Новости нейтрино компонентс

The high-energy neutrinos, with energies millions to billions of times higher than those produced by the fusion reactions that power stars, were detected by the IceCube Neutrino Observatory, a gigaton. ᐅ Купить Neutrino Components в интернет каталоге Boxberry от 260 рублей. 207 товаров в наличии. Выбирайте лучшие товары бренда Neutrino Components по доступным ценам. это тип частиц, похожий на электрон, и принадлежащий к лептоновому семейству фундаментальных частиц. MCUs, sensors, automotive & power management ICs, memories, USB, Bluetooth, WiFi, LED drivers, radiation hardened devices.

IceCube удалось зарегистрировать семь астрофизических тау-нейтрино

Вот они создаются детекторы, но вот эти детекторы... Приведу один пример пользы нейтрино. Много лет назад, в 1970-х годах, когда было договорено, что ни наши суда, ни американцы не возят ядерное оружие на кораблях. Стало, видимо, известно, что американцы возят. Детекторы, которые создавались для нейтрино, были использованы. Был такой проект "Советник" — были оборудованы вертолеты, которые облетели американский корабль и точно знали, есть у них ядерное оружие или нет", — рассказал глава Курчатовского института. Михаил Ковальчук объяснил, что нейтрино позволяет контролировать состояние ядерного топлива в реакторе.

As our efforts to reshape the worldwide energy framework evolve, we eagerly incorporate insights from distinguished external authorities to deepen our story. With this approach, we engaged Perplexity AI to explore the April 12, 2024 Climate Change Crusaders: How Neutrino Energy Group is Fighting Global Warming As the Earth warms and the stakes rise in the battle against climate change, transformative solutions are imperative to avert environmental catastrophe. One such vanguard in this critical fight is the Neutrino Energy Group, a pioneering force redefining the landscape of renewable energy with its groundbreaking neutrinovoltaic technology. Meanwhile, the Neutrino Energy Group is at the forefront of a April 3, 2024 The Pi Car: A Symbol of Renewable Innovation in the Automotive Industry The automotive industry is currently facing a critical decision as it navigates the future path toward sustainable mobility.

Amidst the increasing importance of environmental regulations and the urgent demand for reducing carbon emissions, electric vehicles EVs are emerging as the leaders of the movement towards a more sustainable future. In the labyrinth of renewable energy advancements, the Neutrino Energy Group carves a distinct path with its neutrinovoltaic technology and the pioneering Neutrino Power Cube. These minuscule messengers, once believed to traverse the heavens without consequence, bring forth enigmatic secrets from the celestial spheres right to our very threshold.

Для одного канала регистрации нейтрино он уже догнал IceCube, для других должен догнать в течение нескольких лет. Водный эксперимент позволяет определять направление прихода нейтрино примерно в четыре раза точнее. Это значит, что в четыре раза быстрее мы будем получать информацию о пока неизвестных, несмотря на 10 лет работы IceCube, экстремальных астрофизических источниках, способных родить нейтрино столь высоких энергий. Вместе с нейтрино должны рождаться и фотоны таких же высоких энергий, и развитие нейтринной астрономии в последние годы потянуло за собой развитие гамма-астрономии очень высоких энергий. Тут нужны не обычные телескопы, а огромные установки, регистрирующие результаты взаимодействия гамма-квантов в атмосфере Земли.

Они дополняют друг друга, потому что работают разными методами и частично в разных энергетических диапазонах. Нужны ли тогда небольшие российские установки? Приведу недавний пример. А пока очередь дошла до мексиканской установки HAWC, вспышка закончилась, и там вообще ничего не увидели. Вывод: для гамма-астрономии очень высоких энергий обязательно нужны установки, разнесенные по географической широте, они дополняют друг друга. С точки зрения запросов гамма-астрономии Тянь-Шаньская научная станция ФИАН интересна своей локацией высоко в горах, притом с развитой инфраструктурой.

See the Web documentation customization for preset-specific configuration to override. To override them, they should be modified conditionally.

Name Environments banner Injects source-map-support into the mains entry points of your application if detected in dependencies or devDependencies of your package. You can also make these changes from the Neutrino API in custom middleware.

Featured resources

Мы недавно писали, что с этой задачей справился эксперимент FASER, впервые зарегистрировав 153 мюонных нейтрино со статистической значимостью 16 стандартных отклонений. Физики из эксперимента SND LHC сообщили, что им также удалось зарегистрировать мюонные нейтрино со статистической значимостью около семи стандартных отклонений. В отличие от эксперимента FASER, который регистрирует нейтрино с псевдобыстротами более 8,5, чувствительная область SND LHC сдвинута от основной оси ускорителя, в результате чего он покрывает диапазон псевдобыстрот от 7,2 до 8,4. В этой области одним из основных источников нейтрино являются распады очарованных адронов, вклад которых в эксперименте FASER пренебрежимо мал. Детектор состоит из мюонного вето, 830-килограммовой мишени и адронного калориметра. Основная мишень поделена на пять слоев, каждый из которых включает вольфрамовую пластину, ядерную фотоэмульсию и электронный трекер.

When Dmitri Mendeleev was trying to make sense of elements in 1869, he attempted to order them by how much they weighed. When arranged into the periodic table, it became clear that some elements, even though they had very different masses, reacted chemically in a similar way.

Mendeleev and others were then able to understand the underlying structure: the atoms of different elements were actually made up of the same underlying components that came in different configurations. We now know those smaller pieces are protons, neutrons, and electrons. Scientists saw again that some particles, although they had very different masses, could react in similar ways. The search for the underlying components of these particles protons, neutrons, and their heavier counterparts led Gell-Mann and George Zweig to propose quarks, which we now know as fundamental building blocks of matter. The Standard Model of physics lays out the building blocks of matter: quarks, leptons, force carriers, and the Higgs boson. What they do know is that there seem to be three different generations of quarks and three different generations of charged leptons, the group that contains electron-like particles and neutrinos. It could just be a coincidence that both quarks and leptons have three generations, but the weak interactions of quarks look a lot like the weak interactions of leptons: just as a heavy quark can decay into a lighter quark, a heavy lepton can decay into a lighter lepton.

Electrons were discovered in 1897, and their heavier cousin, the muon, was discovered in cosmic rays in 1936. The heaviest version, the tau, was not discovered until 1975.

Эти нейтрино могли бы взаимодействовать друг с другом посредством своих собственных тайных сил где-то на задворках Вселенной. Но обо всем по порядку.

Действительно, опыты мадам By вскоре показали, что при радиоактивном бета-распаде имеет место сильное отклонение от симметрии правого— левого. Похоже было, что излучаемые при бета-распаде частицы с нулевой массой, так называемые нейтрино, существуют лишь в одной, скажем, левой форме, тогда как антинейтрино обнаруживают у себя лишь правую форму. Свойства нейтрино особенно интересовали Паули уже по той причине, что это именно он первым предсказал существование нейтрино 20 с лишним лет тому назад.

