, чем их вес.

Поэтому металлогидридные системы очистки и хранения водорода на основе низкотемпературных гидридов весьма перспективны для создания систем аккумулирования энергии для стационарных энергоустановок, в том числе на основе ВИЭ. В связи с большим тепловым эффектом сорбции-десорбции металлогидридный аккумулятор водорода является одновременно и аккумулятором тепловой энергии, что позволяет наиболее рационально организовать систему теплообеспече-ния потребителей, утилизации тепловых потерь и аккумулирования тепловой энергии. Это может оказаться дополнительным преимуществом таких систем для условий России [53].

Создание металлогидридной системы хранения и очистки водорода, интегрированной с энергоустановкой, позволяет повысить КПД и ресурс энергоустановок с ТПТЭ и использовать водород с примесями в качестве исходного топлива. Период окупаемости этой системы определяется различием стоимостей технического и особо чистого водорода и составляет при непрерывной работе менее года. При этом потребление тепла в процессах десорбции водорода и мощность охлаждения при сорбции составляет около 1,5 кВт т , что в 1,5 раза меньше тепловых потерь в мембранно-электродном блоке.

Это дает принципиальную возможность регенерации тепловых потерь и повышения полного КПД энергоустановки с ТПТЭ при использовании низкотемпературных металлогидридов. Создание эффективных автономных энергоустановок с интегрированными системами аккумулирования водорода и тепловой энергии является весьма сложной задачей в связи с наличием нелинейных связей между потоками энергии и массы в их отдельных элементах. Для таких систем необходима оптимизация как схемы автономной энергоустановки в целом, так и режимов работы ее агрегатов, исходя из графиков электрической и тепловой нагрузки конкретных потребителей.

Понятно, что результатом оптимизации будет изменение как температурных уровней отвода подвода тепла от отдельных агрегатов, так и самих значений отводимых подводимых тепловых потоков.

В новой версии стала доступна функция "Мой формуляр". После входа формуляр читателя появится в правом верхнем углу. При нажатии строчки "Литература на руках" вы увидите список изданий с датой выдачи, а главное, с датой предполагаемого возврата.

Похожие новости:

Оцените статью
Добавить комментарий