Теперь эти частицы были уже обнаружены экспериментально, однако новое открытие Янга и Ли характерным и интригующим образом изменяло прежний образ нейтрино. Переходя от мемуара Гейзенберга к биографической книге Энца [o5], несложно восстановить и суть этого интереса Паули во всех физико-математических подробностях. Ибо сначала они были изложены в обширной и широко известной лекции Паули «К старой и новой истории нейтрино» [o7], сделанной в январе 1957 года на заседании Цюрихского научного общества.

А затем тот же по сути материал был существенно дополнен и развит в лекциях учёного осенью 1958. То есть непосредственно перед безвременной и неожиданной для всех кончиной Паули в декабре того же года… 2 Двухкомпонентная модель В поздних лекциях Паули [o7], посвящённых физике нейтрино, особенное внимание уделено теме раздвоения: Для нейтрино имеется особая возможность — так называемая двухкомпонентная модель. Однако затем выяснилось, что именно таким путём [через раздвоение нейтрино] можно прийти к интересному обобщению… Двухкомпонентная модель нейтрино привлекла в тот период особое внимание Паули по той причине, что практически одновременно в трёх разных странах появились сразу три впечатляющих публикации на эту тему от сильных и хорошо известных ему теоретиков все из них станут затем Нобелевскими лауреатами, но к физике нейтрино их премии отношения не имеют : — Ли Цзундао и Янг Чжэньнин, «Несохранение чётности и двухкомпонентная теория нейтрино» [o8a] — Абдус Салам, «О сохранении чётности и массе нейтрино» [o8b] — Лев Ландау, «Об одной возможности для поляризационных свойств нейтрино» [o8c] Не вдаваясь в математические глубины разных доводов от теоретиков, дружно пришедших к одной и той же модели, можно суммировать суть их идеи так.

В свете более раннего открытия Ли и Янга, продемонстрировавшего «нарушение закона чётности» то есть уменьшение симметрий природы при вращении частиц, поскольку выяснилось, что здесь природа в некотором смысле «немного левша» , для особенных частиц нейтрино обнаружилась и особо примечательная физика. При анализе уравнения Дирака для фермиона было показано, что в случае нейтрино эта частица распадается на две отдельные компоненты — одну с чисто леворуким вращением, другую с чисто праворуким. Иначе говоря, если у обычных фермионов имеющих ненулевую массу покоя присутствуют оба типа вращения и отмечается лишь небольшая леворукость, то у предположительно безмассовых частиц нейтрино вращение оказывается всегда лишь в одну сторону.

Так что если один компонент нейтрино вращается по направлению движения всегда левым винтом, то другой компонент, антинейтрино, соответственно, всегда правым. Или же, если угодно, наоборот, нейтрино бывают только праворукие, а антинейтрино только леворукие. В данном случае важна не столько конкретная киральность вращения у античастицы, сколько постоянное различие киральности у частицы и её античастицы.

Ибо, если вспомнить математическое открытие Майораной того факта, что частица нейтрино сама для себя является и античастицей, то получается, что один компонент раздвоенной частицы имеет левую спиральность вращения, а другой компонент, соответственно, спиральность правую… Давнюю работу исчезнувшего Майораны, впрочем, в те годы никто не вспоминал. Но и без неё проницательный Вольфганг Паули, ознакомившись с новыми статьями коллег о двухкомпонентной модели нейтрино, счёл их важными до такой степени, что особо подчеркнул два момента. Во-первых, признал, что был прежде неправ, когда решительно критиковал аналогичную двухкомпонентную модель для безмассового фермиона, выдвинутую ещё в 1929 году Германом Вейлем на основе анализа уравнения Дирака.

А во-вторых, в новом возрождении двухкомпонентной модели для нейтрино Паули увидел важный сигнал, указывающий на возможность обобщения этой интересной физики для более глубоко понимания устройства фермионов с их определённо уменьшенной симметрией чётности в слабых взаимодействиях. Следует подчеркнуть, что важность обобщения этих идей осознавал в ту пору далеко не только Паули. Например, один из выдающихся советских теоретиков Исаак Я.

Померанчук считал, что выдвинутая Львом Ландау теория двухкомпонентного нейтрино — это вершина научного творчества его учителя. Но академик Померанчук, увы, скончался от рака в 1966, совсем нестарым ещё человеком в возрасте 53 лет. Академик Ландау, хотя умер чуть позже, в 1968, к тому времени был уже давно и полностью выбит из научной деятельности из-за ужасной автомобильной аварии, произошедшей в январе 1962.

Когда ему было тоже 53 года… В этот же печально-мистический ряд нельзя не включить и очень важного для истории освоения нейтрино Энрико Ферми. Умершего от рака в 1954, в возрасте 53 лет. Наконец, согласно материалам недавнего расследования римской прокуратуры, изучавшей обстоятельства жизни Этторе Майораны в Южной Америке после его исчезновения из Италии в 1938, и этот теоретик по новым данным умер в Венесуэле в 1959 году.

Иначе говоря, в возрасте 53 лет… Пока что наука не располагает ничем, что могло бы хоть как-то объяснить причины для этой мистически связанной череды больших потерь. Но даже без объяснений должно быть ясно, что плеяда выдающихся учёных, особо далеко продвинувшихся в постижении тайн нейтрино, ушла из жизни именно в тот период, когда наука только-только начала приоткрывать реальную картину устройства этих неуловимо-загадочных частиц. И теперь, когда мистический фон картины в целом ухвачен, становится особо интересно рассмотреть, что же произошло в науке дальше с двухкомпонентной моделью нейтрино.

Вот, скажем, совсем свежая книга «Частица-призрак: В поисках неуловимого и загадочного нейтрино». Изд-во МТИ, 2023 [o9a]. В книге нет не только никаких упоминаний имён нобелевских лауреатов Льва Ландау и Абдуса Салама, сыгравших заметную роль в создании современной теории нейтрино, но и вообще ни разу не упомянута модель двухкомпонентого нейтрино two-component neutrino.

Другая аналогичная книга, опубликованная чуть ранее, в 2021, весьма именитым авторитетом в данной научной области: «История нейтрино: Великая космическая роль одной крошечной частицы» [o9b]. Ни одного упоминания имени Ландау, а имя Салама появляется только в связи с его нобелевской премией за теорию слабых ядерных взаимодействий. А потому, соответственно, и никаких страниц или хотя бы строк истории, посвящённых двухкомпонентному нейтрино.

Поскольку такая же по сути картина повторяется и с другими недавними книгами о нейтрино, отодвинем обзор чуть подальше, в 2010 год. Когда в издательстве Оксфордского университета вышла заметная книга под совсем лаконичным названием «Нейтрино» [o9c] от известного историка науки, профессора Фрэнка Клоуза. И здесь, увы, полное изъятие двухкомпонентной модели нейтрино сделано по той же самой схеме.

Ни слова о теории Ландау, а имя Салама упомянуто лишь раз. И в связи с его совершенно иной, более поздней идеей об экспериментах с космическим нейтрино. Ну и дабы всем стало совершенно ясно и очевидно, что тотальное выпиливание этого эпизода из истории науки происходит давно, повсеместно и явно неслучайно, осталось заглянуть в самые популярные онлайновые энциклопедии англоязычного мира, Wikipedia и Britannica.

Где легко устанавливается, что и там в статьях о «Neutrino» про двухкомпонентную модель от Ландау, Салама и Янга-Ли нет абсолютно ничего… Аккуратности ради следует отметить, что в русскоязычной Википедии, где советский физик Лев Ландау имеет почти божественный статус, статья « Нейтрино » содержит вполне информативный раздел и о двухкомпонентной модели, и о трёх статьях от именитых авторов, эту модель предложивших. Но по какой-то неназываемой причине в этой же статье полностью отсутствует упоминание о «механизме качелей» Seesaw mechanism , с помощью которого в современной науке принято математически объяснять особо странные вещи в физике нейтрино. Типа осцилляций состояния частицы между разными «ароматами» или уровнями энергии просто нейтрино, мю-нейтрино, тау-нейтрино , а также очень малой, но ненулевой, как принято ныне полагать, массы покоя.

А поскольку и во всех современных книгах о нейтрино, и в статьях англоязычных энциклопедий механизм Seesaw непременно упоминается как одна из базовых моделей в новейшей теории нейтрино, несложно сообразить вот какую вещь. Здесь мы в очередной раз можем наблюдать, как официальная наука сама себе морочит голову. Ибо если аккуратно объединить давнюю модель двухкомпонентного нейтрино игнорируемую в англоязычной литературе и современную модель Seesaw mechanism игнорируемую в русскоязычной вики-статье о нейтрино , то несложно увидеть именно то, чего в мире науки никто почему-то видеть не желает.

Как выглядит физика нейтрино в реальности Есть глубочайшая ирония — густо замешанная с мистикой — в том, что теоретический фундамент для подлинного понимания физики нейтрино был заложен в 1857-58 годы. То есть ровно за сто лет до того, как в 1957-58 теоретики сделают важнейшие открытия о раздвоенном строении нейтрино и о ключевой роли этой структуры для понимания физики частиц в целом. Именно тогда, в 1857-58, выдающийся врач и физиолог — а по совместительству ещё и одарённый физик-математик — Герман Гельмгольц подготовил и опубликовал эпохальную работу «Об интегралах гидродинамических уравнений, которым соответствуют вихревые движения» [o10].

Благодаря этой статье от Гельмгольца учёный мир впервые узнал о поразительной стабильности вихрей и неисчерпаемом богатстве их физики. Среди удивительного разнообразия эффектов, порождаемых гидродинамикой вихрей, заметный интерес Гельмгольца вызвали вихревые кольца и особенности их взаимодействий. В частности, весьма нетривиальной оказалась совместная динамика поведения у пары коаксиальных или соосных колец.

Чисто теоретически, решая уравнения гидродинамики идеальной жидкости, учёный открыл здесь примечательный эффект, ныне именуемый «чехарда вихревых колец» или Leapfrogging vortex rings. Когда два одинаковых вихревых кольца двигаются вдоль общей оси в одном и том же направлении с одинаковыми скоростями, то они начинают взаимно притягиваться. Первое кольцо 1 при этом растягивается и замедляет движение, а второе кольцо 2 стягивается и ускоряет свой ход, проскакивая сквозь кольцо 1.

Как только это происходит, теперь уже кольцо 2 начинает расширяться и замедляться, а кольцо 1 , наоборот, сужаться и ускоряться. Когда размеры и скорости колец выравниваются, эта же чехарда повторяется вновь и вновь.

Что еще почитать

  • Сервис и помощь
  • Астрофизики, наконец, нашли в дальнем космосе источник высокоэнергетических нейтрино
  • TOTAL DOCUMENTS
  • На Большом адронном коллайдере впервые наблюдали нейтрино
  • Сервис и помощь

«Никто их не мог зарегистрировать». Что означает поимка нейтрино на Большом адронном коллайдере

Ученые впервые зарегистрировали нейтрино, рожденные при соударении протонов на Большом адронном коллайдере в ЦЕРНе. This is an efficient way to separate solar neutrinos from background sources and further refine the detection of CNO cycle neutrinos through spectral analysis. Затем в процессе движения часть мюонных нейтрино осциллирует, превращаясь в электронные и тау-нейтрино.

New insights into neutrino interactions

На Большом адронном коллайдере впервые наблюдали нейтрино В ходе научного изыскания устройство смогло зафиксировать контрольные сигналы нейтрино, которые образуются при вступлении в контакт частиц.
Нейтрино впервые удалось разглядеть на Большом адронном коллайдере latest news and breaking news about Neutrino energy on the world stage.
На Большом адронном коллайдере обнаружили кандидаты в нейтрино Нейтрино — неуловимые частицы с нейтральным зарядом и полуцелым спином, взаимодействующие только слабо и гравитационно.
nm53 • Стартует производство источников энергии по Neutrinovoltaic технологии «Результаты впервые предоставляют неопровержимые наблюдательные доказательства того, что подвыборка блазаров PeVatron является внегалактическими источниками нейтрино и.

Эксперимент SND@LHC на Большом адронном коллайдере зарегистрировал нейтрино

I will present the recent results of Borexino for the measurement of the four main solar neutrino components of the pp fusion chain (pp, pep, 7Be, 8B). Международный коллектив ученых сообщил о регистрации нейтрино, испускаемых в результате термоядерных реакций CNO-цикла на Солнце. Международный коллектив ученых сообщил о регистрации нейтрино, испускаемых в результате термоядерных реакций CNO-цикла на Солнце. — Эти нейтрино очень высоких энергий на БАК важны для понимания действительно интересных наблюдений в астрофизике частиц».

Please note:

  • Фотогалерея
  • Phys. Rev. D 108, 102005 (2023) - Final results of Borexino on CNO solar neutrinos
  • Нейтрино | Атомная энергия 2.0
  • Блог компании Neutrino Components — Новости Neutrino Components
  • «Никто их не мог зарегистрировать». Что означает поимка нейтрино на Большом адронном коллайдере

Немецкая Neutrino Energy Group разработала технологию производства энергии из нейтрино

Велофан написал 5 апреля 2017 в 14:42: "Блог компании Neutrino Components — Новости Neutrino Components" Зарегистрируйтесь или авторизуйтесь для того, чтобы увидеть его. Проследив за траекторией этих нейтрино можно выйти на источник высокоэнергичных космических частиц. Теперь, когда присутствие нейтрино на LHC подтверждено, эксперименты продолжатся, что, возможно, приведет к еще более значимым наблюдениям. ᐅ Купить Neutrino Components в интернет каталоге Boxberry от 260 рублей. 207 товаров в наличии. Выбирайте лучшие товары бренда Neutrino Components по доступным ценам. Do neutrinos violate the symmetries of physics? I will present the recent results of Borexino for the measurement of the four main solar neutrino components of the pp fusion chain (pp, pep, 7Be, 8B).

Учёные РАН разрабатывают детектор для регистрации нейтрино

в видимой и инфракрасной области. Do neutrinos violate the symmetries of physics? в видимой и инфракрасной области.

Ассортимент продукции Neutrino Components - в наличии в MULTI!

Оно вызывает воспали... Да, в самое ближайшее время - 44.

Технологии в маунтин байке не стоят на месте и всё время появляются новые "штучки", которые позволяют ехать райдеру быстрее, облегчают его велосипед и вносят дополнительные удобства.

Продукция Neutrino Components как раз из этих самых "штучек": их специализация - производство Narrow wide-звезд и дополнительных запчастей, нужных для установки и адаптации этих звезд на байке. За несколько лет продукция много раз менялась: все детали постоянно тестируются в "боевых" условиях и совершенствуются.

Other characteristics besides the star mass should be considered, as the temperature and the relative abundance of elements within its core metallicity. From these two vague views of the two processes, it is evident that both of them are sources of electron neutrinos. Those neutrinos constitute a fundamental tool to probe the existence of these nuclear reactions inside stars. While the pp-chain has already been observed directly [1], there were no experimental evidence of the existence of the CNO cycle until the Borexino collaboration recently announced its results, which imply a step towards confirming the overall solar picture and provide some hints to the solution to the solar metallicity problem.

Borexino is a large volume liquid scintillator experiment, located underground at the Laboratori Nazionali del Gran Sasso, in Italy. In Borexino, neutrino interactions occur via elastic scattering with electrons.

В мае начнется новый сеанс работы, и к нам приедет большая делегация из Германии вместе с новой электроникой и детектором, которые будет установлены в конце сеанса. Это позволит нам сравнить результаты наблюдений и понять насколько новая немецкая электроника лучше для нас. В этом заинтересованы и мы, и немецкие коллеги, чья установка пока не начала свою работу.

Если все получится, дальше будем проводить совместный эксперимент здесь, в Троицке. Но, с фундаментальной точки зрения, стерильные нейтрино чрезвычайно важны для определения того, в какую сторону и как будет расширяться Стандартная модель — можно пойти, условно говоря, направо, налево, вверх или вниз, или же просто дополнить нейтрино по аналогии с другими известными частицами. Какой из этих путей правильный — на сегодняшний день фундаментальный вопрос. Соответственно, если мы найдем стерильные нейтрино, то тогда сразу станет ясно, в каком направлении двигаться. С другой стороны, даже если поиски закончатся неудачей, это тоже прояснит ситуацию — к примеру, если стерильные нейтрино не существуют в той области, которая связана с темной материей, то тогда мы будем знать, что она является какой-то другой сущностью за пределами Стандартной модели.

Будет ли означать открытие стерильных нейтрино то, что и эта теория верна? Стерильные нейтрино по своей природе должны распадаться, превращаясь в активное нейтрино и фотон, однако эти распады будут происходить слишком редко — время жизни стерильных нейтрино превышает возраст Вселенной. С другой стороны, реальность может быть более сложной, могут существовать еще какие то взаимодействия и частицы, и тогда частота распадов стерильных нейтрино будет другой. Сейчас я как раз работаю над подобными сценариями. На ваш взгляд, где и когда мы увидим первые реальные следы мира за пределами Стандартной модели?

Трудно быть оракулом, но я не думаю, что мы на самом деле близки к открытию "новой физики", если говорить об экспериментах на Большом адронном коллайдере. С другой стороны, ситуация выглядит более оптимистичной, если говорить о стерильных нейтрино и аксионах. Я надеюсь — так как уверенно говорить здесь нельзя — что именно они станут тем проявлением "новой физики", которое нам удастся найти первым. Для этого есть вполне логичные причины. Стерильные нейтрино являются естественными кандидатами на роль частиц темной.

Нужно смотреть на естественные расширения Стандартной модели, необходимость которых вытекает из решения каких то других проблем, а не просто ради объяснения существования темной материи. К примеру, если взять нейтрино, мы знаем, что они должны обладать массой, которую откуда-то нужно взять. Для этого мы вводим "правые" нейтрино и это добавление к теории к тому же объясняет, откуда берется темная материя.

Neutrino flavors

New insights into neutrino interactions Чуть позже ученые обнаружили, что нейтрино разных видов могут периодически превращаться друг в друга.
Two new papers published Велофан написал 5 апреля 2017 в 14:42: "Блог компании Neutrino Components — Новости Neutrino Components" Зарегистрируйтесь или авторизуйтесь для того, чтобы увидеть его.
Extracts from the Internet on August 2023. Physics–Uspekhi This is an efficient way to separate solar neutrinos from background sources and further refine the detection of CNO cycle neutrinos through spectral analysis.
nm53 • Стартует производство источников энергии по Neutrinovoltaic технологии Нейтрино, получаемые на БАК, имеют гораздо более высокую энергию по сравнению с другими искусственно полученными нейтрино.
Впервые зафиксированы нейтрино вторичного термоядерного цикла Солнца Нейтрино, или «частицы-призраки», как охарактеризовал их в свое время фантаст Айзек Азимов, крайне неохотно взаимодействуют с веществом, отчего их очень сложно зарегистрировать.

Neutrinos News

В частности, ученые благодаря разработке намерены обнаружить такое явление, как когерентное рассеяние нейтрино. Ученые Университета Хоккайдо показали, что нейтрино могут взаимодействовать с фотонами ранее неизвестным образом. The high-energy neutrinos, with energies millions to billions of times higher than those produced by the fusion reactions that power stars, were detected by the IceCube Neutrino Observatory, a gigaton.

neutrino components

Оказалось, что сделать Показать ещё стабильную эмульсию хотя на самом деле это суспензия воска в воде весьма не просто. Много времени ушло на эксперименты, обзавелись сложным оборудованием, с которым тоже были проблемы, но результат был достигнут. Затем долго не было времени разобраться с упаковкой и массовым производством. Теперь все готово и у нас есть смазка, изготовленная полностью нами на собственном оборудовании.

Вдова теоретика, Франка Паули, пережила мужа почти на три десятка лет и отошла в мир иной летом 1987. Сильное желание вдовы сохранить в истории образ своего мужа исключительно как «апостола новой физики», с одной стороны, плюс отчётливо негативное отношение к Юнгу и его специфическому окружению, со стороны другой, в совокупности привели к тому, что очень важная сторона исследований и поисков Паули оказалась по сути дела из истории выпилена. И в своём полном виде не возвращена в науку по сию пору… О том, как революционные идеи Паули, связанные с принципом « раздвоения и уменьшения симметрии », постепенно и под другими названиями проникают ныне в теоретическую и экспериментальную физику, ранее также рассказывалось не раз и с подробностями [i3]. В частности, о модели Китаева SYK , с помощью которой теоретики пытаются объединить гравитацию и квантовую теорию на основе фермиона Майораны и голографической концепции. Или о том, как экспериментаторы конструируют квазичастицы со свойствами фермиона Майораны для реализации особо перспективного в приложениях топологического квантового компьютера. Продвижение по данным направлениям пусть и медленно, но всё же происходит. Что же проникает в мир науки особенно трудно, так это важные идеи Паули о той роли, которую играют нейтрино — или иначе фермионы Майораны — для постижения единства материи и сознания.

Про эту сторону истории — а также и про то, какова здесь роль могущественных потусторонних сил архонтов — пока что не рассказывалось практически ничего. Ибо для восстановления этой части картины никаких достоверных документов и свидетельств пока не имеется. И не предвидится. Глядя со стороны общепринятой. Глядя же, однако, на то же самое со стороны другой, нестандартной, историю хорошо известных всем событий можно рассказывать и таким образом, что действительно важные вещи, даже если их намеренно скрывают, начинают проявляться словно сами собой. Но чтобы значимость этих проявлений была понята и зафиксирована, требуются определённые навыки и знания из таких областей, как аналитическая психология и история науки… История же эта, если вкратце, выглядит так. К 1930 году в мире физики сложилась ситуация, требовавшая радикально дополнить квантовую теорию. Ибо в экспериментах с бета-распадом атомов стабильно, но по совершенно неясным причинам отмечались расхождения в энергии системы до и после опыта. Отчего Нильс Бор, как наиболее влиятельный в ту пору теоретик, вполне всерьёз попытался продвинуть и здесь свою базовую в корне неверную идею о принципиальных различиях физики классической и физики квантовой. Конкретно же для бета-распада Бор решил постулировать, что закон сохранения энергии тут может и не работать.

Демонстрируя, так сказать, ещё один аспект вероятностно-статистического характера физики на квантовых масштабах. Учитывая авторитет Бора и его известную тактику доказывать свою правоту «методом парового катка», вполне возможно, что и эта идея могла бы на многие последующие десятилетия стать составной частью так называемой «копенгагенской интерпретации». Мало кого устраивающей своей объяснительной беспомощностью, но отчётливо доминирующей в квантовой теории вплоть до нынешних дней. Главным оппонентом Бора, однако, выступил Вольфганг Паули. Не имея никаких убедительных аргументов в свою поддержку, кроме абсолютной веры в закон сохранения энергии, Паули решился на неслыханную по тем временам дерзость. Причиной нестыковок в опытах он предложил считать некие неуловимые и неведомые науке частицы. Обладающие высочайшей проникающей способностью, очень лёгкие, электрически нейтральные, а потому и не наблюдаемые в экспериментах частицы, которые Паули поначалу пытался называть «нейтронами». Нельзя сказать, что идея Паули понравилась коллегам больше, чем идея Бора. А кроме того, очень скоро, в 1932 в ядре атомов надёжно обнаружилась другая важная частица — с массой примерно как у протона, но без электрического заряда. Практически сразу именно за ней и закрепилось название нейтрон, ранее уже предложенное для совсем другого объекта.

Учитывая огромную влиятельность Копенгагенской школы Бора к которой принадлежал и Паули , печальная судьба полностью исчезнуть из теории для неуловимой нейтральной частицы была, казалось, уже предрешена. Ситуация, однако, в корне изменилась, когда в поддержку идеи Паули очень активно выступил Энрико Ферми, создавший к тому времени ещё одну весьма влиятельную школу квантовой физики в Риме. С подачи Ферми неуловимую частицу Паули стали называть на итальянский манер «нейтрино», то есть «маленький нейтрончик». А самое главное, на основе двух новых нейтральных частиц Энрико Ферми вскоре создал красивую, хорошо работающую и поныне теорию бета-распада. Согласно которой нейтрон распадается на протон, электрон и нейтрино. Особо же примечательным для нашей истории фактом здесь стало то, что широко читаемый в научном мире английский журнал Nature, в который Ферми послал свою статью с этой теорией, публиковать её отказался. Как чересчур оторванную от реальности ненаучную фантастику. Тогда Ферми, твёрдо уверенный в своей правоте, опубликовал работу иначе. Преобразовав это уравнение к другому виду, Майорана показал, что его решения предсказывают не только антиматерию, но и совсем удивительную раздвоенную частицу-фермион, которая сама для себя является античастицей. Более того, по компетентному мнению Майораны гипотетическое нейтрино Вольфганга Паули, скорее всего, и является именно такой частицей в природе… Статья [o4] с этим важнейшим для понимания нейтрино результатом была опубликована 1937 году на итальянском языке, так что за пределами школы Ферми её никто по сути не заметил.

А спустя несколько месяцев, весной 1938, Этторе Майорана загадочно и навсегда из истории исчез. Сняв предварительно все сбережения в банке, извинившись за исчезновение перед родными и близкими, и попросив его не искать… На следующий год, как известно, началась вторая мировая война. Почти весь цвет мировой квантовой физики за исключением, разве что, Вольфганга Паули энергично подключился к созданию атомной бомбы. А главным послевоенным результатом этого достижения стало шизофреническое расщепление науки на открытую-официальную и закрытую-чрезвычайно-секретную. Именно эта очень нехорошая болезнь впоследствии стала не только причиной засекречивания главного открытия Вольфганга Паули, сделанного в конце 1957, но и источником затяжной сильнейшей депрессии учёного на протяжении 1958. К концу того же года завершившейся безвременной кончиной Паули от стремительно развившегося рака. К 2002 году, то есть почти полвека спустя после ухода Паули, Энцу всё-таки удалось закончить и выпустить подробнейшую книгу [o5] с описанием жизни и научных достижений учителя. Рассказано там почти всё — кроме самого главного. Дабы наглядно продемонстрировать, до какой степени темноты и неясности может доходить лучшая из биографий великого учёного, полезно дословно процитировать здесь тот фрагмент, который рассказывает о конце 1957 года и о важнейшем научном открытии Паули. Происходившем на фоне возобновления сотрудничества теоретика со старым другом и коллегой Вернером Гейзнбергом: Изначально идея Гейзенберга была в том, что его [новое] уравнение, благодаря своей нелинейности, должно описывать все элементарные частицы, начиная с нейтрино, как частицы составные.

Идёт интенсивный обмен телеграммами, письмами, телефонными звонками. Первого декабря 1957 Паули пишет Гейзенбергу: «Теперь я обрёл сильное чувство уверенности. Дорогой Гейзенберг: Фактически, иначе и быть не может! Но — что же теперь? Помогай двигаться дальше! А я тем временем также продолжаю об этом думать». Однако, 13 мая 1958 года Паули пишет [своему другу и бывшему ассистенту Маркусу] Фирцу про Гейзенберга следующее: «Он полагает, что когда публикуется вместе со мной, то это опять 1930 год! Мне уже просто неловко от того, как он за мной бегает! Всего одним подчёркнуто эмоциональным, но невнятным по существу абзацем, просто перескочив от цитаты из письма 1 декабря 1957 к цитате из мая 1958, Чарльз Энц полностью удалил из биографии учёного наиболее примечательный и интересный эпизод. А именно, важнейшие недели в конце декабря 1957, когда Паули и сделал своё главное открытие… Вернер Гейзенберг, как единственный, фактически, источник информации о том, что же в действительности тогда происходило, в своих мемуарах [o6] рассказывает суть истории примерно так: С каждым своим шагом в данном направлении Вольфганг приходил в состояние всё большего воодушевления.

Никогда раньше и никогда позже в жизни не видел я Вольфганга в таком возбуждении от событий в нашей науке. Всё движется.

Например, один из выдающихся советских теоретиков Исаак Я. Померанчук считал, что выдвинутая Львом Ландау теория двухкомпонентного нейтрино — это вершина научного творчества его учителя. Но академик Померанчук, увы, скончался от рака в 1966, совсем нестарым ещё человеком в возрасте 53 лет.

Академик Ландау, хотя умер чуть позже, в 1968, к тому времени был уже давно и полностью выбит из научной деятельности из-за ужасной автомобильной аварии, произошедшей в январе 1962. Когда ему было тоже 53 года… В этот же печально-мистический ряд нельзя не включить и очень важного для истории освоения нейтрино Энрико Ферми. Умершего от рака в 1954, в возрасте 53 лет. Наконец, согласно материалам недавнего расследования римской прокуратуры, изучавшей обстоятельства жизни Этторе Майораны в Южной Америке после его исчезновения из Италии в 1938, и этот теоретик по новым данным умер в Венесуэле в 1959 году. Иначе говоря, в возрасте 53 лет… Пока что наука не располагает ничем, что могло бы хоть как-то объяснить причины для этой мистически связанной череды больших потерь.

Но даже без объяснений должно быть ясно, что плеяда выдающихся учёных, особо далеко продвинувшихся в постижении тайн нейтрино, ушла из жизни именно в тот период, когда наука только-только начала приоткрывать реальную картину устройства этих неуловимо-загадочных частиц. И теперь, когда мистический фон картины в целом ухвачен, становится особо интересно рассмотреть, что же произошло в науке дальше с двухкомпонентной моделью нейтрино. Вот, скажем, совсем свежая книга «Частица-призрак: В поисках неуловимого и загадочного нейтрино». Изд-во МТИ, 2023 [o9a]. В книге нет не только никаких упоминаний имён нобелевских лауреатов Льва Ландау и Абдуса Салама, сыгравших заметную роль в создании современной теории нейтрино, но и вообще ни разу не упомянута модель двухкомпонентого нейтрино two-component neutrino.

Другая аналогичная книга, опубликованная чуть ранее, в 2021, весьма именитым авторитетом в данной научной области: «История нейтрино: Великая космическая роль одной крошечной частицы» [o9b]. Ни одного упоминания имени Ландау, а имя Салама появляется только в связи с его нобелевской премией за теорию слабых ядерных взаимодействий. А потому, соответственно, и никаких страниц или хотя бы строк истории, посвящённых двухкомпонентному нейтрино. Поскольку такая же по сути картина повторяется и с другими недавними книгами о нейтрино, отодвинем обзор чуть подальше, в 2010 год. Когда в издательстве Оксфордского университета вышла заметная книга под совсем лаконичным названием «Нейтрино» [o9c] от известного историка науки, профессора Фрэнка Клоуза.

И здесь, увы, полное изъятие двухкомпонентной модели нейтрино сделано по той же самой схеме. Ни слова о теории Ландау, а имя Салама упомянуто лишь раз. И в связи с его совершенно иной, более поздней идеей об экспериментах с космическим нейтрино. Ну и дабы всем стало совершенно ясно и очевидно, что тотальное выпиливание этого эпизода из истории науки происходит давно, повсеместно и явно неслучайно, осталось заглянуть в самые популярные онлайновые энциклопедии англоязычного мира, Wikipedia и Britannica. Где легко устанавливается, что и там в статьях о «Neutrino» про двухкомпонентную модель от Ландау, Салама и Янга-Ли нет абсолютно ничего… Аккуратности ради следует отметить, что в русскоязычной Википедии, где советский физик Лев Ландау имеет почти божественный статус, статья « Нейтрино » содержит вполне информативный раздел и о двухкомпонентной модели, и о трёх статьях от именитых авторов, эту модель предложивших.

Но по какой-то неназываемой причине в этой же статье полностью отсутствует упоминание о «механизме качелей» Seesaw mechanism , с помощью которого в современной науке принято математически объяснять особо странные вещи в физике нейтрино. Типа осцилляций состояния частицы между разными «ароматами» или уровнями энергии просто нейтрино, мю-нейтрино, тау-нейтрино , а также очень малой, но ненулевой, как принято ныне полагать, массы покоя. А поскольку и во всех современных книгах о нейтрино, и в статьях англоязычных энциклопедий механизм Seesaw непременно упоминается как одна из базовых моделей в новейшей теории нейтрино, несложно сообразить вот какую вещь. Здесь мы в очередной раз можем наблюдать, как официальная наука сама себе морочит голову. Ибо если аккуратно объединить давнюю модель двухкомпонентного нейтрино игнорируемую в англоязычной литературе и современную модель Seesaw mechanism игнорируемую в русскоязычной вики-статье о нейтрино , то несложно увидеть именно то, чего в мире науки никто почему-то видеть не желает.

Как выглядит физика нейтрино в реальности Есть глубочайшая ирония — густо замешанная с мистикой — в том, что теоретический фундамент для подлинного понимания физики нейтрино был заложен в 1857-58 годы. То есть ровно за сто лет до того, как в 1957-58 теоретики сделают важнейшие открытия о раздвоенном строении нейтрино и о ключевой роли этой структуры для понимания физики частиц в целом. Именно тогда, в 1857-58, выдающийся врач и физиолог — а по совместительству ещё и одарённый физик-математик — Герман Гельмгольц подготовил и опубликовал эпохальную работу «Об интегралах гидродинамических уравнений, которым соответствуют вихревые движения» [o10]. Благодаря этой статье от Гельмгольца учёный мир впервые узнал о поразительной стабильности вихрей и неисчерпаемом богатстве их физики. Среди удивительного разнообразия эффектов, порождаемых гидродинамикой вихрей, заметный интерес Гельмгольца вызвали вихревые кольца и особенности их взаимодействий.

В частности, весьма нетривиальной оказалась совместная динамика поведения у пары коаксиальных или соосных колец. Чисто теоретически, решая уравнения гидродинамики идеальной жидкости, учёный открыл здесь примечательный эффект, ныне именуемый «чехарда вихревых колец» или Leapfrogging vortex rings. Когда два одинаковых вихревых кольца двигаются вдоль общей оси в одном и том же направлении с одинаковыми скоростями, то они начинают взаимно притягиваться. Первое кольцо 1 при этом растягивается и замедляет движение, а второе кольцо 2 стягивается и ускоряет свой ход, проскакивая сквозь кольцо 1. Как только это происходит, теперь уже кольцо 2 начинает расширяться и замедляться, а кольцо 1 , наоборот, сужаться и ускоряться.

Когда размеры и скорости колец выравниваются, эта же чехарда повторяется вновь и вновь. Так что в условиях идеальной гидродинамики несжимаемой и невязкой жидкости такого рода осцилляция пары колец будет продолжаться до бесконечности. Представленную так схему чехарды вихревых колец обычно приводят в качестве примера впечатляющей мощи математической физики. Ибо вскоре после того, как данный эффект был открыт чисто теоретически через решение уравнений, в экспериментальной физике его успешно воспроизвели с помощью вихревых колец дыма. Которые в условиях реальной воздушной среды осциллировали не до бесконечности, конечно же, а всего несколько раз.

Но зато вполне наглядно и убедительно. Видеть в этой же наглядной физике механизм в основе устройства нейтрино, однако, до сих пор в науке совершенно не принято. Почему так, объяснялось неоднократно в других местах, а здесь повторять неинтересно. Ибо куда интереснее обратить внимание на ключевые моменты в «загадочной физике нейтрино» и на то, сколь просто и естественно они объясняются через модель-аналогию с чехардой вихревых колец. Самое очевидное соответствие, конечно же, — это два компонента модели, постоянно меняющихся местами в процессе нескончаемых осцилляций.

И образующих единую квази-частицу. Хотя эта раздвоенная «частица» как целое постоянно движется в одном направлении, её компоненты-кольца относительно друг друга всё время движутся в направлениях противоположных. И с противоположной спиральностью. Как частица и анти-частица. Сопутствующие осцилляциям регулярные перемены в размере двух компонентов — одно кольцо сжимается, когда другое расширяется — это суть механизма Seesaw, то есть «качелей» в основе математического описания нейтрино.

Размер плотность энергии каждого из колец в процессе осцилляций имеет три отчётливых фазы: максимального растяжения; максимального сжатия; и равенства двух колец в моменты перехода к следующему циклу взаимных обменов местами. Или, выражаясь попроще, в форме вихревого кольца. В результате чего эта пара вихревых колец — согласно Гельмгольцу — образуют сдвоенную частицу-нейтрино с постоянно осциллирующими в чехарде половинами… Почему это очень важно Очерченная здесь картина вихревого устройства нейтрино — преднамеренно доведённая до наивной простоты и наглядности — нужна для того, прежде всего, чтобы стали яснее взаимосвязи между раздвоенной физикой нейтрино и «новым синтезом наук», предсказанным в давнем сне Паули. О том, что важнейшая идея о единой вихревой природе всех частиц или «дуальность частица-вихрь», как это предпочитают именовать деликатные теоретики на сегодняшний день освоена в науке уже весьма глубоко и разносторонне, здесь рассказывалось неоднократно. Ибо в фундаменте по прежнему царят Стандартные Модели.

А для них концепция частиц как вихрей в эфире — всё равно что чудовищная ересь для всякой порядочной религии.

The IceCube collaboration, which registers neutrinos with the detector in Antarctica, presented the first neutrino image of the Galaxy [10]. Gamma photons are produced in the interaction of cosmic rays with interstellar gas in the Galaxy, and F W Stecker predicted in 1979 that neutrinos must be born in the same processes. When examining the southern part of the sky, where the Galactic center lies, IceCube identified cascade events associated with the neutrino interaction within the detector itself. Although the accuracy of determining the direction from cascade events is lower than from track events, it is easier to filter out the strong background of atmospheric muons in cascade events. The signal has the form of diffuse inhomogeneous emission concentrated near the Galactic disc. For the role of neutrinos in astrophysics, see [12]. Gravitational waves passing between pulsars and an observer on the Earth must perturb space-time and thus shift signal phases. The NANOGrav collaboration has already had evidence for the existence of nHz-scale gravitational-wave background, but the statistical significance of the result was low.

Годнота от Neutrino Components, скоро на моих проектах!

Иначе говоря, в возрасте 53 лет… Пока что наука не располагает ничем, что могло бы хоть как-то объяснить причины для этой мистически связанной череды больших потерь. Но даже без объяснений должно быть ясно, что плеяда выдающихся учёных, особо далеко продвинувшихся в постижении тайн нейтрино, ушла из жизни именно в тот период, когда наука только-только начала приоткрывать реальную картину устройства этих неуловимо-загадочных частиц. И теперь, когда мистический фон картины в целом ухвачен, становится особо интересно рассмотреть, что же произошло в науке дальше с двухкомпонентной моделью нейтрино. Вот, скажем, совсем свежая книга «Частица-призрак: В поисках неуловимого и загадочного нейтрино». Изд-во МТИ, 2023 [o9a]. В книге нет не только никаких упоминаний имён нобелевских лауреатов Льва Ландау и Абдуса Салама, сыгравших заметную роль в создании современной теории нейтрино, но и вообще ни разу не упомянута модель двухкомпонентого нейтрино two-component neutrino. Другая аналогичная книга, опубликованная чуть ранее, в 2021, весьма именитым авторитетом в данной научной области: «История нейтрино: Великая космическая роль одной крошечной частицы» [o9b]. Ни одного упоминания имени Ландау, а имя Салама появляется только в связи с его нобелевской премией за теорию слабых ядерных взаимодействий. А потому, соответственно, и никаких страниц или хотя бы строк истории, посвящённых двухкомпонентному нейтрино. Поскольку такая же по сути картина повторяется и с другими недавними книгами о нейтрино, отодвинем обзор чуть подальше, в 2010 год.

Когда в издательстве Оксфордского университета вышла заметная книга под совсем лаконичным названием «Нейтрино» [o9c] от известного историка науки, профессора Фрэнка Клоуза. И здесь, увы, полное изъятие двухкомпонентной модели нейтрино сделано по той же самой схеме. Ни слова о теории Ландау, а имя Салама упомянуто лишь раз. И в связи с его совершенно иной, более поздней идеей об экспериментах с космическим нейтрино. Ну и дабы всем стало совершенно ясно и очевидно, что тотальное выпиливание этого эпизода из истории науки происходит давно, повсеместно и явно неслучайно, осталось заглянуть в самые популярные онлайновые энциклопедии англоязычного мира, Wikipedia и Britannica. Где легко устанавливается, что и там в статьях о «Neutrino» про двухкомпонентную модель от Ландау, Салама и Янга-Ли нет абсолютно ничего… Аккуратности ради следует отметить, что в русскоязычной Википедии, где советский физик Лев Ландау имеет почти божественный статус, статья « Нейтрино » содержит вполне информативный раздел и о двухкомпонентной модели, и о трёх статьях от именитых авторов, эту модель предложивших. Но по какой-то неназываемой причине в этой же статье полностью отсутствует упоминание о «механизме качелей» Seesaw mechanism , с помощью которого в современной науке принято математически объяснять особо странные вещи в физике нейтрино. Типа осцилляций состояния частицы между разными «ароматами» или уровнями энергии просто нейтрино, мю-нейтрино, тау-нейтрино , а также очень малой, но ненулевой, как принято ныне полагать, массы покоя. А поскольку и во всех современных книгах о нейтрино, и в статьях англоязычных энциклопедий механизм Seesaw непременно упоминается как одна из базовых моделей в новейшей теории нейтрино, несложно сообразить вот какую вещь.

Здесь мы в очередной раз можем наблюдать, как официальная наука сама себе морочит голову. Ибо если аккуратно объединить давнюю модель двухкомпонентного нейтрино игнорируемую в англоязычной литературе и современную модель Seesaw mechanism игнорируемую в русскоязычной вики-статье о нейтрино , то несложно увидеть именно то, чего в мире науки никто почему-то видеть не желает. Как выглядит физика нейтрино в реальности Есть глубочайшая ирония — густо замешанная с мистикой — в том, что теоретический фундамент для подлинного понимания физики нейтрино был заложен в 1857-58 годы. То есть ровно за сто лет до того, как в 1957-58 теоретики сделают важнейшие открытия о раздвоенном строении нейтрино и о ключевой роли этой структуры для понимания физики частиц в целом. Именно тогда, в 1857-58, выдающийся врач и физиолог — а по совместительству ещё и одарённый физик-математик — Герман Гельмгольц подготовил и опубликовал эпохальную работу «Об интегралах гидродинамических уравнений, которым соответствуют вихревые движения» [o10]. Благодаря этой статье от Гельмгольца учёный мир впервые узнал о поразительной стабильности вихрей и неисчерпаемом богатстве их физики. Среди удивительного разнообразия эффектов, порождаемых гидродинамикой вихрей, заметный интерес Гельмгольца вызвали вихревые кольца и особенности их взаимодействий. В частности, весьма нетривиальной оказалась совместная динамика поведения у пары коаксиальных или соосных колец. Чисто теоретически, решая уравнения гидродинамики идеальной жидкости, учёный открыл здесь примечательный эффект, ныне именуемый «чехарда вихревых колец» или Leapfrogging vortex rings.

Когда два одинаковых вихревых кольца двигаются вдоль общей оси в одном и том же направлении с одинаковыми скоростями, то они начинают взаимно притягиваться. Первое кольцо 1 при этом растягивается и замедляет движение, а второе кольцо 2 стягивается и ускоряет свой ход, проскакивая сквозь кольцо 1. Как только это происходит, теперь уже кольцо 2 начинает расширяться и замедляться, а кольцо 1 , наоборот, сужаться и ускоряться. Когда размеры и скорости колец выравниваются, эта же чехарда повторяется вновь и вновь. Так что в условиях идеальной гидродинамики несжимаемой и невязкой жидкости такого рода осцилляция пары колец будет продолжаться до бесконечности. Представленную так схему чехарды вихревых колец обычно приводят в качестве примера впечатляющей мощи математической физики. Ибо вскоре после того, как данный эффект был открыт чисто теоретически через решение уравнений, в экспериментальной физике его успешно воспроизвели с помощью вихревых колец дыма. Которые в условиях реальной воздушной среды осциллировали не до бесконечности, конечно же, а всего несколько раз. Но зато вполне наглядно и убедительно.

Видеть в этой же наглядной физике механизм в основе устройства нейтрино, однако, до сих пор в науке совершенно не принято. Почему так, объяснялось неоднократно в других местах, а здесь повторять неинтересно. Ибо куда интереснее обратить внимание на ключевые моменты в «загадочной физике нейтрино» и на то, сколь просто и естественно они объясняются через модель-аналогию с чехардой вихревых колец. Самое очевидное соответствие, конечно же, — это два компонента модели, постоянно меняющихся местами в процессе нескончаемых осцилляций. И образующих единую квази-частицу. Хотя эта раздвоенная «частица» как целое постоянно движется в одном направлении, её компоненты-кольца относительно друг друга всё время движутся в направлениях противоположных. И с противоположной спиральностью. Как частица и анти-частица. Сопутствующие осцилляциям регулярные перемены в размере двух компонентов — одно кольцо сжимается, когда другое расширяется — это суть механизма Seesaw, то есть «качелей» в основе математического описания нейтрино.

Размер плотность энергии каждого из колец в процессе осцилляций имеет три отчётливых фазы: максимального растяжения; максимального сжатия; и равенства двух колец в моменты перехода к следующему циклу взаимных обменов местами. Или, выражаясь попроще, в форме вихревого кольца. В результате чего эта пара вихревых колец — согласно Гельмгольцу — образуют сдвоенную частицу-нейтрино с постоянно осциллирующими в чехарде половинами… Почему это очень важно Очерченная здесь картина вихревого устройства нейтрино — преднамеренно доведённая до наивной простоты и наглядности — нужна для того, прежде всего, чтобы стали яснее взаимосвязи между раздвоенной физикой нейтрино и «новым синтезом наук», предсказанным в давнем сне Паули. О том, что важнейшая идея о единой вихревой природе всех частиц или «дуальность частица-вихрь», как это предпочитают именовать деликатные теоретики на сегодняшний день освоена в науке уже весьма глубоко и разносторонне, здесь рассказывалось неоднократно. Ибо в фундаменте по прежнему царят Стандартные Модели. А для них концепция частиц как вихрей в эфире — всё равно что чудовищная ересь для всякой порядочной религии. И коль скоро путь к естественному объединению физики, биологии и сознания вселенной с необходимостью должен проходить через освоение реальной природы частиц как вихрей, понятно, наверное, почему движения на этом пути практически не наблюдается. Пока же наука наша продолжает размышлять, как начать выход из кризиса без потери лица и достоинства, здесь будет продемонстрировано вот что. Универсальная, можно сказать, полезность новой модели нейтрино — как пары меняющихся местами вихревых колец — для прояснения множества самых разных загадочных вещей.

От единой вихревой природы бозонов и фермионов до роли нейтрино в работе человеческого сознания, всех разумных существ и единого разума вселенной в целом. От нескончаемых циклов расширения-сжатия космоса и до асимметрично раздвоенного устройства времени. Именно об этом, кстати, и запланирован следующий рассказ.

Но все-таки анализ данных эмульсионного детектора требует значительно больше времени. Однако, электронные детекторы, которые в установке FASER служат для поиска экзотических частиц, тоже видят продукты взаимодействия нейтрино с эмульсионным детектором. Анализ данных этих детекторов и дал новый результат. Когда были зафиксированы нейтрино?

Данные набирались во время всего сеанса прошлого года. На начальном этапе анализа данных электронных детекторов отбирались взаимодействия только мюонных нейтрино, и было найдено 153 события. С учетом всех фоновых процессов, которые могут имитировать нейтринные взаимодействия, результат имеет очень высокую статистическую значимость — на жаргоне физиков 16 сигм. Открытием считается результат со статистической значимостью выше 5 сигм. В коллаборации вас, сотрудников ОИЯИ, трое. Какова ваша роль? Да, нас трое физиков и еще один инженер. Мы все пришли из других нейтринных экспериментов, имеем опыт работы как с эмульсионными, так и с электронными детекторами.

Korga, T. Lachenmaier, M. Laubenstein, E. Litvinovich, P. Lombardi, I. Lomskaya, L. Ludhova, G. Lukyanchenko, L.

Lukyanchenko, I. Machulin, G. Manuzio, S. Marcocci, J. Maricic, J. Martyn, E. Meroni, M. Meyer, M.

Misiaszek, V. Muratova, B. Neumair, M. Nieslony, L. Oberauer, V. Orekhov, F. Ortica, M. Pallavicini, L.

Papp, O. Penek, L. Pietrofaccia, N. Pilipenko, A. Pocar, G. Raikov, M.

The Neutrino Power Cell is made of layers of silicon and carbon, which are applied to a metallic substrate with surgical precision so that when neutrinos hit them, it results in a resonance.

Neutrino Energy discovered how to build such a cell that could convert the optimal level of resonance into resonating frequency on an electrical conductor, and then capture this energy. A crucial advantage is that the process requires no sunlight. For 24 hours a day and 365 days a year, Neutrino Power Cubes can transform portions of energy into power, anywhere in the world. The new technology may help future generations meet their energy needs without requiring inefficient infrastructure, competition for scarce natural resources and environmental burden, which requires immediate action to stop it from becoming a climate catastrophe. Solar energy was an important first step on the way to liberating our planet from its crippling dependence on fossil fuels, but the visible spectrum was merely the beginning.

Похожие новости:

Оцените статью
Добавить комментарий